JPS5846824A - Protective relay unit - Google Patents

Protective relay unit

Info

Publication number
JPS5846824A
JPS5846824A JP56142461A JP14246181A JPS5846824A JP S5846824 A JPS5846824 A JP S5846824A JP 56142461 A JP56142461 A JP 56142461A JP 14246181 A JP14246181 A JP 14246181A JP S5846824 A JPS5846824 A JP S5846824A
Authority
JP
Japan
Prior art keywords
phase
protective relay
current
sample
sample amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP56142461A
Other languages
Japanese (ja)
Inventor
雅嗣 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP56142461A priority Critical patent/JPS5846824A/en
Publication of JPS5846824A publication Critical patent/JPS5846824A/en
Pending legal-status Critical Current

Links

Landscapes

  • Emergency Protection Circuit Devices (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は、保護継電装置、特に2系列化された保護継電
装置の保護性能の改良に関するものであ置には保護対象
に応じて各種の原理のものがある。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to improving the protection performance of a protective relay device, particularly a two-line protective relay device. .

この中でも系統事故発生の確率の最も高い逆電線におい
ては、故障の確実な検出と故障除去による停電範囲の最
5小化のために、搬送保護継電方式が良く用いられてい
る。
Among these, the carrier protection relay system is often used for reverse power lines, where the probability of system failure occurring is highest, in order to minimize the range of power outages by detecting faults reliably and eliminating faults.

オー図、電流位相比較リレーを用いた搬送保護継電方式
の原理を示す図である。図中A、Bは両電気所の母線、
Lは送電線、IA% IBは舞々両電気所に設置された
計器用変流器である。添字の人、Bは両電気所におかれ
た同一の機器又鉱装置を区別するためのものであり以下
の説明で性省略する。2は電流位相比較リレー(以下位
相比較リレーと称す)、3は電流情報を各々相手電気所
へ伝送するための信号伝送装置、4は信号送受のための
アンテナを示す。ここで位相比較搬送保護継電力式社良
く知られ九保膜方式のひとつであり、外部事故時は保護
区間、即ちオ五図中りにて示す送電線にて1端から流入
した電流は他流より流出するOK対し、内部故障時は両
端から電流が流入即ち上記2種の事故時の両端子0CT
2次電流工^II+の位相関係は第3図に示す如く 内部事故時はt1ホ同相・・・(a)図外部事故時は逆
相・・・・・・・・・(b)図と彦る。従って両端子の
電流が位相的に重なりがあれば内部事故と判定し、重な
りがなければ外部事故と判定し保護区間内の故障検出を
確実に行なうことができ、る。
FIG. 2 is a diagram showing the principle of a transport protection relay system using a current phase comparison relay. In the diagram, A and B are the busbars of both electric stations.
L is the power transmission line, IA% IB is the instrument current transformer installed at the Maimaryo electric station. The subscript ``B'' is used to distinguish the same equipment or mining equipment installed at both electrical stations, and the gender will be omitted in the following explanation. Reference numeral 2 denotes a current phase comparison relay (hereinafter referred to as a phase comparison relay), 3 a signal transmission device for transmitting current information to each partner electric station, and 4 an antenna for transmitting and receiving signals. This is one of the well-known nine protection membrane systems.In the event of an external accident, the current flowing from one end of the transmission line shown in Figure 5 will be transferred to the other end. In contrast, when there is an internal failure, current flows in from both terminals, that is, both terminals are 0CT in the above two types of faults.
As shown in Fig. 3, the phase relationship of the secondary current wire II+ is as shown in Fig. 3. When an internal fault occurs, t1 is in phase...(a) When an external fault occurs, the phase is reversed......(b) Fig. Hikoru. Therefore, if the currents at both terminals overlap in terms of phase, it is determined that it is an internal fault, and if there is no overlap, it is determined that it is an external fault, making it possible to reliably detect a fault within the protection zone.

