JPS5843856B2 - In-line color picture tube device - Google Patents

In-line color picture tube device

Info

Publication number
JPS5843856B2
JPS5843856B2 JP52062222A JP6222277A JPS5843856B2 JP S5843856 B2 JPS5843856 B2 JP S5843856B2 JP 52062222 A JP52062222 A JP 52062222A JP 6222277 A JP6222277 A JP 6222277A JP S5843856 B2 JPS5843856 B2 JP S5843856B2
Authority
JP
Japan
Prior art keywords
axis
color picture
picture tube
deflection yoke
magnetic field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP52062222A
Other languages
Japanese (ja)
Other versions
JPS53148230A (en
Inventor
久史 岡田
英俊 山崎
栄三郎 浜野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP52062222A priority Critical patent/JPS5843856B2/en
Priority to US05/908,852 priority patent/US4217566A/en
Priority to DE2823598A priority patent/DE2823598C2/en
Publication of JPS53148230A publication Critical patent/JPS53148230A/en
Publication of JPS5843856B2 publication Critical patent/JPS5843856B2/en
Expired legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J29/00Details of cathode-ray tubes or of electron-beam tubes of the types covered by group H01J31/00
    • H01J29/46Arrangements of electrodes and associated parts for generating or controlling the ray or beam, e.g. electron-optical arrangement
    • H01J29/70Arrangements for deflecting ray or beam
    • H01J29/701Systems for correcting deviation or convergence of a plurality of beams by means of magnetic fields at least
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J29/00Details of cathode-ray tubes or of electron-beam tubes of the types covered by group H01J31/00
    • H01J29/46Arrangements of electrodes and associated parts for generating or controlling the ray or beam, e.g. electron-optical arrangement
    • H01J29/70Arrangements for deflecting ray or beam
    • H01J29/72Arrangements for deflecting ray or beam along one straight line or along two perpendicular straight lines
    • H01J29/76Deflecting by magnetic fields only

Description

【発明の詳細な説明】 本発明はインライン形カラー受像管と、電子ビームを水
平、垂直方向に偏向し、走査ラスクーを形成する偏向装
置とからなるインライン形カラー受像管装置に関するも
ので、詳細には3本の電子ビームが実質的に螢光面上に
自動的に集中する所謂自動集中形カラー受像管装置であ
り、さらに、ラスター歪が大巾に低減し実質的に歪補正
を不要とした新しいカラー受像管装置を提供するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an in-line color picture tube device comprising an in-line color picture tube and a deflection device that deflects an electron beam in horizontal and vertical directions to form a scanning lasque. This is a so-called automatic focusing color picture tube device in which three electron beams are virtually automatically focused on the phosphor surface, and furthermore, raster distortion is greatly reduced, making distortion correction virtually unnecessary. A new color picture tube device is provided.

インライン形カラー受像管装置は第1図に示すように、
3色の螢光体細条等よりなる螢光面がガラスパネル1の
内面に形成され、さらに後方には色選別電極として、多
数の開孔部を有するシャドウマスク2が所定の間隙を隔
て係止され、さらに後方には、3本の電子ビームを発生
する電子銃3が配置され、更にファンネルコーン部4の
外側には電子ビームを電磁偏向する偏向ヨーク5が配置
されている。
The in-line color picture tube device is as shown in Figure 1.
A fluorescent surface consisting of phosphor strips of three colors is formed on the inner surface of the glass panel 1, and a shadow mask 2 having a large number of openings is arranged at a predetermined distance as a color selection electrode at the rear. An electron gun 3 that generates three electron beams is disposed at the rear, and a deflection yoke 5 that electromagnetically deflects the electron beams is disposed outside the funnel cone portion 4.

前記偏向ヨークは通例少なくとも一対の水平コイルと一
対の垂直コイル及び偏向ヨークコアより構成されており
、前記3本の電子ビームの集中特性はこの偏向ヨークの
発生する磁界によりはマ決定するため、磁界分布を定め
ることは重要な意味をもつことは周知である。
The deflection yoke is usually composed of at least one pair of horizontal coils, a pair of vertical coils, and a deflection yoke core, and since the concentration characteristics of the three electron beams are determined by the magnetic field generated by the deflection yoke, the magnetic field distribution It is well known that it is important to define the

以下本発明を容易に理解するためカラー受像管装置の集
中特性及び前記偏向ヨークの磁界について簡単に説明す
る。
In order to easily understand the present invention, the concentration characteristics of the color picture tube device and the magnetic field of the deflection yoke will be briefly explained below.

第2図に示すように電子銃3より放射された電子ビーム
6B、6Rは共通の偏向磁界を通過し、螢光面7に達す
るとき集中誤差を生じ、電子ビーム6B、6Rの集中点
8は電子銃側に屈曲した点線で示す軌跡9を有する。
As shown in FIG. 2, the electron beams 6B and 6R emitted from the electron gun 3 pass through a common deflection magnetic field, and when they reach the fluorescent surface 7, a concentration error occurs, and the concentration point 8 of the electron beams 6B and 6R is It has a locus 9 shown by a dotted line bent toward the electron gun side.

