JPS5847767B2 - Jikihed - Google Patents

Jikihed

Info

Publication number
JPS5847767B2
JPS5847767B2 JP50008834A JP883475A JPS5847767B2 JP S5847767 B2 JPS5847767 B2 JP S5847767B2 JP 50008834 A JP50008834 A JP 50008834A JP 883475 A JP883475 A JP 883475A JP S5847767 B2 JPS5847767 B2 JP S5847767B2
Authority
JP
Japan
Prior art keywords
magnetic
bias
permanent magnet
head
magnetic field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP50008834A
Other languages
Japanese (ja)
Other versions
JPS5184224A (en
Inventor
謙二 金井
伸征 紙中
紀台 能智
登 野村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP50008834A priority Critical patent/JPS5847767B2/en
Publication of JPS5184224A publication Critical patent/JPS5184224A/en
Publication of JPS5847767B2 publication Critical patent/JPS5847767B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Magnetic Heads (AREA)

Description

【発明の詳細な説明】 本発明は磁気抵抗効果素子を用いた薄膜形磁気ヘッドの
改良に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an improvement in a thin film magnetic head using a magnetoresistive element.

従来、パーマロイ、センダスト、フエライト等の強磁性
材料からなるコア一部分を空L SiO ,CuやAI
等の非磁性部分からなる空隙部を介して対向させ、前記
コア一部分の一部にAIやCu等の導電性材料からなる
巻線を巻きつけた巻線部を有した磁気ヘッドが用いられ
ていたが、これとは異なるタイプとして最近パーマロイ
、センダストやフエライト等の強磁性材別で磁気抵抗効
果を有した材別に前記磁性記録媒体からの磁束が通ると
き、この磁束と前記強磁性材別中のスピンとの相互作用
に伴う電気抵抗の変化を前記媒体からの記録信号として
読み出す磁気ヘッド(磁気抵抗効果型磁気ヘッド、以下
単にMRヘッドという)が考えられている。
Conventionally, a portion of the core made of ferromagnetic materials such as permalloy, sendust, and ferrite was used as an empty L, such as SiO, Cu, or AI.
A magnetic head is used, which has a winding part in which a winding made of a conductive material such as AI or Cu is wound around a part of the core part, and the winding part is made of a conductive material such as AI or Cu. However, when the magnetic flux from the magnetic recording medium passes through a different type of ferromagnetic material, such as permalloy, sendust, and ferrite, which has a magnetoresistive effect, this magnetic flux and the ferromagnetic material have a different effect. A magnetic head (magnetoresistive magnetic head, hereinafter simply referred to as MR head) that reads out changes in electrical resistance due to interaction with the spin of the medium as a recording signal from the medium has been considered.

まず、はじめにMRヘッドの基本動作、基本構成を第1
図〜第3図とともに説明する。
First, we will explain the basic operation and configuration of the MR head in the first part.
This will be explained with reference to FIGS.

容易方向がy方向で一軸異方性を示すパーマロイ等の強
磁性からなる磁気抵抗効果素子(以下、単にMR素子と
いう)1に磁性記録媒体から漏洩した磁束のX戒分Φr
xがx − y面のX方向を通過するときMR素子1の
磁化Msはエネルギーの極小条件を満たすようにX方向
と角度θをなす方向に向くために、MR素子1のX方向
における比抵抗ρはMR素子1にΦrxが通過しない時
の比抵抗をρ0とするとρ一ρQ (X−COS 2θ
のように変化する。
X fraction Φr of the magnetic flux leaked from the magnetic recording medium to the magnetoresistive element (hereinafter simply referred to as MR element) 1 made of ferromagnetic material such as permalloy whose easy direction is the y direction and exhibits uniaxial anisotropy.
When x passes through the X direction of the x-y plane, the magnetization Ms of the MR element 1 is oriented in a direction forming an angle θ with the X direction so as to satisfy the minimum energy condition, so the specific resistance of the MR element 1 in the X direction is ρ is ρ−ρQ (X−COS 2θ
It changes like this.