この場合、ひとつの電気所においては相手熾子の電流情
報を知る必要があり、このために前記の信号伝送装置と
伝送路が必要となる。第1図はどの信号伝送のためにマ
イクロ波を用いたケースを示している。一方、第2図は
送電線を上記信号伝送路として使用するケースを示して
おり、通オ電力線搬送と称すものである。図中5A、5
Bは電流情報を送電線に乗せるための結合装置であり、
その他の装置は第1図と同等のものである。
In this case, it is necessary for one electric station to know the current information of the other electric station, and for this purpose, the above-mentioned signal transmission device and transmission line are required. FIG. 1 shows the case in which microwaves are used for signal transmission. On the other hand, FIG. 2 shows a case in which a power transmission line is used as the signal transmission path, which is referred to as energized power line transport. 5A, 5 in the figure
B is a coupling device for transmitting current information onto the power transmission line,
The other devices are the same as those shown in FIG.

一般にはマイクロ波による位相比較リレ一方式の場合、
3相交流の各相に対応した電流情報を送受し合い、各相
毎に個別に判定するいわゆる各相位相比較リレ一方式が
採用されている。
In general, in the case of one type phase comparison relay using microwave,
A so-called phase comparison relay system is adopted in which current information corresponding to each phase of a three-phase alternating current is sent and received, and each phase is individually determined.

しかしながら、マイクロ波伝送においても周波数帯域的
に伝送可能量に制限がある場合や、経済性の観点から電
力線搬送による場合は、3相の電流情報を個別に伝送す
ることができないケースが生ずる。
However, even in microwave transmission, when there is a limit to the amount that can be transmitted due to the frequency band, or when power line transmission is used for economic reasons, there are cases where three-phase current information cannot be transmitted individually.

このような場合には3相の電流量から、これを代表する
ひとつの電流量(これf:標本量と嚇す)を合成して、
これを用いて3相交流系統の保護を行なう、−いわゆる
標本量位相比較リレ一方式が採用されている。
In such a case, synthesize one representative current amount (this f: sample amount) from the three-phase current amounts,
This is used to protect a three-phase AC system, a so-called sample phase comparison relay type.

この場合、標本量としては通常いろいろな組合わせのも
のが使用されるが、すべての故障に対して万全と言える
標本量を得ることは難しい。
In this case, various combinations of sample sizes are usually used, but it is difficult to obtain a sample size that can be said to be perfect against all failures.

1例として3相交流を構成する対称分電流のうち、正相
電流Itと逆相電流Itの組合わせによる標本量につい
て説明を行なう。
As an example, a sample amount based on a combination of a positive-sequence current It and a negative-sequence current It among symmetrical currents constituting a three-phase alternating current will be explained.

(1)C相を基準相とする標本量 いま基準相を1相とした場合の標本量”t(a)が各種
事故時にどのよう゛に変化するかについて検討する。但
し負荷電流は無視する。
(1) Sampling amount with C phase as the reference phase Let's consider how the sample amount "t(a)" changes in the event of various accidents when the reference phase is one phase. However, the load current is ignored. .

It(−= Iza+ ”’ ・・−・=−−−lit
葺ここで添字aは、C相基準の電気量であることを示す
。Kは組合わせの割合いを示す係数であざ。
It(-= Iza+ ”' ・・・-・=−−−lit
Here, the subscript a indicates the amount of electricity based on the C phase. K is a coefficient that indicates the ratio of combinations.

■2相短絡故障(この場合はI、 = 11である。)
巖仁とでI、、CI、c)は、b相(C相)基準の逆相
分電流。11b(■1e)は、b相(C相)基準の正相
分電流。Ia # Ib # Icは故障相電流。
■Two-phase short circuit fault (in this case, I = 11)
I, CI, c) is the reverse phase current based on the b phase (C phase). 11b (■1e) is the positive sequence current based on the b phase (C phase). Ia # Ib # Ic is the fault phase current.

1、lはベクトルオペレーターt 示f。1, l is the vector operator t and f.

(2)式をみれば、2相短絡時の標本量がKO値によっ
て変化すること、及び同一のKの値に対しても故障相に
より変化することがわかる。ちなみにに=1とすると、
be相短絡時のC相基準の標本量はゼロとなり、いくら
大きな故障電流が系統に流れても保嚢できないことにな
る。これは通常盲点と称される。
Looking at equation (2), it can be seen that the sample amount when two phases are shorted changes depending on the KO value, and also changes depending on the failed phase even for the same value of K. By the way, if = 1,
When the be phase is short-circuited, the sample amount for the C phase reference becomes zero, and no matter how large the fault current flows through the system, it will not be possible to insure the system. This is commonly referred to as a blind spot.