さらに厳密に述べると両サイドビーム6B、6Rの集中
点8を破線で示す中央ビーム10とは必ずしも一致せず
、所謂コマ収差が生じるのが通例である。
To be more precise, the concentration point 8 of both side beams 6B and 6R does not necessarily coincide with the central beam 10 shown by the broken line, and so-called coma aberration usually occurs.

この現象を螢光面上のパターンに焼き直すと第3図のよ
うになりカラー受像管の集中特性や偏向ヨークの磁界設
計等を論じるときは前記螢光面上のパターンを用いる方
が定性的であるが理解し易いことは周知である。
When this phenomenon is reproduced as a pattern on the fluorescent surface, it becomes as shown in Figure 3. When discussing the concentration characteristics of color picture tubes, the magnetic field design of the deflection yoke, etc., it is qualitatively better to use the pattern on the fluorescent surface. However, it is well known that it is easy to understand.

図中画面中央部R2G、Bは螢光面側より見た電子銃配
列、×印は青Bビーム、○印は縁Gビーム、△印は赤R
ビームによるパターンを示す。
In the figure, the central part of the screen is R2G, B is the electron gun array seen from the fluorescent surface side, × mark is blue B beam, ○ mark is edge G beam, △ mark is red R
Shows the pattern created by the beam.

カラー受像管装置に於いて、正確な画像再生を行うため
には、3本の電子ビームを実質的に螢光面上全面に渡り
、集中させる必要があり、従来補正回路等により動点集
中補正を行う方式が主流であったが、最近インライン形
電子銃の利点を生かし、偏向ヨークの磁界を特殊なアス
テイグ磁界にすることにより、3本の電子ビームを実質
的に螢光向上に集中させる自動集中形カラー受像管装置
が主流となっている。
In order to accurately reproduce images in a color picture tube device, it is necessary to concentrate the three electron beams over virtually the entire surface of the fluorescent surface. However, recently an automatic method has been developed that takes advantage of in-line electron guns and transforms the magnetic field of the deflection yoke into a special Asteig magnetic field, effectively concentrating the three electron beams to improve fluorescence. Centralized color picture tube devices are the mainstream.

自動集中化に関しては第4図a、bに示すように水平偏
向磁界11はビンクッション形、垂直偏向磁界12はバ
レル形磁界にすれは良いことは周知であり、第4図に示
すように、カラー受像管の管軸をZ軸、水平偏向方向を
Z軸、垂直偏向方向をY軸(以後X、Y、Z軸は前記の
如く定める)とすると、ピンクッション形磁界11は管
軸に直角な断面円での磁界分布が第5図aybのように
X軸上A−A′では中心より離軸するに従い増加し、同
時に中心よりY軸方向に任意の距離だけ離れた点よりX
軸方向に沿って測った磁界B−B’も同様の傾向を示し
、さらにX軸方向に任意の距離だけ離れた点よりY軸方
向に沿って測ったc−c’磁界は前記とは逆に離軸距離
に従い減少する。
Regarding automatic concentration, it is well known that the horizontal deflection magnetic field 11 has a bottle cushion shape, and the vertical deflection magnetic field 12 has a barrel shape, as shown in FIGS. 4a and 4b. Assuming that the tube axis of the color picture tube is the Z-axis, the horizontal deflection direction is the Z-axis, and the vertical deflection direction is the Y-axis (hereinafter, the X, Y, and Z axes are defined as described above), the pincushion-shaped magnetic field 11 is perpendicular to the tube axis. As shown in Figure 5 ayb, the magnetic field distribution in a cross-sectional circle increases as the distance from the center increases from A-A' on the
The magnetic field B-B' measured along the axial direction shows a similar tendency, and the c-c' magnetic field measured along the Y-axis direction from a point a certain distance away in the X-axis direction is opposite to the above. decreases with the off-axis distance.

同様にバレル形磁界は第5図c、dに示すようにビンク
ッション磁界と全く逆の特性を有している。
Similarly, the barrel-shaped magnetic field has completely opposite characteristics to the bottle-cushion magnetic field, as shown in FIGS. 5c and 5d.

第5図に示てBX j BYはそれぞれZ軸、Y軸方向
の磁界強度を示す。
In FIG. 5, BX j BY indicates the magnetic field strength in the Z-axis and Y-axis directions, respectively.

偏向ヨークの磁界と自動集中化に関して前記螢光面上の
3本の電子ビームパターンを用いて若干の説明を加える
Some explanation will be given regarding the magnetic field of the deflection yoke and automatic concentration using the three electron beam patterns on the fluorescent surface.

第6図は水平、垂直磁界が各々斉一のときのパターンで
3本の電子ビーム13B13G、13Rは水平軸、垂直
軸、対角軸共々水平力向では過集中となっている。
FIG. 6 shows a pattern when the horizontal and vertical magnetic fields are uniform, and the three electron beams 13B, 13G, and 13R are overconcentrated in the horizontal force direction on all the horizontal, vertical, and diagonal axes.

これは前記第2図に示した集中点の軌跡に対応しである
This corresponds to the trajectory of the concentration point shown in FIG. 2 above.