したがって、MR素子10両端部11.12にAI,C
uやパーマロイ等からなる導電性材利2を接続させてM
R素子1中のX方向に直流の電流を流すと、記録媒体か
らの記録信号に応じてMR素子1の11.12の間で電
圧変化つまり出力Eを第2図に示すように取り出すこと
ができる。
Therefore, AI, C at both ends 11.12 of the MR element 10
M by connecting conductive material 2 made of u or permalloy etc.
When a direct current is passed in the X direction in the R element 1, a voltage change between 11 and 12 of the MR element 1 according to the recording signal from the recording medium, that is, an output E can be taken out as shown in Figure 2. can.

なお、第2図におけるμはMR素子1の透磁率を示す。Note that μ in FIG. 2 indicates the magnetic permeability of the MR element 1.

MRヘッドは原理上出力Eを大きくするために、MR素
子1には厚みが薄いことが要求されるので蒸着、スパッ
タリング等の技術を用いてMR素子1を作製する。
In order to increase the output E of the MR head in principle, the MR element 1 is required to be thin, so the MR element 1 is manufactured using techniques such as vapor deposition and sputtering.

また、MR素子1の有する磁気的異方性が悪いと第3図
に示すようなヒステリシス現象が生じ、さらに第2図、
第3図における最大出力Emaxが低下するので、MR
素子1には磁気的に分散の少ない一軸異方性が要求され
、容易軸を直流電流iと直交させ、この電流方向に記録
信号に伴う磁束Φrxを通過させる方法が行われている
Furthermore, if the magnetic anisotropy of the MR element 1 is poor, a hysteresis phenomenon as shown in FIG. 3 occurs, and furthermore, as shown in FIG.
Since the maximum output Emax in Fig. 3 decreases, MR
The element 1 is required to have uniaxial anisotropy with little magnetic dispersion, and a method is used in which the easy axis is made perpendicular to the direct current i and the magnetic flux Φrx associated with the recording signal is passed in the direction of this current.

出力Eと印加磁場Hは非線形の領域を含んでいるために
、所要のバイアス直流磁界Hbを記録媒体からの記号a
に加えることによって、第2図に示すように動作点P点
に移動させ、線形領域を利用して、記録信号aを信号b
のように取り出している。
Since the output E and the applied magnetic field H include a nonlinear region, the required bias DC magnetic field Hb is expressed by the symbol a from the recording medium.
As shown in FIG. 2, the recording signal a is moved to the operating point P by adding
It is taken out like this.

このような動作方法はアナログ信号の読み出しにおいて
も有効的な方法である。
Such an operating method is also effective in reading analog signals.

従来、バイアス直流磁界Hbを与えるために、第4図〜
第7図に示すようにMR素子1に2方向のバイアス直流
磁界Hbを印加するためにAI,パーマロイ等の導電性
材利からなるワイヤー3あるいは帯状体4にバイアス直
流電流i,を流していた。
Conventionally, in order to apply a bias DC magnetic field Hb, the method shown in FIGS.
As shown in FIG. 7, in order to apply a bias DC magnetic field Hb in two directions to the MR element 1, a bias DC current i was passed through a wire 3 or a strip 4 made of a conductive material such as AI or permalloy. .

しかしながら、この場合、素子1の全域にわたって一様
な大きさのバイアス磁界が得にくい。
However, in this case, it is difficult to obtain a bias magnetic field of uniform magnitude over the entire area of the element 1.

これを避ける方法としてたとえば第7図に示された帯状
体4のX方向における長さt2と素子の長さt1とをt
2〉t1の条件に設定する方法が考えられる。
To avoid this, for example, the length t2 of the strip 4 in the X direction and the length t1 of the element shown in FIG.
A possible method is to set the condition to 2>t1.

しかし、MR素子1を動作中常時バイアス直流電流ib
を流す必要が有するために電力消費が大きく、コスト面
で問題が生じる。
However, when the MR element 1 is in operation, the constant bias DC current ib
This requires high power consumption, which poses a cost problem.

