JPS5845375A - Formation of thin film by vapor deposition - Google Patents

Formation of thin film by vapor deposition

Info

Publication number
JPS5845375A
JPS5845375A JP14446181A JP14446181A JPS5845375A JP S5845375 A JPS5845375 A JP S5845375A JP 14446181 A JP14446181 A JP 14446181A JP 14446181 A JP14446181 A JP 14446181A JP S5845375 A JPS5845375 A JP S5845375A
Authority
JP
Japan
Prior art keywords
substrate
thin film
film
metal
area
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14446181A
Other languages
Japanese (ja)
Inventor
Takashi Fujita
藤田 隆志
Koichi Shinohara
紘一 篠原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP14446181A priority Critical patent/JPS5845375A/en
Publication of JPS5845375A publication Critical patent/JPS5845375A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/20Metallic material, boron or silicon on organic substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/54Controlling or regulating the coating process
    • C23C14/541Heating or cooling of the substrates

Abstract

PURPOSE:To form a thin magnetic metallic film having excellent magnetic characteristics easily by heating the area of a substrate where deposition is going to begin in the stage of depositing a material to be evaporated which comes flying over the moving substrate. CONSTITUTION:While a substrate 4 of a plastic film is cooled according to the rotation of a cylindrical can 2, the substrate moves. In this stage, a metallic ingot 11 in a crucible 7 is heated to melt and evaporate by the electron beam 10 generated from an electron beam generator 9. At this time, the evaporated metal in an area 14 sticks to the substrate 4. Since an area 16 where a thin magnetic film is formed in an earlier stage the incident angle theta of the evaporated metal is as high as about 90 deg., only a film of poor crystallinity is formed. Therefore, the part around the area 16 is heated by a heating source 12 to increase the density of radiation energy and to accelerate the growth of nuclei, whereby a thin metallic film 6 having good crystallinity hence good magnetic characteristics is formed on the substrate 4.

Description

【発明の詳細な説明】 本発明は例えば金属薄膜磁気テープを製造する際に用い
る蒸着による薄膜形成方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for forming a thin film by vapor deposition, which is used, for example, in manufacturing a metal thin film magnetic tape.

金属薄膜磁気テープは、PET(ポリエチレンテレフタ
レート)、ポリイミド、ポリアミド、アセテート等の高
分子フィルム基板の表面に、真空蒸着法、スパッタリン
グ法で、Co、 Ni、 Fe。
Metal thin film magnetic tape is made by depositing Co, Ni, or Fe on the surface of a polymer film substrate made of PET (polyethylene terephthalate), polyimide, polyamide, acetate, etc., by vacuum evaporation or sputtering.

CoNf、CoCr 等の単体又は合金の磁性薄膜を形
◇ 成しなるものである。
It is made of a magnetic thin film made of CoNf, CoCr, etc. or an alloy.

真空蒸着法、スパッタリング法で、金属磁性薄膜を形成
させる過程は、金属を抵抗加熱又は電子ビーム、誘導加
熱などの方法で加熱して溶融状態にし、さらに加熱して
原子法で蒸発させることにまり熱エネルギを持った金属
原子が、基板に付着し、熱エネルギーを失なう途中で、
初期的な金属の核が発生し、続いて核成長が起り、核成
長の途中では、核と核とが合体を繰返しながら成長し、
二次的な核を形成しながら金属膜が形成されていること
が、最近の電子顕微鏡を使用した核成長の過程の研究か
ら明らかになっている。このようなことから、結晶性の
良い膜を形成するには、核形成の過程より、核成長の過
程が大切で、核成長時に基板を400℃程度に加熱する
ことにより熱エネルギーを与えると効果が有ることが発
見された。
The process of forming a metal magnetic thin film using the vacuum evaporation method or sputtering method involves heating the metal using methods such as resistance heating, electron beam, or induction heating to melt it, and then heating it further to evaporate it using an atomic method. Metal atoms with thermal energy attach to the substrate, and while losing thermal energy,
An initial metal nucleus is generated, then nuclear growth occurs, and during the nuclear growth, the nuclei grow while repeating coalescence.
Recent research using electron microscopy on the process of nuclear growth has revealed that a metal film is formed while forming secondary nuclei. For this reason, in order to form a film with good crystallinity, the process of nucleus growth is more important than the process of nucleation, and it is effective to provide thermal energy by heating the substrate to about 400°C during nucleus growth. It was discovered that there is.