図を見てもわかるように同時に3本の電子ビーt・の軌
跡14B、14G、14Rは互いに交叉し所謂゛逆りロ
ス″状態となる。
As can be seen from the figure, the trajectories 14B, 14G, and 14R of the three electronic beats t simultaneously intersect with each other, resulting in a so-called "reverse loss" state.

次に水平偏向磁界を前記ビンクッション形にすると第1
図に示すように、3本の電子ビームに対して負の等方性
非点収差を与えるよう作用し、電子ビームスボッN 5
B、15Rの間隔は次第に挟まり、結果として集中する
方向に変化する。
Next, if the horizontal deflection magnetic field is made into the bottle cushion shape, the first
As shown in the figure, it acts to give negative isotropic astigmatism to the three electron beams, and the electron beam
The distance between B and 15R gradually narrows, resulting in a change in the direction of concentration.

ここで中央ビーム15Gを両サイドビーム15B。Here, the center beam 15G is connected to both side beams 15B.

15Rとの関係は所謂コマ収差のため必ずしも一定でな
いことは勿論である。
Of course, the relationship with 15R is not necessarily constant due to so-called coma aberration.

一方垂直磁界を前記バレル形にすると、垂直軸に沿った
3本の電子ビーム16B、16G、16Rに対して正の
等方性非点収差を与えるよう作用し、電子ビームスポッ
ト16B、16Rの間隔は次第に挟まり、さらには不足
集中状態となる。
On the other hand, when the vertical magnetic field is shaped into the barrel shape, it acts to give positive isotropic astigmatism to the three electron beams 16B, 16G, 16R along the vertical axis, and the distance between the electron beam spots 16B, 16R gradually increases. This will lead to a situation where there is a lack of concentration.

前記水平、垂直磁界を同時に重 し電子ビームを対角軸
方向に偏向したときの対角軸端部の集中特性はカラー受
像管の偏向角、画面サイズ等によるため一概に決めるこ
とが出来ず任意に設計された偏向ヨークを用いて、螢光
面上の集中特性を観察し実験的に修正を加え磁界の最適
化を計っている。
When the horizontal and vertical magnetic fields are simultaneously applied and the electron beam is deflected in the direction of the diagonal axis, the concentration characteristic at the end of the diagonal axis cannot be determined unconditionally because it depends on the deflection angle of the color picture tube, the screen size, etc. Using a deflection yoke designed in

以−長の説明よりインライン形カラー受像管装置は水平
偏向磁界をビンクッションに、垂直磁界をバレル形にす
ることにより、少なくとも両サイドビームを螢光面上に
集中させることができるが、自動集中化に関してはさら
に前記コマ収差をも補正する必要がある。
From the above explanation, the in-line color picture tube device can concentrate at least both side beams onto the fluorescent surface by using the horizontal deflection magnetic field as a bottle cushion and the vertical magnetic field as a barrel shape, but automatic concentration is not possible. In addition, it is necessary to correct the coma aberration.

このコマ収差は第8図に示したように、偏向ヨークの電
子銃側17と螢光面側18の磁界分布を逆極性(例えば
水平磁界では電子銃をバレル、螢光面側をビンクッショ
ン形)にし全体としては水平磁界をビンクッション形、
垂直磁界をバレル形にすることで補正できるが結果とし
て垂直コイルの螢光面側が極端なビンクッション形にす
る必要があるため、結果として左右ラスター歪が非常に
大きくなり例えば1100管では約15係程度となり安
価な受動素子よりなる補正回路では、補正できない欠点
を有している。
As shown in FIG. 8, this comatic aberration is caused by changing the magnetic field distribution on the electron gun side 17 and the fluorescent surface side 18 of the deflection yoke to opposite polarities (for example, in a horizontal magnetic field, the electron gun is shaped like a barrel, and the fluorescent surface side is shaped like a bottle cushion). ), and the horizontal magnetic field as a whole is shaped like a bottle cushion,
This can be corrected by making the vertical magnetic field barrel-shaped, but as a result, the fluorescent surface side of the vertical coil needs to be shaped into an extreme bottle cushion, resulting in a very large left-right raster distortion. This has the disadvantage that it cannot be corrected by a correction circuit made of inexpensive passive elements.

ラスター歪は第9図に示すように、インライン形カラー
受像管装置の場合上下・左右ラスター歪とも糸巻形(ビ
ンクッション形)になり、特に垂直磁界をバレル形にす
るため左右ラスター歪が上下型より犬なることが通例で
ある。
As shown in Figure 9, in the case of an in-line color picture tube device, the raster distortion is pincushion-shaped for both the vertical and horizontal raster distortions, and in particular, since the vertical magnetic field is barrel-shaped, the left-right raster distortion is vertical. Usually more like a dog.