さらに重要な問題として導電性物質3,4に直流電流i
bが流れることにより生じるジュール熱がMR素子1に
加わり、MR素子1の磁気特性を低下させる。
An even more important issue is the direct current i in the conductive materials 3 and 4.
Joule heat generated by the flow of b is applied to the MR element 1, reducing the magnetic properties of the MR element 1.

さらに他の従来例として、第8図に示すように、バルク
状の永久磁石41をネジ42でy方向に動かすことによ
って、素子1にバイアス直流磁界をを加える方法がある
が、永久磁石41を所要の形状に作製するための機械的
加工工程が必要であり、MR素子1と一体に作製したり
、加工したりすることができない。
As another conventional example, there is a method of applying a bias DC magnetic field to the element 1 by moving a bulk permanent magnet 41 in the y direction with a screw 42, as shown in FIG. A mechanical processing step is required to manufacture it into a desired shape, and it cannot be manufactured or processed integrally with the MR element 1.

さらに、永久磁石には機械的加工が困難な材料もあって
材料の選択が要求されたり、またMR素子1に所要のバ
イアス直流磁界を与えるにあたり機械的な調整方法つま
りネジ42で調整しているために微調整が困難である。
Furthermore, permanent magnets include materials that are difficult to process mechanically, so selection of the material is required, and in order to provide the required bias DC magnetic field to the MR element 1, a mechanical adjustment method, that is, adjustment using the screw 42, is required. Therefore, fine adjustment is difficult.

本発明の磁気ヘッドは直流バイアス磁界Hbにおける以
上の問題を解決するものである。
The magnetic head of the present invention solves the above problems in the DC bias magnetic field Hb.

以下、本発明の実施例について第9図〜第11図を用い
て説明する。
Embodiments of the present invention will be described below with reference to FIGS. 9 to 11.

これらの図において、磁気ヘッドは磁気抵抗効果型であ
り、ガラス、セラミック、ステンレス鋼、シリコン等の
非磁性材料からなる基板5上に蒸着、スパッタリングや
電着等の技術を用いて以下の構或の膜を作製し、フォト
エッチング、エレクトロフオーミング等の技術を用いて
微細な構或を形威している前記基板5上に(第9図では
x − y面の2方向)右側磁性薄膜61、左側磁性薄
膜62を、空隙長さがgで空気、Cu , AI ,
SiO等の非磁性部分からなる空隙部7を介して、対向
させ、前記薄膜61 .62の記録媒体17と離れた位
置において長手方向(第9図ではX方向)の長さがt3
、幅方向(同じくy方向)の長さがW3のパーマロイ薄
膜等の強磁性薄膜からなるMR素子9を前記薄膜61
.62と磁気的に橋絡させ、前記薄膜61.62とMR
素子9で閉じた磁気回路を形或させる。
In these figures, the magnetic head is of a magnetoresistive type, and is fabricated using techniques such as vapor deposition, sputtering, and electrodeposition on a substrate 5 made of non-magnetic material such as glass, ceramic, stainless steel, and silicon. A right side magnetic thin film 61 is formed on the substrate 5 (in the two directions of the x-y plane in FIG. 9) on which a fine structure is formed using techniques such as photo-etching and electroforming. , the left magnetic thin film 62 is made of air, Cu, AI, with a gap length of g.
The thin films 61 . The length in the longitudinal direction (in the X direction in FIG. 9) at a position away from the recording medium 17 of 62 is t3.
, an MR element 9 made of a ferromagnetic thin film such as a permalloy thin film having a length W3 in the width direction (also in the y direction) is attached to the thin film 61.
.. 62 and magnetically bridged with the thin film 61.62 and MR.
The element 9 forms a closed magnetic circuit.