■l相地絡故障(この場合はII = It = ’t
o )この場合、前記の2相短絡の如くKの値によって
は標本量が消滅することはないが、検出感度が故障相に
より変化することは2相知絡時と同様である。
■L-phase ground fault (in this case, II = It = 't
o) In this case, although the sample amount does not disappear depending on the value of K as in the case of the two-phase short circuit described above, the detection sensitivity changes depending on the failed phase, as in the case of the two-phase short circuit.

2相地絡については、正相回路から逆相、零相回路への
分流が両\の逆相、零相インピーダンスにより複雑に変
わるため計算も煩雑となるが、故障相に応じてリレーの
感度が変化することは前記と同様であり、前記の盲点が
出るケースは多くなる。
For two-phase ground faults, the calculation is complicated because the shunt from the positive phase circuit to the negative phase and zero-phase circuits changes complicatedly depending on the negative phase and zero-phase impedance of both sides, but the sensitivity of the relay depends on the faulty phase. It is the same as above that the changes occur, and the cases where the above-mentioned blind spot appears will increase.

第4図4Ca相を基準とした場合の正相分合成回路を示
す。図中6m、7mはそれぞれ入力信号を128.24
0° 進ませるための位相シフト回路、8mは加算回路
であり、この出力9aがa相基準の正相分に対応゛する
。これは周知の基本式 %式% なお、逆相分についても上記関係式により位相シフト回
路を用いた同様の回路にて合成することができる。
FIG. 4 shows a positive phase component synthesis circuit when the 4Ca phase is used as a reference. In the figure, 6m and 7m each have an input signal of 128.24
The phase shift circuit 8m for advancing the phase by 0° is an adder circuit, and its output 9a corresponds to the positive phase component of the a-phase reference. This is a well-known basic formula % Formula % Incidentally, the negative phase component can also be synthesized by a similar circuit using a phase shift circuit according to the above relational expression.

第5図は標本量合成回路のブロック図であり、21は第
4図に相当する正相分合成回路、22Fi逆相分合成回
路であり、各々の出力n%24は加算回路部に導入され
この出力26が、上述した正相逆相の組合わせによる標
本t(C対応する。
FIG. 5 is a block diagram of the sample amount synthesis circuit, 21 is a positive phase synthesis circuit, 22 Fi is a negative phase synthesis circuit, and the output n% 24 of each is introduced into the adder circuit section. This output 26 corresponds to the sample t(C) based on the above-mentioned combination of positive phase and negative phase.

ところで最近で社、保護システムとしての信頼す)され
る傾向にある。これは同種の装置を2組設置し、遮断器
引き外しは2つの装置のオアにて行なうよう構成され、
万一ひとつの装置が何らかの原因により動作不能となっ
ても、他の装置にて確実な保護を行なうことを目的にし
た冗長設計思想である。
By the way, recently there has been a tendency for companies to rely on it as a protection system. This is configured so that two sets of the same type of equipment are installed, and the circuit breaker is tripped at the OR of the two equipment.
This is a redundant design concept that aims to provide reliable protection with other devices even if one device becomes inoperable for some reason.

以下に標本量位相比較リレー装置を上記思想により2組
設置する場合を考える。
Below, we will consider the case where two sets of sample quantity phase comparison relay devices are installed based on the above idea.

前述の標本量はa相を基準相としたものであった。こ仁
でbs’を基準相とした標本量I が故障種類、故障相
に対応してどのようになるかを以下に検討する。
The above-mentioned sample amount was based on the a-phase as the reference phase. We will examine below how the sample amount I with bs' as the reference phase changes in response to the failure type and failure phase.

