JPS5845923A - Building method of space structure - Google Patents

Building method of space structure

Info

Publication number
JPS5845923A
JPS5845923A JP56145053A JP14505381A JPS5845923A JP S5845923 A JPS5845923 A JP S5845923A JP 56145053 A JP56145053 A JP 56145053A JP 14505381 A JP14505381 A JP 14505381A JP S5845923 A JPS5845923 A JP S5845923A
Authority
JP
Japan
Prior art keywords
resin
carbon black
space structure
carbon
parts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP56145053A
Other languages
Japanese (ja)
Inventor
Tatsuo Kitagawa
北川 達夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP56145053A priority Critical patent/JPS5845923A/en
Publication of JPS5845923A publication Critical patent/JPS5845923A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To build a space structure having strikingly improved heat characteristics and ultraviolet deterioration characteristics by a method wherein matrix resin is mixed previously with carbon black to prepare prepreg material. CONSTITUTION:Carbon resin reinforced plastics obtained by adding previously carbon black (2-10 parts) to resin (100 parts) in the matrix of carbon fiber reinforced plastics is used as prepreg resin or impregnating resin to build a space structure. Since carbon black is added, yellowed surface resin layer is coverd by the carbon black, the rate of change of emissivity of ultrared rays reduces, no large difference occurs to the initial designed value, temperature does not rise so highly as in conventional products and a heat-stable structure is obtained. In addition, since regular reflection factors reduce partial temperature rise due to irradiation angle of the solar rays is released remarkably.

Description

【発明の詳細な説明】 この発明は1例えば宇宙空間にさらされる宇宙用構造物
に係るもので、この種構造物の熱的特性と紫外線劣化特
性をカーボンブラックを添加することにより大巾に改−
した宇宙用構造物の製造方法を提案す石もめである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to, for example, space structures exposed to outer space, and the thermal characteristics and ultraviolet degradation characteristics of these types of structures are significantly improved by adding carbon black. −
This is a stone fight to propose a manufacturing method for space structures.

一般にこの種の構造物は炭素繊維強化プラスチック(以
下0FRPと略す)で構成され、その製造方法は炭素繊
維に予め樹脂を含浸し、プ1Jプレグ状態のものを積層
成形し、所定の温度・圧力・時間をかけて一要とする形
状に仕上けていた。しかし、宇宙環境下でとの種構造物
を使用するには、いくつかの問題がある。その一つは、
宇宙空間において太陽光が構造物に直接当ることによ□
り構造物の温度が上昇すること、又形状により太陽光が
構造物から反射して他の構造部分に当り、(例見は曲面
あるいは平面板力・ら反射した場合)部分的にその場所
の温度251異常に上昇するということがおる。この現
象&1使用材料が部分的に加熱されるということであり
Generally, this type of structure is made of carbon fiber reinforced plastic (hereinafter abbreviated as 0FRP), and its manufacturing method involves pre-impregnating carbon fibers with resin, laminating them in a preg state, and then heating them at a predetermined temperature and pressure.・I spent a lot of time perfecting the shape that I wanted. However, there are several problems with using seed structures in a space environment. One of them is
When sunlight hits structures directly in space,
In addition, due to the shape of the structure, sunlight is reflected from the structure and hits other parts of the structure (for example, when it is reflected from a curved surface or a plane plate), and the temperature of the structure increases. There are cases where the temperature 251 rises abnormally. This phenomenon &1 means that the materials used are partially heated.

予測しがたい熱変形現象を誘起し、又、完全なる熱制御
を困難にさせる等不具合な現象を引き起こすことがしけ
し一発生する。
This often causes troublesome phenomena such as inducing unpredictable thermal deformation phenomena and making perfect thermal control difficult.

もう一つの問題として宇宙空間に暴された0IFRF 
構造物は、紫外線により黄変成いは劣化し、熱的1機械
的特性Kf化をきたすという現象も少なからず発生する
。このと−とit初期の設計値に対する予測と数値的に
も変化をきたすことと宇宙空間における紫外線劣化に関
するデータが充分でないなどの理由から、熱予測、寿命
評価が正確に行えないとiうことが発生でる。
0IFRF exposed in outer space as another problem
Structures undergo yellowing and deterioration due to ultraviolet rays, and phenomena such as thermal and mechanical properties Kf often occur. In this case, it is difficult to accurately predict heat and evaluate lifespan due to the fact that the initial design values are predicted to vary numerically, and there is insufficient data regarding ultraviolet degradation in space. occurs.