なおMR素子9の下部には長手方向(第9図ではX方向
)の長さが少なくともMR素子9よりも小さくない、S
iO,SiO2,MgO等の非磁性材料からなるまくら
部分21を配する。
Note that at the bottom of the MR element 9 there is an S whose length in the longitudinal direction (in the X direction in FIG. 9) is at least not smaller than the MR element 9.
A pillow portion 21 made of a non-magnetic material such as iO, SiO2, MgO, etc. is provided.

次に、右側磁性薄膜61および左側磁性薄膜62の一部
分8L82の上部にAI,CLI,パーマロイ等の導電
性材料からなる電流取出部分13.14を配し、直流電
流iをMR素子9に流す。
Next, current extraction portions 13 and 14 made of a conductive material such as AI, CLI, permalloy, etc. are placed above the right magnetic thin film 61 and the portion 8L82 of the left magnetic thin film 62, and direct current i is caused to flow through the MR element 9.

さらに、MR素子9の上部(第9図および第10図では
2方向)に空隙長さtい空隙深さW4を有し閉じた磁気
回路を形成していてSm−Co系、Gd−Co系、C
o − P系等の永久磁石材料からなる永久磁石膜16
をガラス、セラミック、ステンレス鋼、シリコン等の保
護基板19上に形成させ、保護基板19と前記基板5を
対向させ、永久磁石膜16の空隙部15(第9図の斜線
部の六方体EFGHIJKL)内に対向した基板5上の
MR素子9が少なくとも位置するように永久磁石膜16
を配している。
Furthermore, the upper part of the MR element 9 (in two directions in FIGS. 9 and 10) has a gap length t and a gap depth W4, forming a closed magnetic circuit, and is based on Sm-Co and Gd-Co systems. , C
Permanent magnet film 16 made of permanent magnet material such as o-P system
is formed on a protective substrate 19 made of glass, ceramic, stainless steel, silicon, etc., and the protective substrate 19 and the substrate 5 are made to face each other, and the gap 15 of the permanent magnet film 16 (the hexagonal EFGHIJKL in the shaded area in FIG. 9) is formed. The permanent magnet film 16 is arranged such that at least the MR element 9 on the opposing substrate 5 is located inside the permanent magnet film 16.
are arranged.

また、第10図中のt1はMR素子9の厚みを示し、t
2は永久磁石膜16の厚みを示す。
Further, t1 in FIG. 10 indicates the thickness of the MR element 9, and t
2 indicates the thickness of the permanent magnet film 16.

ここで、MR素子9に一様な直流バイアス磁界Hbが加
わるように’4.2 ’3 ,w,,>w3の条件を満
たすようにする。
Here, the conditions '4.2 '3, w, , >w3 are satisfied so that a uniform DC bias magnetic field Hb is applied to the MR element 9.

さらに、永久磁石膜16と右側、左側磁性薄膜61 ,
62およびMR素子9の間での電気的、磁気的な短絡を
さけるために、Sio t St02 + MgO等の
非磁性で絶縁性の膜を永久磁石膜16の上部に配してお
く。
Furthermore, the permanent magnet film 16 and the right and left magnetic thin films 61,
In order to avoid electrical and magnetic short circuits between the permanent magnet film 16 and the MR element 9, a non-magnetic and insulating film such as Siot St02 + MgO is placed on top of the permanent magnet film 16.

続いて本発明の磁気ヘッドの動作を第11図を用いて説
明する。
Next, the operation of the magnetic head of the present invention will be explained using FIG. 11.

記録媒体17上に記録信号つまり記録された領域18か
ら発する磁束のX成分Φrxを右側磁性薄膜61、左側
磁性薄嘆62によって磁気抵抗効果素子9の長手方向(
第6図および第7図ではX方向)に導き、さらに永久磁
石模16によってMR素子9を直流バイアス磁界Hbを
記録信号と同一方向(第6図、第7図ではX方向)に加
え、電流取り出し部分13.14に直流の電流を流すと
記録信号の変化に応じた電圧変化がMR素子9の長手方
向(X方向)に生じ、これを記録信号の出力Eとして取
り出している。
The recording signal, that is, the X component Φrx of the magnetic flux emitted from the recorded area 18 on the recording medium 17 is transferred in the longitudinal direction of the magnetoresistive element 9 (
Further, a DC bias magnetic field Hb is applied to the MR element 9 using the permanent magnet pattern 16 in the same direction as the recording signal (X direction in FIGS. 6 and 7), and the current When a direct current is passed through the extraction portions 13 and 14, a voltage change occurs in the longitudinal direction (X direction) of the MR element 9 in accordance with the change in the recording signal, and this is extracted as the output E of the recording signal.