コマ収差を補正する他の手法としては公知の所謂フィー
ルドコントローラーを用いる手法があり、偏向ヨークの
設計自由度が増し、結果として第10図のような磁界で
も充分3本の電子ビームを自動集中化できる利点を有し
、さらに前記左右ラスター歪も1100管で約8係程度
、90°管で約5φ程度となり充分受動素子よりなる回
路で補正可能な範囲に抑えられる利点を有す。
Another method for correcting coma aberration is to use a well-known so-called field controller, which increases the degree of freedom in designing the deflection yoke, and as a result, it is possible to automatically focus three electron beams even in the magnetic field shown in Figure 10. Furthermore, the left and right raster distortion is approximately 8 coefficients for a 1100 tube and approximately 5 φ for a 90° tube, and has the advantage that it can be sufficiently suppressed to a range that can be corrected by a circuit consisting of passive elements.

以上偏向磁界と自動集中化等に関して説明したが、いず
れにせよりラー受像管装置は集中特性を実用上支障ない
程度に規制する必要があり、3本の電子ビームよりなる
仮想電子ビーム径は通例的10〜16φと白黒管の2〜
3φとは比にならない程度大きいため、結果としてラス
ター歪を大巾に低減し、実質的に補正回路不要とするこ
とは出来ない。
The deflection magnetic field and automatic concentration have been explained above, but in any case, it is necessary to regulate the concentration characteristics of the image tube device to a degree that does not cause any practical problems, and the virtual electron beam diameter consisting of three electron beams is usually 10~16φ and black and white tube 2~
Since it is incomparably larger than 3φ, it is not possible to significantly reduce raster distortion and substantially eliminate the need for a correction circuit.

即ち白黒管装置の場合は集中特性という概念が全くない
ため、例えば第11図に一例を示すように偏向ヨークの
螢光面側端部19で、水平軸に対応した空間に永久磁石
20を配置した偏向装置によりラスター歪補正を行って
いるが、カラー受像管装置の場合は前記した如く集中特
性を考慮した場合容易にラスター歪を低減することはで
きず今日まで実用化に至った例はなく、自動集中方式カ
ラー受像管装置に於いてラスター歪を大巾に低減し実質
的に歪補正回路不要化ができれば非常に効果的である。
That is, in the case of a black-and-white tube device, there is no concept of concentration characteristics, so for example, as shown in FIG. Raster distortion is corrected using a deflection device, but in the case of a color picture tube device, it is not possible to easily reduce raster distortion when considering the concentration characteristics as mentioned above, and to date there have been no examples of this being put to practical use. It would be very effective if raster distortion could be greatly reduced in an automatic concentration type color picture tube device and the need for a distortion correction circuit could be substantially eliminated.

同前記説明は主に左右ラスター歪に関して述べたが、自
動集中方式インライン形カラー受像管装置の場合、水平
偏向磁界が原理上全体的にはビンクッション形になって
いるため必然的に小さく110°管に於いても2〜3%
程度である。
The above explanation mainly concerned left and right raster distortion, but in the case of an automatic concentration type in-line color picture tube device, the horizontal deflection magnetic field is basically bottle-cushion shaped as a whole, so it is inevitably small and 110 degrees. 2-3% for pipes
That's about it.

図中21は水平サドル形偏向コイルを示す。In the figure, 21 indicates a horizontal saddle type deflection coil.

本発明は上記に鑑み発明されたもので、ラスター歪を大
巾に低減し実質的に零とし、回路補正を不要とした自動
集中形カラー受像管を提供するもので、偏向ヨークの磁
界分布を特殊なアステイグ磁界とし、さらに補助偏向素
子として永久磁石を用い、その非斉一な磁界を重ね合わ
せることにより、偏向ヨーク自体では不可能であったカ
ラー受像管装置のラスター歪を大巾に低減する手段に関
するものである。
The present invention was devised in view of the above, and provides an automatic focusing color picture tube that greatly reduces raster distortion to virtually zero and eliminates the need for circuit correction, thereby reducing the magnetic field distribution of the deflection yoke. By using a special Asteig magnetic field, using a permanent magnet as an auxiliary deflection element, and superimposing the non-uniform magnetic fields, a means to greatly reduce the raster distortion of a color picture tube device, which was impossible with the deflection yoke itself. It is related to.

以下図面によって本発明の具体的実施例を説明する。Hereinafter, specific embodiments of the present invention will be described with reference to the drawings.

第12図は本発明による偏向装置の一実施例で偏向ヨー
ク22と補助偏向素子23よりなり、この補助偏向素子
23は偏向ヨーク22の螢光面側端部近傍で、カラー受
像管の対角軸にはマ対応する空間に4個の永久磁石23
が配しである。
FIG. 12 shows an embodiment of the deflection device according to the present invention, which is composed of a deflection yoke 22 and an auxiliary deflection element 23. There are four permanent magnets 23 in the corresponding spaces on the shaft.
is the arrangement.