この発明はこのような観点に立ってなされたものである
。すなわち、原材料であるプリプレグ材を製造する際に
、マトリックスである樹脂に予めカーボンブラックを混
入して、プリプレグ材を製造することにある。この効果
としては。
This invention was made from this viewpoint. That is, when manufacturing the prepreg material that is the raw material, carbon black is mixed in advance into the resin that is the matrix to manufacture the prepreg material. As for this effect.

カーボンブラックは黒色粉末であり、宇宙用構造物O熱
特性に影替を及ぼす因子である太S元吸収*((4,赤
外線蒸射率(ε)が通常のCrRP材とカーボンブラッ
ク含有01FRP材とでは数値に差があり、q#にtK
ついては差が顕著である。
Carbon black is a black powder, and the large S element absorption* ((4, infrared evaporation rate (ε)) is a factor that affects the O thermal properties of space structures. There is a difference in the numerical values between q# and tK.
The difference is remarkable.

又、規則反射率に関しても、カーボンブラックが含有す
ることによシ、物理的には表面光沢が減少する。このこ
とは規則反射成分が減り。
Also, regarding the regular reflectance, the inclusion of carbon black physically reduces the surface gloss. This reduces the regular reflection component.

乱反射成分が多くなることを意味する。従って。This means that the number of diffused reflection components increases. Therefore.

入射された太陽光が局部的に規則反射成分により加熱さ
れるという現、象は緩和され、入射光が散乱し0局部的
温度上昇は低減される。
Since the incident sunlight is locally heated by the regularly reflected components, the phenomenon is alleviated, the incident light is scattered, and the local temperature rise is reduced.

又、もう一つの大きな効果として紫外線による劣化防止
がある。つまり通常用いられているマトリックス樹脂は
、エポキシ樹脂、ポリエステル樹脂がほとんどであり、
紫外11ilK対し充分なる特性を有していない。特に
質色に関しては。
Another major effect is prevention of deterioration caused by ultraviolet rays. In other words, most commonly used matrix resins are epoxy resins and polyester resins.
It does not have sufficient characteristics for ultraviolet 11ilK. Especially when it comes to quality.

黄変現象が暴露時間と共に増加することが知られており
0機械的特性についても時間経過と共に減少するといわ
れている。しかし、宇宙環境下でのデータとしては、現
在のところ殆んど測定されていないのが現状である力五
、一般に以上の現象が見られるのは明らかである。しか
し。
It is known that yellowing phenomenon increases with exposure time, and zero mechanical properties are also said to decrease with time. However, it is clear that the above-mentioned phenomena are generally observed, although data in the space environment has hardly been measured at present. but.

CrRPの場合は2表面樹脂層が劣化しても、炭素繊維
束でもって劣イζが防止される傾向がデータ的に知られ
ている。
In the case of CrRP, it is known from data that even if the two surface resin layers deteriorate, the carbon fiber bundle tends to prevent deterioration ζ.

しかしながら黄変という現象は構造物の熱設計において
予IIIJsIjを狂わすと共和、劣化につながる現象
であることは否めない。この発明はこれらの欠点をも大
巾に改善した。すなわち。
However, it is undeniable that the phenomenon of yellowing is a phenomenon that, if the pre-IIIJsIj is disturbed in the thermal design of a structure, it will lead to failure and deterioration. This invention also greatly improves these drawbacks. Namely.

カーボンブラックを添加することにより表面樹allの
黄変はカーボンブラックによシ鐘弊される。%にこの効
果は6&C対して顕著に表わ些条。
By adding carbon black, yellowing of all surface trees can be prevented by carbon black. %, this effect is noticeable for 6&C and is a minor point.

この発明は上述したごとく宇宙*竺下における熱的%性
、紫外線劣化特性を着、しく改善したも、のでさらには
積層醇挿時に*麹町繊維廣間に生じる鴨−だまりを減少
させる効果がある。
As mentioned above, this invention has not only improved thermal resistance and ultraviolet deterioration characteristics under space, but also has the effect of reducing the clumps that occur between the Kojimachi textile spaces during laminated insertion. .

この、ことはkk間の椰脂層が薄くなり接着強度の上昇
、或いは炭素繊維と樹脂ρ熱影脹係数の差を緩和し熱シ
ョック勢O厳しい環境下での層間剪断強皺な向上させる
効果をも有している。
This has the effect of thinning the coconut oil layer between KK and increasing adhesive strength, or alleviating the difference in thermal expansion coefficient between carbon fiber and resin ρ and improving interlaminar shear strength in harsh environments. It also has

又熱伝導率の改費においても著しい効果を示しておりこ
の場合のカーボンブラック粉末の添加量は2〜10部が
好ましい。2部以下でるれは株加の効果が低−<s、 
Xs ’10部−以上添加した場合は接着力0作業性が
低下する。
It also shows a remarkable effect in improving thermal conductivity, and the amount of carbon black powder added in this case is preferably 2 to 10 parts. If it is less than 2 parts, the effect of stock addition is low -<s,
If 10 parts or more of Xs' is added, the adhesive strength will be zero and the workability will decrease.