(2)b相基準の標゛本量 まず始めに、b相基準の対称分合成回路について゛説明
する。76図は基準相t−b相とした場合の正相分合成
回路であ夛、周知の基本式 Ibt=★(Ib+aI’e令j冨Ia)に基づいてい
る。添字すにてb相基準を示す以外は第4図と全く同様
である。
(2) Specimen amount based on b-phase First, a symmetric component synthesis circuit based on b-phase will be explained. FIG. 76 shows a positive phase component synthesis circuit when the reference phase is the t-b phase, and is based on the well-known basic formula Ibt=★(Ib+aI'e order j tom Ia). It is exactly the same as FIG. 4 except that the subscript "S" indicates the b-phase reference.

即ち、対称分合成回路のハードは全く同一であり、3相
の入力電流の相順を順次回転しただけである。
That is, the hardware of the symmetrical component synthesis circuit is exactly the same, and only the phase order of the three-phase input currents is sequentially rotated.

■2相短絡故障(この場合l1=−1s )5) ■1相地絡故障(Is = Is = I・)ここで(
21式と15)丈の結果、(3)式と(6)式の結果を
それ挙れ対比させると、例えば(2)式にてに=1にて
標本量が消滅するbc相短絡は(51式において、標本
量となる。
■2-phase short circuit fault (l1=-1s in this case) 5) ■1-phase ground fault (Is = Is = I・) where (
Comparing the results of Equation 21 and 15) and the results of Equations (3) and (6), for example, in Equation (2), the bc phase short circuit in which the sample amount disappears at =1 is ( In Equation 51, it becomes the sample amount.

このことは任意の相を基準とする対称分による標本量と
、これとは異なる他の相を基準とする対称分による標本
量を2組用意すれば両者はお互いの標本量の大きさを補
い合う形となり、前述の盲点をなくすことを意味する。
This means that if you prepare two sets of sample amounts, one with a symmetrical component based on an arbitrary phase and the other with a symmetrical component with another phase as the standard, both will compensate for the size of each other's sample amounts. This means eliminating the blind spots mentioned above.

本発明は上記問題点を解決することを目的として力され
たものであり、保護継電装置の信頼度を向上し得るよう
2重化され次保護継電装置を提供することを目的として
いる。
The present invention has been developed to solve the above-mentioned problems, and an object of the present invention is to provide a redundant secondary protection relay device so as to improve the reliability of the protection relay device.

以下図面を参魚しつつ実IIkf4ftWi、明する。The actual IIkf4ftWi will be explained below with reference to the drawings.

オフ図は不発WAKよる一実施例回路構成図である。The OFF diagram is a circuit configuration diagram of an embodiment based on a non-firing WAK.

オフ図において、 2m、 2btlそれぞれa相基準
、b相基準とした対称分による標本量合成回路である。
In the off-line diagram, 2m and 2btl are sample amount synthesis circuits using symmetrical components with the a-phase reference and the b-phase reference, respectively.

合成回路のハードについてF1才5図に示す回路と全く
同様+あり、回路2bについては入力電流の導入を76
図に示す如く相順回転させて、b相  −基準の標本*
を得るように構成されている。
The hardware of the synthesis circuit is exactly the same as the circuit shown in Figure 5, and for circuit 2b, the introduction of input current is 76
Rotate the phase sequentially as shown in the figure, and then
is configured to obtain.

このように基準相會変えた2組の標本量でもって、前述
の位相比較原理により独立に故障判定を行ない、両者の
出力はオアにて連断器10を引き外すように構成する。
Using the two sets of sample quantities with different reference compatibility in this manner, failure determination is performed independently according to the above-mentioned phase comparison principle, and the outputs of both are configured so that the disconnector 10 is disconnected by ORing.

このようにしておけば故障時にたとえ1組の標本量がゼ
ロ、又はリレーの感度に満たない程非常に小さな値にな
ったとしても、基準相を変えた他の1組には十分なる標
本量が得られるため確実に遮断器の引き外しを行なうこ
とができる。
By doing this, in the event of a failure, even if the sample amount of one set becomes zero or a value so small that it does not meet the sensitivity of the relay, there will be enough sample amount for the other set whose reference phase has been changed. As a result, the circuit breaker can be tripped reliably.