偏向ヨークの磁界は第13図に示すように3本の電子ビ
ームを水平軸に沿って偏向するとき負の等方性非点収差
を与え、垂直軸に沿って偏向するとき、正の等方性非点
収差を写えるよう作用させ、結果として前記電子ビーム
は、水平軸に沿っては実質的に集中状態24、垂直軸に
沿っては実質的に不足集中状態25とし、さらに対角軸
に沿っては゛逆りロス″状態26又は゛先割れ!(状態
とし実質的に非集中となるよう設計され、補助偏向素子
23は前記偏向ヨーク22が形成するラスターの少なく
とも対角端近傍を圧縮するよう作用し、さらに少なくと
も前記電子ビームがカラー受像管の対角軸に沿って偏向
されたとき負の異方性非点収差を与えるよう配置され、
結果として偏向ヨーク磁界による実質的非集中を相殺す
るようにしである。
The magnetic field of the deflection yoke gives negative isotropic astigmatism when the three electron beams are deflected along the horizontal axis, as shown in Figure 13, and gives positive isotropic astigmatism when deflected along the vertical axis. As a result, the electron beam is substantially concentrated 24 along the horizontal axis, substantially underconcentrated 25 along the vertical axis, and further concentrated along the diagonal axis. The auxiliary deflection element 23 acts to compress at least the vicinity of the diagonal end of the raster formed by the deflection yoke 22. , further arranged to provide negative anisotropic astigmatism at least when the electron beam is deflected along the diagonal axis of the color picture tube;
As a result, the substantial deconcentration caused by the deflection yoke magnetic field is offset.

この様な組合わせを行った本発明の偏向装置の磁界分布
を第14図に示す。
FIG. 14 shows the magnetic field distribution of the deflection device of the present invention having such a combination.

第14図は第4図及び第5図と同様カラー受像管の管軸
に対して直角な断面内における磁界分布でa、b図中の
G−G′。
FIG. 14, similar to FIGS. 4 and 5, shows the magnetic field distribution in a cross section perpendicular to the tube axis of the color picture tube, taken along line GG' in figures a and b.

H−H’、I−I’・・・・・・はそれぞれ第4図a、
b図中のA−A’、 B−B’ 、 C−C’・・・・
・・にそれぞれ対応し、BX 、 BYもそれぞれ第5
図のものと対応する。
H-H', I-I'... are respectively shown in Figure 4a,
A-A', B-B', C-C'... in figure b
, respectively, and BX and BY are also the fifth
Corresponds to the one in the figure.

図より、電子ビームを水平軸に沿って偏向する磁界は管
軸近傍に於いてはビンクッション磁界27を、中心軸よ
り充分離れた部分(カラー受像管の対角周辺部に相当)
では逆にバレル磁界28となるように、云換えると磁界
強度が極大値29と極小値をもつようにすることにより
、又電子ビームを垂直軸に沿って偏向する磁界は、管軸
近傍に於いてバレル磁界30を、中心軸より充分離れた
部分では逆にビンクッション磁界31になっているため
走査ラスター歪を大巾に低減し実質的に零にし、かつ3
本の電子ビームを螢光面上に一致させることができる。
From the figure, the magnetic field that deflects the electron beam along the horizontal axis is the bottle cushion magnetic field 27 near the tube axis, and the area sufficiently far away from the central axis (corresponding to the diagonal periphery of a color picture tube).
In contrast, by making the magnetic field 28 a barrel magnetic field, in other words, by making the magnetic field strength have a maximum value 29 and a minimum value, the magnetic field that deflects the electron beam along the vertical axis is generated near the tube axis. Since the barrel magnetic field 30 becomes a bottle cushion magnetic field 31 in a portion sufficiently far from the center axis, the scanning raster distortion is greatly reduced to virtually zero, and 3
The book's electron beam can be aligned onto the fluorescent surface.

次に本発明の他の実施例についてのべる。Next, other embodiments of the present invention will be described.

第15図は本発明の他の偏向装置の一実施例で、偏向ヨ
ーク22と補助偏向素子32,33よりなり、この補助
偏向素子32.33は、偏向ヨーク22の螢光面側端部
近傍で、カラー受像管の対角軸にはゾ対応する空間に4
個の永久磁石32を配してあり、さらに水平軸にはゾ対
応する空間に2個の永久磁石33を配しである。
FIG. 15 shows an embodiment of another deflection device of the present invention, which is composed of a deflection yoke 22 and auxiliary deflection elements 32, 33. So, the diagonal axis of the color picture tube has 4 in the space corresponding to zo.
In addition, two permanent magnets 33 are arranged in corresponding spaces on the horizontal axis.