次にこの発明の製造法の実施例′に説明する。Next, an example of the manufacturing method of the present invention will be described.

実施例 (ll基材 Q、Oli 4t  炭素繊維(M−40)(2)エポ
キシ樹M エビコー)11211     100  重量部B′
1ts−モノエチルアミレ  3重量部トルエン   
      30  Iメチルエチルケトン     
5  #、カーボンブラック粉末    5  I −
上記組成比の材料を室温で混合して均質な溶液とした。
Example (ll base material Q, Oli 4t carbon fiber (M-40) (2) epoxy tree M Ebiko) 11211 100 Part by weight B'
1ts-monoethyl amyle 3 parts by weight toluene
30 I methyl ethyl ketone
5 #, carbon black powder 5 I −
The materials having the above composition ratio were mixed at room temperature to form a homogeneous solution.

このエポキシ樹脂gw!Lt炭素繊維に含浸被着−させ
、  120@O−1て20分間加勢乾燥処5理を施し
てエポキγ樹11%竺6G〜6s重量−のプリプレグを
切った。このプリプレグを重ね合せて115℃、100
Kg/cmで50分間加熱加生成形して厚さ1fioc
FRI’板を作った。かくして得られたC!FRP徐に
ついて測定された緒特性をj  i、Li 1i’lに示した。なお、ここで轡いた比、較例は実−
例と呻じ組成比でカーボンブラック粉末を添。
This epoxy resin gw! The Lt carbon fiber was impregnated and coated, and subjected to 5 drying treatments at 120 @ O-1 for 20 minutes to cut a prepreg of epoxy gamma wood 11% yarn 6G to 6s weight. This prepreg was layered at 115℃ and 100℃.
Heat-processed for 50 minutes at Kg/cm to a thickness of 1fioc.
I made a FRI' board. Thus obtained C! The measured properties of the FRP material are shown in Figures 1 and 1. Note that the comparisons and comparative examples used here are based on actual
Add carbon black powder at the same composition ratio as the example.

加していないもの工ある。There is some work that has not been added.

尚、謝1図件謝2図に比較例と実施例の構成図を示した
。図中(11は樹脂層、(21は炭素繊維。
In addition, the configuration diagrams of the comparative example and the example are shown in Figure 1 and Figure 2. In the figure (11 is a resin layer, (21 is carbon fiber).

1−1 (31はカーボンブラック粉末である。1-1 (31 is carbon black powder.

表   1 1 1 項 目  試験法   実施例   比較@ 11 1   初期 09010.ss  Q、5110ss
 +1 15000Hr   01210.515   0.1
210.74  11 +2 1   初期 62に9.  @OK輸21I I                        
      !150°OHr  S 11Kg/wx
   S 1に輸1++++   ++   +++−
+    +++   +   +  −−−−−J以
上、実施例および比較例より明らか表如く。
Table 1 1 Item Test method Example Comparison @ 11 1 Initial 09010. ss Q, 5110ss
+1 15000Hr 01210.515 0.1
210.74 11 +2 1 Initial 62 to 9. @OK Export 21I I
! 150°OHr S 11Kg/wx
Import 1 to S 1 +++++ ++ +++−
+ +++ + + + -----J The above is clear from the examples and comparative examples.

従来の構成品は熱制#特性である太陽光吸収率(φと赤
外線放射率(ε)比、特に(−)の蛍化率が小さいため
、初期の設計値に対し大きなズレがな(又温度上昇が従
来品に比べて小さく熱的に安定する。その上規則反射率
が減少しているため。
Conventional components have a small ratio of solar absorption rate (φ) and infrared emissivity (ε), which is a thermal control characteristic, and especially the (-) fluorescence rate, so there is no large deviation from the initial design value (or The temperature rise is smaller than conventional products, making it thermally stable.In addition, regular reflectance is reduced.

太陽光があらゆる角度から照射されても局部的な温度上
昇が大巾に緩和される特徴を有している。これらの特徴
と共に機械的にも同等以上であり、宇宙用構造物材料と
してはきわめて優れたものである。
It has the characteristic that even when sunlight is irradiated from all angles, local temperature increases are largely alleviated. In addition to these characteristics, it is also mechanically equivalent or better, making it an extremely excellent material for space structures.

