JPS584443B2 - Manufacturing method of high temperature thermistor - Google Patents

Manufacturing method of high temperature thermistor

Info

Publication number
JPS584443B2
JPS584443B2 JP4221779A JP4221779A JPS584443B2 JP S584443 B2 JPS584443 B2 JP S584443B2 JP 4221779 A JP4221779 A JP 4221779A JP 4221779 A JP4221779 A JP 4221779A JP S584443 B2 JPS584443 B2 JP S584443B2
Authority
JP
Japan
Prior art keywords
temperature thermistor
high temperature
manufacturing
platinum
bottomed cylindrical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP4221779A
Other languages
Japanese (ja)
Other versions
JPS55134904A (en
Inventor
黒田孝之
津田泰男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP4221779A priority Critical patent/JPS584443B2/en
Publication of JPS55134904A publication Critical patent/JPS55134904A/en
Publication of JPS584443B2 publication Critical patent/JPS584443B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Thermistors And Varistors (AREA)

Description

【発明の詳細な説明】 本発明は白金線と高温サーミスタとの結合状態が良くし
かも量産にも適した高温度用サーミスタの製造方法を提
供しようとするものである。
DETAILED DESCRIPTION OF THE INVENTION An object of the present invention is to provide a method for manufacturing a high-temperature thermistor that has a good bond between a platinum wire and a high-temperature thermistor and is suitable for mass production.

負の温度特性を持つサーミスタ材料としては、従来、遷
移金属酸化物の複合体たとえばNi−Co一Cu系,M
n−Co−Cu系などが一般に広く用いられているが、
これらのものは、その使用温度範囲が300℃以下であ
り、電極としては銀が広く用いられている。
Conventionally, transition metal oxide composites such as Ni-Co-Cu system, M
Although n-Co-Cu systems are generally widely used,
The operating temperature range of these materials is 300° C. or lower, and silver is widely used as the electrode.

一方近年、エレクトロニクス分野の発展により高温で使
用できるサーミスタへの要望が高まってきたが、300
℃〜1000℃の高温で使用するために、その電極とし
ては、白金線をアキシャル位または、ラジアル位素子の
中に埋込んだものが多く使われている。
On the other hand, in recent years, with the development of the electronics field, there has been an increasing demand for thermistors that can be used at high temperatures.
In order to be used at high temperatures of .degree. C. to 1000.degree. C., platinum wires embedded in axial or radial elements are often used as electrodes.

電極として白金が用いられる理由としては、その耐熱温
度が高いこと、高温で使用した場合の劣化が少ないこと
、白金の熱膨張係数がセラミック磁器の熱膨張係数に近
いことなどであるが、白金線を埋込んで成形し、150
0〜1650℃程度で焼成した場合、セラミック材料の
焼結による収縮率は、5%〜20チ程度であるのに、白
金は殆んど収縮せず、素体に歪みが発生し、クラツクの
発生する原因となり、高温耐久性が著しく低下する。
The reasons why platinum is used as an electrode include its high heat resistance, low deterioration when used at high temperatures, and the fact that platinum's coefficient of thermal expansion is close to that of ceramic porcelain. embed and mold, 150
When fired at a temperature of about 0 to 1650 degrees Celsius, the shrinkage rate due to sintering of ceramic materials is about 5% to 20 degrees, but platinum hardly shrinks, causing distortion in the element body and causing cracks. This causes a significant drop in high-temperature durability.