このような偏向ヨークの磁界は第16図に示すように3
本の電子ビームを水平軸に沿って偏向するとき負の等方
性非点収差を与え、垂直軸に沿って偏向するとき正の等
方性非点収差を与えるよう作用させ、結果として前記電
子ビームは水平軸に沿っては実質的に過集中34となる
ようにし垂直軸に沿っては実質的に不足集中35となる
ようにし、さらに対角軸に沿っては実質的に非集中状態
36となるようにし補助偏向素子は前記偏向ヨークが形
成するラスターの少なくとも対角端近傍を圧縮するよう
作用し、さらに前記ラスターの水平端近傍を伸張するよ
う作用し、さらに前記電子ビームがカラー受像管の対角
軸に沿って偏向されたとき負の異方性非点収差を、水平
軸に沿って偏向されたとき負の等方性非点収差を与える
よう配設し、結果として偏向ヨーク磁界による実質的非
集束を前記補助偏向素子により相殺するように配してあ
り、カラー受像管のラスター歪を大巾に低減し、かつ3
本の電子ビームを螢光面に集中させることができる。
The magnetic field of such a deflection yoke is 3 as shown in FIG.
When deflecting the electron beam along the horizontal axis, it acts to give a negative isotropic astigmatism and when deflecting along the vertical axis, it acts to give a positive isotropic astigmatism, so that the electron beam along the vertical axis is substantially overconcentrated 34, along the vertical axis is substantially underconcentrated 35, and further along the diagonal axis is substantially deconcentrated 36. The auxiliary deflection element acts to compress at least the vicinity of the diagonal end of the raster formed by the deflection yoke, further acts to expand the vicinity of the horizontal end of the raster, and furthermore, the electron beam is directed to the diagonal axis of the color picture tube. is arranged to give negative anisotropic astigmatism when deflected along the horizontal axis and negative isotropic astigmatism when deflected along the horizontal axis, resulting in substantial defocusing by the deflection yoke magnetic field. The deflection elements are arranged so as to cancel each other out, and the raster distortion of the color picture tube is greatly reduced.
The book's electron beam can be focused on the fluorescent surface.

本発明は他に以下述べる利点を有す。The invention has other advantages as described below.

第1は補助偏向素子として永久磁石を用いるため、水平
コイル等に通例用いられる不所望なサドル形コイルのタ
ーンエンド効果を実質的に除去でき、結果として任意の
所望の磁界分布が形成できる。
First, since a permanent magnet is used as the auxiliary deflection element, the undesirable turn-end effect of saddle-shaped coils, which is commonly used in horizontal coils, can be substantially eliminated, and as a result, any desired magnetic field distribution can be formed.

第2は偏向ヨーク自体を充分小型化できる。Second, the deflection yoke itself can be sufficiently miniaturized.

第3は特に大型管に於いて前記カラー受像管装置の集中
特性は対角部に於いて負の異方性非点収差が大であり、
結果として集中誤差が大きくなる傾向があるが本発明に
より、集中誤差を充分に低減し、結果として集中特性を
高品位に保つことができる等々の利点を有す。
Thirdly, especially in large tubes, the concentration characteristic of the color picture tube device has a large negative anisotropic astigmatism in the diagonal portion.
As a result, the concentration error tends to increase, but the present invention has advantages such as being able to sufficiently reduce the concentration error and, as a result, maintain high quality concentration characteristics.

以上述べた如く本発明のインライン形カラー受像管装置
は偏向装置として偏向ヨークと複数個の永久磁石よりな
る補正偏向素子を配し、偏向ヨークの発生する磁界の一
部を実質的に相殺し、かつ偏向ヨークの磁界自体を特殊
なアステイグ磁界にすることにより実質的に走査ラスタ
ーを零とし、かつ自動集中形カラー受像管装置を得んと
するもので、形態的には白黒管装置に応用している歪補
正磁石と非常に酷似しているが、カラー受像管の3本の
電子ビームが形成する仮想電子ビーム径が白黒管とは全
く異なっており、さらには前述したような他の利点が付
随的に生じる事を考えれば、その作用効果の相違は充分
理解できる。
As described above, the in-line color picture tube device of the present invention includes a deflection yoke and a correction deflection element made of a plurality of permanent magnets as a deflection device, and substantially cancels out a part of the magnetic field generated by the deflection yoke. In addition, by making the magnetic field of the deflection yoke itself a special Asteig magnetic field, the scanning raster can be made substantially zero, and the aim is to obtain an automatic concentrating color picture tube device. However, the virtual electron beam diameter formed by the three electron beams of a color picture tube is completely different from that of a black-and-white picture tube, and it also has other advantages as mentioned above. If you consider what happens incidentally, you can fully understand the difference in their effects.

また前記実施例に於ては自己集中形カラー受像管に限っ
て説明したが、その他の3電子銃方式カラー受像管にも
同様に適用できることはもちろんである。
Further, although the above embodiments have been explained only to a self-concentrating color picture tube, it goes without saying that the present invention can be similarly applied to other three-electron gun type color picture tubes.

さらに補助偏向素子は前記の如く、カラー受像管の対角
軸又は水平軸に対応した位置に配置する以外さらに垂直
軸に配置しても良いが、永久磁石の配置方法は、前記し
た如くカラー受像管の偏向角、正面サイズ等に依存する
点もあり種々選択すべきであるが自動集中形カラー受像
管に限って考えると、前記した如くカラー受像管の対角
軸に少なくとも配置した方が望ましい。
Furthermore, as described above, the auxiliary deflection element may be arranged not only at a position corresponding to the diagonal axis or the horizontal axis of the color picture tube, but also on the vertical axis. Various choices should be made depending on the deflection angle, front size, etc. of the tube, but when considering only automatic concentrating color picture tubes, it is preferable to arrange it at least on the diagonal axis of the color picture tube as mentioned above. .