金属薄膜磁気テープに主として使用される金属は、Co
、CoNi、CoCr等で、記録媚体として使用する際
の抗磁力の発生原因は、これらの金属が結晶構造で六方
晶形を作り、磁気的に、−動異方性全持っていて、この
結晶のエネルギーが、抗磁力発生の主な原因である。し
たがって、金属磁性薄膜の形成にあたっては、結晶性の
良い膜を形成・することが大切である。本発明はかかる
点に鑑みなされたもので以下に図面を用いその実施例を
説明する。
The metal mainly used for metal thin film magnetic tape is Co.
, CoNi, CoCr, etc., the reason for the generation of coercive force when used as a recording aphrodisiac is that these metals have a hexagonal crystal structure and have magnetically -dynamic anisotropy, and the energy of this crystal is is the main cause of coercive force generation. Therefore, when forming a metal magnetic thin film, it is important to form a film with good crystallinity. The present invention has been made in view of this point, and embodiments thereof will be described below with reference to the drawings.

第1図は本発明により金属薄膜磁気テープを製造する場
合に用いる蒸着装置の構成を示す。
FIG. 1 shows the configuration of a vapor deposition apparatus used in manufacturing a metal thin film magnetic tape according to the present invention.

図において、1は真空容器、2は真空蒸着時に基板であ
るプラスチックフィルムを冷却する円筒状のキャンであ
る。3はフィルム基板の巻出し部であり、4はフィルム
基板である。5はフィルム基板の巻取り部、6は基板4
上に形成された金属磁性薄膜、7は蒸発源をなすルツボ
で、カーボンやセラミックで構成される。8は金属蒸気
流のフィルム4上への入射角を制限するためのマスク、
9は金属を加熱する電子ビームの発生装置である。
In the figure, 1 is a vacuum container, and 2 is a cylindrical can that cools a plastic film that is a substrate during vacuum deposition. 3 is a film substrate unwinding part, and 4 is a film substrate. 5 is the winding part of the film substrate, 6 is the substrate 4
The metallic magnetic thin film 7 formed on the crucible serving as an evaporation source is made of carbon or ceramic. 8 is a mask for limiting the angle of incidence of the metal vapor flow onto the film 4;
9 is an electron beam generator for heating metal.

1oは電子ビームを示す。11はルツボ7に収容された
金属のインゴットで、電子ビーム1oによって加熱溶解
されている。12は輻射による加熱源、13は反射板で
ある。ここで加熱源12は、高融点金属よりなるフィラ
メント又は黒鉛、窒化ボロン等に電流を通じて加熱源と
したものである。
1o indicates an electron beam. A metal ingot 11 is housed in a crucible 7 and is heated and melted by an electron beam 1o. 12 is a radiation heating source, and 13 is a reflection plate. Here, the heating source 12 is a filament made of a high melting point metal, graphite, boron nitride, or the like, through which an electric current is passed.

反射板13は加熱源12からの輻射エネルギーを反射す
るためのものである。14は蒸発金属が飛散して基板4
に付着する領域を示す。θは蒸発金属が飛散して、基板
4に付着する際の入射角を示す。
The reflecting plate 13 is for reflecting the radiant energy from the heating source 12. 14, the evaporated metal is scattered and the substrate 4
Indicates the area where it adheres to. θ represents the incident angle at which the evaporated metal scatters and attaches to the substrate 4.

16は基板4上に初期に磁性薄膜が形成される領域を示
し、ここでは蒸発金属の入射角θが90度付近で高入射
角領域である。領域16ではルツボ7からの輻射エネル
ギーの密度は低い。17は真空容器1を真空にするため
の真空ポンプである。
Reference numeral 16 indicates a region where a magnetic thin film is initially formed on the substrate 4, where the incident angle θ of the evaporated metal is around 90 degrees, which is a high incident angle region. In region 16, the density of radiant energy from crucible 7 is low. 17 is a vacuum pump for evacuating the vacuum container 1;