以上のように本発明の磁気ヘッドの特徴はMR素子に直
流バイアス磁界Hbを加える方法として、MR素子の下
部に幅方向の長手力向の長さが少なくともMR素子より
も小さくないまくら部分上にMR素子を配し、MR素子
が形威されている基板と対向している保護基板上に形戒
された永久磁石膜の空隙部内に前記素子が位置するよう
に構或されている点である。
As described above, the feature of the magnetic head of the present invention is that as a method of applying a DC bias magnetic field Hb to the MR element, the method is to apply a DC bias magnetic field Hb to the lower part of the MR element on the pillow part whose length in the longitudinal force direction in the width direction is at least not smaller than the MR element. The MR element is arranged so that the element is located within a gap in a permanent magnet film formed on a protective substrate facing the substrate on which the MR element is formed. .

したがって、MR素子に一様なバイアス直流磁界を加え
ることができる。
Therefore, a uniform bias DC magnetic field can be applied to the MR element.

さらに、本発明の磁気ヘッドの特徴としてバイアス直流
磁界を発生させるための電力を必要としないので、この
MRヘッドを従来品に比べて少ない電力消費量で動作さ
せることができ、さらに従来ではバイアス直流磁界を得
るためにバイアス直流電流i,を流していたので、それ
によるジュール熱が発生し、MR素子の磁気特性を劣化
させていたが、本発明の磁気ヘッドにおいては上記のジ
ュール熱による磁気特性の劣化をまぬがれることができ
る。
Furthermore, since the magnetic head of the present invention does not require electric power to generate a bias DC magnetic field, this MR head can be operated with less power consumption than conventional products. In order to obtain a magnetic field, a bias DC current i was passed, which generated Joule heat and deteriorated the magnetic properties of the MR element.However, in the magnetic head of the present invention, the magnetic properties due to the Joule heat described above are reduced. deterioration can be avoided.

さらに、本発明の磁気ヘッドにおいては、保護基板上に
永久磁石膜が独立して配設され、この永久磁石膜の空隙
部内にMR素子が位置するよう構或されているため、永
久磁石膜によるバイアス磁界の調整が容易で、かつ均一
なバイアス磁界をMR素子に印加することができる。
Furthermore, in the magnetic head of the present invention, the permanent magnet film is independently disposed on the protective substrate, and the MR element is located within the gap of the permanent magnet film. The bias magnetic field can be easily adjusted and a uniform bias magnetic field can be applied to the MR element.

したがって、特性のばらつきがきわめて少なく、安価な
薄膜型の磁気ヘッドを提供することができる。
Therefore, it is possible to provide an inexpensive thin-film magnetic head with very little variation in characteristics.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はMRヘッドの基本構戊の一例を示す図、第2図
および第3図はMRヘッドの入出力関係図、第4図、第
6図および第8図はMRヘッドのバイアス直流磁界を加
える方法を示す斜視図、第5図および第T図はMRヘッ
ドのバイアス直流磁界を加える方法の正面図、第9図は
本発明の一実施例のMRヘッドの要部斜視図、第10図
および第11図はそれぞれその要部正面図、斜視図であ
る05・・・・・・基板、7・・・・・・空隙部、9・
・・・・・MR素子、13.14・・・・・・電流取出
部分、15・・・・・・空隙部、16・・・・・・永久
磁石膜、17・・・・・・記録媒体、21・・・・・・
非磁性材料まくら部分。
Figure 1 is a diagram showing an example of the basic structure of an MR head, Figures 2 and 3 are input/output relationship diagrams of the MR head, and Figures 4, 6, and 8 are bias DC magnetic fields of the MR head. 5 and T are front views showing a method for applying a bias DC magnetic field to an MR head. FIG. 9 is a perspective view of essential parts of an MR head according to an embodiment of the present invention. Figure 11 is a front view and a perspective view of the main parts, respectively.
...MR element, 13.14 ... Current extraction part, 15 ... Gap part, 16 ... Permanent magnet film, 17 ... Recording Medium, 21...
Non-magnetic material pillow part.