又、永久磁石の数量、大きさ等は種々選択すべきである
が、例えば対角軸の一端に大きさの小なる永久磁石を複
数個間して、より最適化を計っても良い。
Further, the number, size, etc. of the permanent magnets should be selected in various ways, but for example, a plurality of small-sized permanent magnets may be placed between one end of the diagonal axis for further optimization.

以上述べた如く、本発明は全く新しい自動集中形カラー
受像管装置を提供するものでその工業的価値は極めて犬
なるものである。
As described above, the present invention provides a completely new automatic concentrating type color picture tube device, and its industrial value is extremely significant.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はインライン形カラー受像管装置の代表例を示す
簡略断面図、第2図は第1図に示す受像管装置に於ける
電子ビームの集中誤差を説明するための簡略説明図、第
3図は第2図に示す集中誤差による螢光面上のパターン
形状の説明図、第4図は第1図のインライン形カラー受
像管装置に従来使用されていた偏向装置の磁界分布を示
す説明図、第5図は第4図の偏向装置の管軸に直角な断
面内に於ける磁界分布を示す説明図、第6図は水平、垂
直磁界が各々斉一のときのパターン形状を示す説明図、
第7図は水平磁界のみビンクッション形にした時のパタ
ーン形状を示す説明図、第8図は偏向ヨークの電子銃側
と螢光面側との磁界分布を逆極性した磁界分布を示す説
明図、第9図は第8図の偏向ヨークを使用した時のラス
ター形状を示す説明図、第10図はフィールドコントロ
ーラーを使用した時の偏向ヨークの磁界分布の一例を示
す説明図、第11図は白黒管装置に於ける偏向装置の一
例を示す平面図、第12図は本発明のインライン形カラ
ー受像管装置の一実施例に適応する偏向装置の平面図、
第13図は第12図の偏向装置によるラスター形状を示
す説明図、第14図は第12図の偏向装置の管軸に対し
て直角な断面内に於ける磁界分布を示す説明図、第15
図は本発明のインライン形カラー受像管装置の他の実施
例に適応する偏向装置の平面図、第16図は第15図の
偏向装置によるラスター形状を示す説明図である。 21・・・・・・水平偏向コイル、20,23,32゜
33・・・・・・永久磁石。
FIG. 1 is a simplified sectional view showing a typical example of an in-line color picture tube device, FIG. 2 is a simplified explanatory diagram for explaining the electron beam concentration error in the picture tube device shown in FIG. 1, and FIG. The figure is an explanatory diagram of the pattern shape on the fluorescent surface due to the concentration error shown in Figure 2, and Figure 4 is an explanatory diagram showing the magnetic field distribution of the deflection device conventionally used in the in-line color picture tube device of Figure 1. , FIG. 5 is an explanatory diagram showing the magnetic field distribution in a cross section perpendicular to the tube axis of the deflection device of FIG. 4, and FIG. 6 is an explanatory diagram showing the pattern shape when the horizontal and vertical magnetic fields are each uniform.
Figure 7 is an explanatory diagram showing the pattern shape when only the horizontal magnetic field is shaped like a bottle cushion, and Figure 8 is an explanatory diagram showing the magnetic field distribution when the magnetic field distributions on the electron gun side and the fluorescent surface side of the deflection yoke have opposite polarities. , Fig. 9 is an explanatory diagram showing the raster shape when the deflection yoke of Fig. 8 is used, Fig. 10 is an explanatory diagram showing an example of the magnetic field distribution of the deflection yoke when the field controller is used, and Fig. 11 is an explanatory diagram showing an example of the magnetic field distribution of the deflection yoke when the field controller is used. FIG. 12 is a plan view showing an example of a deflection device in a black-and-white tube device; FIG. 12 is a plan view of a deflection device adapted to an embodiment of the in-line color picture tube device of the present invention;
FIG. 13 is an explanatory diagram showing the raster shape of the deflection device in FIG. 12, FIG. 14 is an explanatory diagram showing the magnetic field distribution in a cross section perpendicular to the tube axis of the deflection device in FIG. 12, and FIG.
This figure is a plan view of a deflection device adapted to another embodiment of the in-line color picture tube device of the present invention, and FIG. 16 is an explanatory diagram showing a raster shape by the deflection device of FIG. 15. 21... Horizontal deflection coil, 20, 23, 32° 33... Permanent magnet.

Claims (1)