さて第1図の装置で金属磁性薄膜の形成される過程を考
えてみると、薄膜の核成長段階では、金属蒸気及びルツ
ボからの輻射エネルギの入射角が90度付近の高角度で
あり、一方ルツボ7からの距離も遠いことから、蒸着レ
ートが遅く熱エネルギの少ない領域で核形成が行なわれ
る。核の成長から二次的な核の成長、さらに金属薄膜の
形成は、金属蒸気と、ルツボからの輻射熱の入射角が次
第に低入射角に移るにしたがってなされていくものであ
る。したがって第1図に示した装置で金属薄膜を形成し
ようとすると、薄膜の形成初期においては、入射角が高
角度であるため、ルツボからの輻射エネルギーが少なく
、このため結晶の成長過程において、核の成長、2次的
な成長が充分でなく結晶性の悪い膜しか出来ない。本発
明では図に示す、初期段階の薄膜形成にあずかる領域付
近を加熱源12により加熱し、領域16の付近のエネル
ギー密度を上げて、核の成長を促すことによって結晶性
の良い金属薄膜を得ようとするものである。
Now, if we consider the process of forming a metal magnetic thin film using the apparatus shown in Figure 1, at the stage of thin film nucleus growth, the incident angle of the radiant energy from the metal vapor and the crucible is at a high angle of around 90 degrees; Since the distance from the crucible 7 is long, nucleation occurs in a region where the deposition rate is slow and there is little thermal energy. The growth of the nucleus, the growth of the secondary nucleus, and the formation of the metal thin film occur as the angle of incidence of the metal vapor and the radiant heat from the crucible gradually shifts to a lower angle of incidence. Therefore, when trying to form a metal thin film using the apparatus shown in Figure 1, in the initial stage of thin film formation, the incident angle is high, so the radiation energy from the crucible is low, and as a result, during the crystal growth process, the nucleation The primary growth and secondary growth are insufficient, resulting in only a film with poor crystallinity. In the present invention, a metal thin film with good crystallinity is obtained by heating the region shown in the figure, which takes part in the initial stage of thin film formation, with a heating source 12, increasing the energy density near the region 16, and promoting the growth of nuclei. This is what we are trying to do.

第2図は第1図に示した装置ケ用いて形成したCo80
%、Ni10%の合金からなる磁性薄膜の磁気特性を示
す。
Figure 2 shows Co80 formed using the apparatus shown in Figure 1.
%, shows the magnetic properties of a magnetic thin film made of an alloy of 10% Ni.

この場合の磁性薄膜の形成においては、第1図における
マスクの位置は蒸発金属の入射角を10度までに制限す
るような位置にあり、蒸着雰囲気は10Torr  以
下に真空度を保った後、酸素を微は導入した状態とし、
この条件のも゛とでCo N i合金を蒸着したもので
ある。第2図には入射角7゜度以上の領域を加熱して磁
性薄膜を形成したものと、加熱しないで形成したものと
磁気特性を対比させて示す。
In forming the magnetic thin film in this case, the mask in FIG. 1 is positioned to limit the incident angle of the evaporated metal to 10 degrees, and the evaporation atmosphere is maintained at a vacuum level of 10 Torr or less, followed by oxygen. Assuming that the micro is introduced,
A CoNi alloy was deposited under these conditions. FIG. 2 shows a comparison of the magnetic properties of a magnetic thin film formed by heating a region at an incident angle of 7° or more and a magnetic thin film formed without heating.

第2図における横軸は抗磁力を指しその単位はOe(エ
ルステッド)であり、縦軸は磁束密度を指しその単位は
G(ガウス)である。
In FIG. 2, the horizontal axis indicates coercive force in units of Oe (Oersteds), and the vertical axis indicates magnetic flux density in units of G (Gauss).

第2図中の曲線19は、入射角70度以上の領域を加熱
して磁性薄膜を形成したものの磁気特性を示す。この磁
性薄膜形成の際の入射エネルギーはo、s cat/ 
ct/l・8eCである。磁性薄膜の厚さは1000A
である。
A curve 19 in FIG. 2 shows the magnetic properties of a magnetic thin film formed by heating a region where the incident angle is 70 degrees or more. The incident energy during the formation of this magnetic thin film is o, s cat/
ct/l・8eC. The thickness of the magnetic thin film is 1000A
It is.

曲線18は加熱を行わない試料についてのものであり、
膜厚は1000Aである。
Curve 18 is for the sample without heating;
The film thickness is 1000A.

曲線18と19を比較してわかるように、曲線19で特
性が表わされる試料は抗磁力が曲線18で表わされるも
のに比較して大きく、角形比も良い。この様なすぐれた
磁気特性の得ら・れる原因は、結晶性の改善によるもの
である。
As can be seen by comparing curves 18 and 19, the sample whose characteristics are represented by curve 19 has a larger coercive force and a better squareness ratio than those represented by curve 18. The reason why such excellent magnetic properties are obtained is due to improved crystallinity.