その対策としては、セラミック材料を、埋込もうとする
白金線の太さより太い穴を設けた格好で成形し、その後
その穴に白金線を差し込み、焼成収縮せしめて、成形時
点に設けた穴径を白金線の太さと同じにし、白金線を抱
き込んだ格好とする等の方法がとられているが、この方
法では、焼成収縮穴径を丁度白金線の太さと同じにする
ことが難しく、穴径が小さくなりすぎた場合においては
クラツクが発生し、反対に穴径が収縮後太きすぎた場合
においては、白金線が強固に保持され得ず抜けてしまう
欠点がある。
As a countermeasure, the ceramic material is molded with a hole that is thicker than the thickness of the platinum wire that is to be embedded, and then the platinum wire is inserted into the hole and fired to shrink. Methods such as making the diameter of the firing shrinkage hole exactly the same as the thickness of the platinum wire are used, but with this method, it is difficult to make the firing shrinkage hole diameter exactly the same as the thickness of the platinum wire. If the hole diameter becomes too small, cracks will occur, and on the other hand, if the hole diameter becomes too large after shrinkage, the platinum wire will not be held firmly and will come off.

またこの方法では量産化が難しい欠点がある。Additionally, this method has the disadvantage that mass production is difficult.

本発明は、上記のような白金埋込み、焼成時のクラツク
発生を抑えると同時に、量産性の良い白金埋込み型の高
温度用サーミスタの製造方法を得ようとするものである
The present invention aims to suppress the occurrence of cracks during platinum embedding and firing as described above, and at the same time provide a method for manufacturing a platinum-embedded high-temperature thermistor with good mass productivity.

以下本発明について説明する。The present invention will be explained below.

本発明は有底筒状体の底板に二本の白金線を貫通させて
保持し、上記有底筒状体に高温サーミスタ材料を用いて
作成した泥漿を流し込み、乾燥固化し、乾燥固化したも
のを有底筒状体より取り出し、その後焼結することを特
徴さするものである。
In the present invention, two platinum wires are passed through and held in the bottom plate of a bottomed cylindrical body, and a slurry made using a high temperature thermistor material is poured into the bottomed cylindrical body and dried and solidified. It is characterized in that it is taken out from a bottomed cylindrical body and then sintered.

本発明によれば、素子内部はクラツクが発生しないばか
りでなく、泥漿を作成したる後は、その後の作業工程は
非常に簡単なものであるため、機械化が容易であり、ま
た同時に量産も可能である。
According to the present invention, not only no cracks occur inside the device, but also the subsequent work steps are very simple after the slurry is created, so mechanization is easy and mass production is possible at the same time. It is.

以下その実施例を示す。Examples are shown below.

高温度用サーミスタ原料200gに対してメチルセルロ
ース10g1グリセリン6g、オクチルアルコール3g
1水300CCを添加混合し、第1図に示すように作成
した泥漿3を底板に白金線2a,2bを2本平行に保持
した有底筒状体の鋳型1に流し込み、約半日放置後80
℃〜120℃の温度で一昼夜乾燥固化せしめた後、鋳型
1より取り出し、1500℃〜1650℃の温度で焼成
して、高温度用サーミスタ素体を得た。
For 200g of raw material for high temperature thermistor, 10g of methyl cellulose, 6g of glycerin, 3g of octyl alcohol
The slurry 3 prepared as shown in Fig. 1 by adding and mixing 300 cc of water was poured into a bottomed cylindrical mold 1 with two platinum wires 2a and 2b held in parallel on the bottom plate, and after being left for about half a day,
After drying and solidifying at a temperature of 120° C. to 120° C. for a day and night, it was taken out from the mold 1 and fired at a temperature of 1500° C. to 1650° C. to obtain a high-temperature thermistor element.

第2図に示すものは完成した高温度用サーミスタである
What is shown in FIG. 2 is a completed high temperature thermistor.

この素体を樹脂に埋込み研摩し、その断面を観察した所
、クラックの発生は認められなかった。
This element was embedded in resin and polished, and when its cross section was observed, no cracks were observed.