なおこれま、では、It◆1による標本量に対して説明
を行表ったが、Is−、Il±1め如に き・各種の対称分の組合わせによる任意の標本量に対し
て適用できることはもちろんである。また、保護方式と
しては電流位相比較リレ一方式により説明したが、標本
量を使用した任意の保護方式に対しても適用できること
は言うまでもない。
Up to this point, we have explained the sample size based on It Of course it is possible. Further, although the protection method has been explained using one type of current phase comparison relay, it goes without saying that it can be applied to any protection method using a sample amount.

不発°明は対称分の組合わせによる標本量を使用により
、1組のみ、又は同一標本量による装置を2組設置の場
合では、故障種類、故障相によっては標本量が消滅した
り、非常に小さくなって遮断不能となるケースを防止す
ることができる保護継電装置を提供するものである。
The uninvented invention is that by using a sample amount that is a combination of symmetrical components, if only one set or two sets of equipment with the same sample amount are installed, the sample amount may disappear or become very large depending on the type of failure and failure phase. It is an object of the present invention to provide a protective relay device that can prevent a case from becoming too small to be shut off.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、及び第2図は搬送保護継電方式を説明するため
の図、第3図は位相比較の原理を説明するための図、第
4IQ社正相分合成回路、第5図は標本量合成回路、第
6図は逆相分合成回路、オフ図は本発明による保護継電
装置の一実施例を示す図であ今。 1% lム、tB・・・・−・・・−・−−−−・・計
器用変流器2.2人、2B 、 2m、 2b−保護リ
レー3ム、IB−・−・・−・・−・・・・−・−・・
・信号伝送装置4A%41・・−1−・・−・・・−・
−・−・・アンテナ!A%5B・・−・−一−−・−一
・−・・・結合装置646b%7a、 7b−−−−−
−−−−位相シフト回路8m 、8b ==−”−・・
・−・−・・−・・・・加算器11b 、 9b−−−
−−−−−−・−・・−一・・対称分出力10−−−−
−−−=”・−・−一一一纏断器2駄21&、 21b
・・−・*dm+m@・・正相分合成回路22、228
%22b・・−・−・・・・・・逆相分合成回路2\2
3a、 23b・・・・・・・・・・・正相分出力2呪
24ζ24b・・−・・・・・−・・逆相分出力25.
25m、 25b・・・・・・−・・・・加算器26.
26m、 26b ・−−−−−−−−−・ 標本量出
力添字A%Bは各々A端、B端の区別、”s bu各々
基準相の区別を示す6また、図中アルファベットは IA、II・・・・・A端、B端変流器2次電流!転I
b%Ic・・・各相電流 L・・−・・・−・・・−・・・・送電線である。
Figures 1 and 2 are diagrams for explaining the transport protection relay system, Figure 3 is a diagram for explaining the principle of phase comparison, the 4IQ positive phase component synthesis circuit, and Figure 5 is a sample. 6 is a negative phase component combining circuit, and the OFF diagram is a diagram showing an embodiment of the protective relay device according to the present invention. 1% lm, tB・・・−・・・Instrument current transformer 2.2 people, 2B, 2m, 2b-protective relay 3m, IB−・−・・−・・・-・・・・-・−・・
・Signal transmission device 4A%41...-1-...--...-
−・−・Antenna! A%5B...-1---1...Coupling device 646b%7a, 7b--
-----Phase shift circuit 8m, 8b ==-"-...
・−・−・・−・Adder 11b, 9b---
−−−−−−・−・・−1・・Symmetry output 10−−−−
---=”・-・−111 disconnection device 2 21&, 21b
・・・・*dm+m@・・Positive phase component synthesis circuit 22, 228
%22b・・・-・-・・・・・・Reverse phase component synthesis circuit 2\2
3a, 23b...... Positive phase output 2 curses 24ζ 24b...-... Negative phase output 25.
25m, 25b...- Adder 26.
26m, 26b ・-------- II...A terminal, B terminal current transformer secondary current!
b%Ic...Each phase current L...--...--...Power transmission line.