本発明は以上のように、例えば金属薄膜磁気テ−プの製
造に適用した場合、結晶性がすぐれ、したがって磁気特
注がすぐれた金属磁性薄膜を容易に形成することができ
る。なお本発明は磁気テープのみならず、薄膜型太陽電
池あるいは光学薄膜体の製造に適用した場合にも同様な
効果を奏するものである。
As described above, when the present invention is applied to, for example, the production of a metal thin film magnetic tape, it is possible to easily form a metal magnetic thin film with excellent crystallinity and therefore excellent magnetic customization. Note that the present invention produces similar effects when applied not only to magnetic tapes but also to the production of thin-film solar cells or optical thin-film bodies.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の適用により金属薄膜磁気テープを製造
する場合に用いる蒸着装置の構成を示す図、第2図は本
発明の詳細な説明するためのもので、本発明の適用によ
り形成された金属磁性薄膜の磁気特性を示す。 1 ・・・・・・真空容器、2・・・・・・キャン、4
・・・・・フィルム基板、1o・・・・・・電子ビーム
、11・・・。 ・・金属のインゴット、12・・・・・・加熱源。
FIG. 1 is a diagram showing the configuration of a vapor deposition apparatus used when manufacturing a metal thin film magnetic tape by applying the present invention, and FIG. 2 is a diagram for explaining the present invention in detail. This figure shows the magnetic properties of a magnetic metal thin film. 1...Vacuum container, 2...Can, 4
...Film substrate, 1o...Electron beam, 11... ...Metal ingot, 12...Heating source.

Claims (2)

【特許請求の範囲】[Claims] (1)移動中の基板上に蒸発源から飛来してきた被蒸着
物質を堆積せしめて薄膜を形成するに際し、前記基板上
の前記被蒸着物質の堆積が始まろうとしている領域を加
熱することを特徴とする蒸着による薄膜形成方法。
(1) When forming a thin film by depositing a substance to be evaporated from an evaporation source onto a moving substrate, a region on the substrate where the substance to be evaporated is about to start being deposited is heated. A thin film formation method using vapor deposition.
(2)基板が高分子成形物で、かつ、被蒸着物質が強磁
性金属であることを特徴とする特許請求の範囲第1項記
載の蒸着による薄膜形成方法。
(2) The method for forming a thin film by vapor deposition according to claim 1, wherein the substrate is a polymer molded product and the substance to be vapor-deposited is a ferromagnetic metal.
JP14446181A 1981-09-11 1981-09-11 Formation of thin film by vapor deposition Pending JPS5845375A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14446181A JPS5845375A (en) 1981-09-11 1981-09-11 Formation of thin film by vapor deposition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14446181A JPS5845375A (en) 1981-09-11 1981-09-11 Formation of thin film by vapor deposition

Publications (1)

Publication Number Publication Date
JPS5845375A true JPS5845375A (en) 1983-03-16

Family

ID=15362797

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14446181A Pending JPS5845375A (en) 1981-09-11 1981-09-11 Formation of thin film by vapor deposition

Country Status (1)

Country Link
JP (1) JPS5845375A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59222577A (en) * 1983-06-02 1984-12-14 Matsushita Electric Ind Co Ltd Thin film producing device
JPS62173621A (en) * 1986-01-28 1987-07-30 Toshiba Corp Production of magnetic recording medium
US20100155224A1 (en) * 2004-03-19 2010-06-24 United Technologies Corporation Multi-Component Deposition

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59222577A (en) * 1983-06-02 1984-12-14 Matsushita Electric Ind Co Ltd Thin film producing device
JPS62173621A (en) * 1986-01-28 1987-07-30 Toshiba Corp Production of magnetic recording medium
US20100155224A1 (en) * 2004-03-19 2010-06-24 United Technologies Corporation Multi-Component Deposition
US8864956B2 (en) * 2004-03-19 2014-10-21 United Technologies Corporation Multi-component deposition

Similar Documents

Publication Publication Date Title
Sugita Co-Cr perpendicular magnetic recording tape by vacuum deposition
US4584078A (en) Method of producing fine particles
EP0172566B1 (en) Perpendicular magnetic recording medium and production process thereof
JPS5845375A (en) Formation of thin film by vapor deposition
JPH0582723B2 (en)
EP0367030B1 (en) Process for forming thin films of metastable binary compounds
JPH0721560A (en) Production of magnetic recording medium
JPS637092B2 (en)
JPS6126939A (en) Production of magnetic recording medium
JP2894253B2 (en) Manufacturing method of highly functional thin film
JPH02430B2 (en)
JPS641851B2 (en)
JPS6138530B2 (en)
RU2122243C1 (en) Method for production of magnetically soft heat-resistant amorphous condensate of 3d metals
JPH11161952A (en) Production of magnetic recording medium
JPS62185247A (en) Production of magnetic recording medium
JPH04188433A (en) Manufacture of magnetic recording medium
JPH0460920A (en) Production of magnetic recording medium
JPS5936329A (en) Manufacture of magnetic recording medium
JPS58161137A (en) Manufacture of magnetic recording medium
Takahashi et al. Preparation and Characteristics of Co-Cr Films by EP Magnetron Co-sputtering Technique
JPS60209927A (en) Magnetic recording medium and its production
JPH03225621A (en) Production of magnetic recording medium
JPH0528482A (en) Production of magnetic recording medium
JPH035645B2 (en)