以上のように本発明によれば白金線と高温サーミスタ材
料とは確実に固着され、しかも高温サーミスタ材料には
クラツクが生じず、さらに量産にも適するものである。
As described above, according to the present invention, the platinum wire and the high-temperature thermistor material are reliably bonded to each other, and the high-temperature thermistor material does not crack, and is also suitable for mass production.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の高温度用サーミスタの製造方法を示す
装置の断面図、第2図は同方法によって製造された高温
度用サーミスタの斜視図である。 1・・・・・・有底筒状体、2a,2b・・・・・・白
金線、3・・・・・・泥漿。
FIG. 1 is a cross-sectional view of an apparatus showing a method for manufacturing a high-temperature thermistor of the present invention, and FIG. 2 is a perspective view of a high-temperature thermistor manufactured by the same method. 1... Bottomed cylindrical body, 2a, 2b... Platinum wire, 3... Slime.

Claims (1)

【特許請求の範囲】[Claims] 1 有底筒状体の底板に二本の白金線を貫通させて保持
し、上記有底筒状体に高温サーミスタ材料を用いて作成
した泥漿を流し込み、乾燥固化し、その後有底筒状体よ
り取り出し、取り出したものを焼結することを特徴とす
る高温度用サーミスタの製造方法。
1 Two platinum wires are passed through and held in the bottom plate of the bottomed cylindrical body, and a slurry made using a high temperature thermistor material is poured into the bottomed cylindrical body, dried and solidified, and then the bottomed cylindrical body is A method for manufacturing a thermistor for high temperature use, characterized in that the thermistor is taken out from the ground and the taken out material is sintered.
JP4221779A 1979-04-06 1979-04-06 Manufacturing method of high temperature thermistor Expired JPS584443B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4221779A JPS584443B2 (en) 1979-04-06 1979-04-06 Manufacturing method of high temperature thermistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4221779A JPS584443B2 (en) 1979-04-06 1979-04-06 Manufacturing method of high temperature thermistor

Publications (2)

Publication Number Publication Date
JPS55134904A JPS55134904A (en) 1980-10-21
JPS584443B2 true JPS584443B2 (en) 1983-01-26

Family

ID=12629866

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4221779A Expired JPS584443B2 (en) 1979-04-06 1979-04-06 Manufacturing method of high temperature thermistor

Country Status (1)

Country Link
JP (1) JPS584443B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0323889Y2 (en) * 1984-11-21 1991-05-24

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0323889Y2 (en) * 1984-11-21 1991-05-24

Also Published As

Publication number Publication date
JPS55134904A (en) 1980-10-21

Similar Documents

Publication Publication Date Title
JP5719303B2 (en) Sensor element and method for manufacturing sensor element
CN101995306B (en) Method for manufacturing negative temperature coefficient (NTC) thermosensitive chip for high-precision temperature sensor
JPS584443B2 (en) Manufacturing method of high temperature thermistor
JPS6219391B2 (en)
JP4849765B2 (en) Multilayer ceramic heater element and manufacturing method thereof
US2596285A (en) Method of forming beaded structure
JPS6179201A (en) Manufacture of high tamperature thermistor
CN101814349B (en) Moulding mould for thermistors and method for manufacturing thermistors
JPH01169320A (en) Manufacture of electrode part of electromagnetic flowmeter
JPH0542338Y2 (en)
JPS61218088A (en) Manufacture of ceramics-nichrome composite body
JPH0333040Y2 (en)
JPS5917203A (en) Mold for forming electroceramic part
JPH0379836B2 (en)
JPH0127055Y2 (en)
JPH01169322A (en) Manufacture of electrode part of electromagnetic flowmeter
JPH0124882Y2 (en)
JP2003203802A (en) Temperature-sensitive resistance element, its manufacturing method and thermal flow rate sensor
JPH0547959B2 (en)
JPS58172513A (en) Sensor for measuring instrument
JPS609233B2 (en) Crucible for melting precious metals
JPH0815047A (en) Production for temperature measuring sensor in which thermocouple and protection tube are integrated
JPS58194208A (en) Measuring wire
DE3709196A1 (en) OXYGEN MEASURING PROBE FOR HIGH TEMPERATURES
Grodzinski Influence of sintering temperature of WMn layer on structure and strength properties of ceramic-to-metal seals