Claims (1)

【特許請求の範囲】[Claims] 系統からの3相交流によって対称分成分を導出し、これ
らを適宜組合わせて得られる標本量を利用した保護継電
装置において、上記3相交流の任意の1相を基準相とし
て得られるオlの標本量を導入して保護“するよう構成
されたオlの保護継電装置と、前記オlの標本量に用い
た基準相以外の他の相を基準相として得られる°第2の
標本量を導入して保護するよう構成された第2の保護継
電装置とをそなえ、前記オニ1第2の保護継電装置のい
ずれか一方が動作した場合に遮断器を引外すことを特徴
とする保護継電装置。
In a protective relay device that utilizes the sample amount obtained by deriving symmetrical components from three-phase AC from the grid and appropriately combining these components, an optical A protective relay device configured to introduce and protect a sample amount, and a second sample obtained using a phase other than the reference phase used for the sample amount as a reference phase. and a second protective relay device configured to introduce a second protective relay device for protection, and trip the circuit breaker when either one of the first and second protective relay devices is activated. protective relay device.
JP56142461A 1981-09-11 1981-09-11 Protective relay unit Pending JPS5846824A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56142461A JPS5846824A (en) 1981-09-11 1981-09-11 Protective relay unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56142461A JPS5846824A (en) 1981-09-11 1981-09-11 Protective relay unit

Publications (1)

Publication Number Publication Date
JPS5846824A true JPS5846824A (en) 1983-03-18

Family

ID=15315851

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56142461A Pending JPS5846824A (en) 1981-09-11 1981-09-11 Protective relay unit

Country Status (1)

Country Link
JP (1) JPS5846824A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190042953A (en) * 2017-10-17 2019-04-25 주식회사 엘지화학 Gas Dischargeable Pouch-Type Case for Secondary Battery
US11984609B2 (en) 2021-01-28 2024-05-14 Lg Energy Solution, Ltd. Battery cell and battery cell manufacturing apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190042953A (en) * 2017-10-17 2019-04-25 주식회사 엘지화학 Gas Dischargeable Pouch-Type Case for Secondary Battery
US11094981B2 (en) 2017-10-17 2021-08-17 Lg Chem, Ltd. Pouch-shaped battery case for secondary batteries capable of discharging gas
US11984609B2 (en) 2021-01-28 2024-05-14 Lg Energy Solution, Ltd. Battery cell and battery cell manufacturing apparatus

Similar Documents

Publication Publication Date Title
US8649131B2 (en) Method and device for supervising secondary circuit of instrument transformer in power system
JPS59209018A (en) Protecting relaying device and method
JPS5889028A (en) Method and device for detecting 1-wire ground fault accident of 3-phase power system
US6829544B1 (en) Line current differential protective relaying method and relay for in-zone tapped transformers
CN111007439B (en) Transformer substation bus protection secondary circuit commissioning on-load test method
CN100405685C (en) Device and method for detecting an earth fault and relay with such a device
Yee et al. Ultra High Speed Relay for EHV/UHV Transmission Lines--Installation-Staged Fault Tests and Operational Experience
JPS5893422A (en) Protecting device for high voltage transmission line
US3732464A (en) Distance relay system
Phadke et al. A Microcomputer Based Ultra-High-Speed Dostance Relay: Field Tests
JPS5846824A (en) Protective relay unit
Chowdhury et al. Applying line current differential protection in systems with inverter-based resources
Chen et al. Field experience with a digital system for transmission line protection
US3668516A (en) Apparatus for inspecting a.c. electric relay systems during the operation thereof by use of a high frequency modulated signal
Mackie et al. Summary paper for C37. 243 IEEE guide for application of digital line current differential relays using digital communication
JPS6349072Y2 (en)
Dusang A ground fault protection method for ungrounded systems
JPS6084918A (en) Display wire relaying device
JP2010112920A (en) Cable section accident detection device
JPS6176014A (en) Disconnection detector
JPS6029314Y2 (en) Protective relay device for 3-terminal power transmission line
SU1385184A1 (en) Device for relay protection against short circuits of power transmission lines in non-full phase mode
JPS5911243B2 (en) Protective relay device
JPH06105451A (en) Line protection relay device
JPS6173516A (en) Disconnection detector