【図面の簡単な説明】[Brief explanation of drawings]

第1図および謝2図はこの発明を説明するための図であ
り、(11は樹脂層、(2)は炭素繊維、(3)はカー
ボンブラック粉末である。 なお図中、同一あるいは相当部分には同一符号を付して
示しである。 代理人 葛 野 信 −
Figure 1 and Figure 2 are diagrams for explaining the present invention (11 is a resin layer, (2) is a carbon fiber, and (3) is a carbon black powder. In the figures, the same or corresponding parts are indicated with the same reference numerals. Agent Shin Kuzuno -

Claims (1)

【特許請求の範囲】[Claims] 炭素繊維強化プラスチックで形成される宇宙用構造物の
製造方法において、炭素繊維強化プラスチックのマトリ
ックスである樹脂に予めカーボンブラック番樹脂100
部に対し2〜10部添加したものをシリプレグ用樹脂、
又は含浸用樹脂として用いた炭素繊維強化プラスチック
をもって上記構造物を製作することをi徴とする宇宙用
構造物の製造方法。
In a method for manufacturing a space structure made of carbon fiber reinforced plastic, carbon black No. 100 resin is added to the resin that is the matrix of the carbon fiber reinforced plastic in advance.
2 to 10 parts per part of the resin for Silipreg,
Alternatively, a method for manufacturing a space structure, the feature of which is manufacturing the structure using carbon fiber reinforced plastic used as an impregnating resin.
JP56145053A 1981-09-14 1981-09-14 Building method of space structure Pending JPS5845923A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56145053A JPS5845923A (en) 1981-09-14 1981-09-14 Building method of space structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56145053A JPS5845923A (en) 1981-09-14 1981-09-14 Building method of space structure

Publications (1)

Publication Number Publication Date
JPS5845923A true JPS5845923A (en) 1983-03-17

Family

ID=15376286

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56145053A Pending JPS5845923A (en) 1981-09-14 1981-09-14 Building method of space structure

Country Status (1)

Country Link
JP (1) JPS5845923A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4874564A (en) * 1986-12-18 1989-10-17 Sumitomo Metal Industries, Ltd. Molding process and device therefor
EP2504464A4 (en) * 2009-11-23 2015-01-21 Applied Nanostructured Sols Cnt-tailored composite space-based structures

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4874564A (en) * 1986-12-18 1989-10-17 Sumitomo Metal Industries, Ltd. Molding process and device therefor
EP2504464A4 (en) * 2009-11-23 2015-01-21 Applied Nanostructured Sols Cnt-tailored composite space-based structures

Similar Documents

Publication Publication Date Title
CA1308013C (en) Post-press heat treatment process for improving the dimensional stability of a waferboard panel
US6926954B2 (en) Decorative sheet or molding comprising fibers and fillers and process for its production
CN107127841B (en) Manufacturing process of environment-friendly flame-retardant straw board
US5422170A (en) Wood based panels
CN1090563C (en) Flame-retardant or incombustible decorative laminated sheet
JPH0249220B2 (en)
JP6900235B2 (en) A method for manufacturing a flame-retardant corrugated core sandwich panel structure and a flame-retardant corrugated core sandwich panel structure.
Deng et al. The effect of PF/PVAC weight ratio and ambient temperature on moisture absorption performance of bamboo‐bundle laminated veneer lumber
JPS5845923A (en) Building method of space structure
He et al. Effect of bamboo bundle knitting on enhancing properties of bamboo scrimber
JP2009262553A (en) Material for plate material, decorative plate and method for manufacturing material for plate material
JP2018199267A (en) Manufacturing method of fire retardant honeycomb core sandwich panel structure, and fire retardant honeycomb core sandwich panel structure
AU763345B2 (en) Radiation shielded laminate
Fajrin et al. Significance analysis of flexural behaviour of hybrid sandwich panels
EP1268189A1 (en) Flame retardant optical films
Thamba et al. Flexural properties of areca nut, sunn hemp and e-glass fibers reinforced with epoxy composites
JP2014091278A (en) Production method of fiber board
JP2014226914A (en) Transparent nonflammable sheet and method for producing the same
dos Santos et al. Effect of the densification process on properties of commercial oriented strand boards
JPS5573524A (en) Production of reinforced plastic
JP5981153B2 (en) Incombustible decorative board
EP0097921B1 (en) Process for the preparation of laminated products, and these products
JPS5882205A (en) Reinforced optical fiber
KR101341749B1 (en) Method of building interior and exterior material
CN208410937U (en) A kind of heat-insulation and heat-preservation ecological board