Claims (1)

【特許請求の範囲】[Claims] 1 基板上に磁気抵抗効果素子と磁性薄膜で磁気回路を
構或し、前記基板に対向する保護基板上に形成された永
久磁石膜によって形成される空隙部内に前記磁気抵抗効
果素子を配したことを特徴とする磁気ヘッド。
1. A magnetic circuit is constructed by a magnetoresistive element and a magnetic thin film on a substrate, and the magnetoresistive element is disposed within a gap formed by a permanent magnet film formed on a protective substrate facing the substrate. A magnetic head featuring:
JP50008834A 1975-01-20 1975-01-20 Jikihed Expired JPS5847767B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP50008834A JPS5847767B2 (en) 1975-01-20 1975-01-20 Jikihed

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP50008834A JPS5847767B2 (en) 1975-01-20 1975-01-20 Jikihed

Publications (2)

Publication Number Publication Date
JPS5184224A JPS5184224A (en) 1976-07-23
JPS5847767B2 true JPS5847767B2 (en) 1983-10-25

Family

ID=11703803

Family Applications (1)

Application Number Title Priority Date Filing Date
JP50008834A Expired JPS5847767B2 (en) 1975-01-20 1975-01-20 Jikihed

Country Status (1)

Country Link
JP (1) JPS5847767B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59227021A (en) * 1983-06-07 1984-12-20 Sanyo Electric Co Ltd Magneto-resistance effect type magnetic head and its manufacture

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3493694A (en) * 1966-01-19 1970-02-03 Ampex Magnetoresistive head
JPS4874724A (en) * 1971-12-30 1973-10-08

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49136220U (en) * 1973-03-22 1974-11-22

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3493694A (en) * 1966-01-19 1970-02-03 Ampex Magnetoresistive head
JPS4874724A (en) * 1971-12-30 1973-10-08

Also Published As

Publication number Publication date
JPS5184224A (en) 1976-07-23

Similar Documents

Publication Publication Date Title
EP0472187B1 (en) Planar thin film magnetic head
US4051542A (en) Magnetic head with thin sheet exhibiting magnetoresistive property
US3975773A (en) Thin film magnetic heads
US5982177A (en) Magnetoresistive sensor magnetically biased in a region spaced from a sensing region
JPS5847767B2 (en) Jikihed
JPS6227449B2 (en)
JPS5931771B2 (en) thin film magnetoresistive head
JPS6032885B2 (en) thin film magnetic head
JP2701557B2 (en) Magnetoresistive element and method of manufacturing the same
KR920001129B1 (en) Magnetic resistance effect magnetic head
JPS58100217A (en) Magnetoresistance effect head
JPS58166527A (en) Magnetoresistance effect head
US6190517B1 (en) Magnet array
JPH0719343B2 (en) Method of manufacturing magnetoresistive type magnetic head
JPS5853696Y2 (en) thin film magnetic head
JP2878738B2 (en) Recording / reproducing thin film magnetic head
JPS61196418A (en) Thin film magnetic head
JPH05266437A (en) Magnetoresistance effect type head
Nomura et al. Characteristics of magneto-resistive films controlled by grating surface of substrate
JPH048846B2 (en)
JPH04351708A (en) Hall element and magnetic head
JPH01279407A (en) Thin film magnetic head
JPS6182304A (en) Vertical magnetic recording magnetic head
JPH0426909A (en) Magneto-resistance effect type head
JPS60191419A (en) Magneto-resistance effect head