【特許請求の範囲】 1 少なくとも水平軸、垂直軸及び対角軸を有する略矩
形状螢光面と、前記螢光面に射突しカラー画像を再現す
る様に前記水平軸に沿って一列配設したインライン電子
銃とを内装するインライン形カラー受像管と、前記イン
ライン形カラー受像管に装着され前記電子ビームが前記
水平軸に沿って偏向するとき負の等方性非点収差を与え
、前記垂直軸に沿って偏向するとき正の等方性収差を与
え、更に前記対角軸に沿って偏向するとき正の異方性非
点収差を持つように設定した偏向ヨークと、前記偏向ヨ
ークの前記螢光面側端部近傍に前記螢光面の対角軸に対
応する位置に配設され、前記偏向ヨークの作用により前
記電子ビームが形成するラスターの前記対角軸端部近傍
を圧縮すると共に、前記電子ビームが前記対角軸に沿っ
て偏向されたとき負の異方性非点収差を与える複数個の
永久磁石からなる補正偏向素子とからなることを特徴と
するインライン形カラー受像管装置。 2 少なくとも水平軸、垂直軸、対角軸を有する略矩形
状螢光面と、前記螢光面に射突しカラー画像を再現する
様に前記水平軸に沿って配設したインライン電子銃を内
装するインライン形カラー受像管と、前記インライン形
カラー受像管に装着さノれ前記電子ビームが前記水平軸
に沿って偏向するとき負の等方性非点収差を与え実質的
に過集中状態とし、前記垂直軸に沿って偏向するとき正
の等方性収差を与え、更に前記対角軸に沿って偏向する
とき正の異方性非点収差を与えるように設定しっ た偏
向ヨークと、前記偏向ヨークの前記螢光面側端部近傍に
前記対角軸及び前記水平軸に対応する位置に配設され、
前記偏向ヨークの作用により前記電子ビームが形成する
ラスターの前記対角軸端部近傍を圧縮すると共に、前記
電子ビームが前記対角軸に沿って偏向されるとき負の異
方性非点収差を与え実質的に集中状態とし、かつ前記ラ
スクーの前記水平軸端部近傍を伸張すると共に、前記電
子ビームが前記水平軸に沿って偏向されるとき正の等方
性非点収差を与え実質的に集中状態とす; る複数個の
永久磁石からなる補正偏向素子とからなることを特徴と
するインライン形カラー受像管装置。
[Scope of Claims] 1. A substantially rectangular fluorescent surface having at least a horizontal axis, a vertical axis, and a diagonal axis, and a line arranged along the horizontal axis so as to strike the fluorescent surface and reproduce a color image. an in-line color picture tube incorporating an in-line electron gun; a deflection yoke configured to provide positive isotropic aberration when deflected along the diagonal axis and to have positive anisotropic astigmatism when deflected along the diagonal axis; and the fluorescent surface of the deflection yoke. The deflection yoke is arranged at a position corresponding to the diagonal axis of the fluorescent surface near the side end, and compresses the vicinity of the diagonal axis end of the raster formed by the electron beam by the action of the deflection yoke. An in-line color picture tube device comprising: a corrective deflection element comprising a plurality of permanent magnets giving negative anisotropic astigmatism when the beam is deflected along the diagonal axis. 2 A substantially rectangular fluorescent surface having at least a horizontal axis, a vertical axis, and a diagonal axis, and an in-line electron gun disposed along the horizontal axis so as to collide with the fluorescent surface and reproduce a color image. an in-line color picture tube, which is attached to the in-line color picture tube, imparts a negative isotropic astigmatism to the electron beam when it is deflected along the horizontal axis, substantially overconcentrating the electron beam; a deflection yoke configured to provide positive isotropic aberration when deflected along the axis and to provide positive anisotropic astigmatism when deflected along the diagonal axis; disposed near the end of the fluorescent surface at a position corresponding to the diagonal axis and the horizontal axis,
The action of the deflection yoke compresses the vicinity of the end of the diagonal axis of the raster formed by the electron beam, and when the electron beam is deflected along the diagonal axis, it gives negative anisotropic astigmatism and substantially and elongate the vicinity of the horizontal axis end of the Lascou, and give positive isotropic astigmatism when the electron beam is deflected along the horizontal axis, resulting in a substantially concentrated state. an in-line color picture tube device comprising: a correction deflection element made up of a plurality of permanent magnets;
JP52062222A 1977-05-30 1977-05-30 In-line color picture tube device Expired JPS5843856B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP52062222A JPS5843856B2 (en) 1977-05-30 1977-05-30 In-line color picture tube device
US05/908,852 US4217566A (en) 1977-05-30 1978-05-23 In-line type color picture tube apparatus
DE2823598A DE2823598C2 (en) 1977-05-30 1978-05-30 In-line color picture tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP52062222A JPS5843856B2 (en) 1977-05-30 1977-05-30 In-line color picture tube device

Publications (2)

Publication Number Publication Date
JPS53148230A JPS53148230A (en) 1978-12-23
JPS5843856B2 true JPS5843856B2 (en) 1983-09-29

Family

ID=13193897

Family Applications (1)

Application Number Title Priority Date Filing Date
JP52062222A Expired JPS5843856B2 (en) 1977-05-30 1977-05-30 In-line color picture tube device

Country Status (3)

Country Link
US (1) US4217566A (en)
JP (1) JPS5843856B2 (en)
DE (1) DE2823598C2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4433268A (en) * 1980-08-19 1984-02-21 Tokyo Shibaura Denki Kabushiki Kaisha Deflection yoke for a color cathode ray tube
JPS5738545A (en) * 1980-08-20 1982-03-03 Toshiba Corp Deflection yoke device for color television set
US4556857A (en) * 1984-10-01 1985-12-03 General Electric Company Deflection yoke for small gun-base CRT
FR2611982B1 (en) * 1987-02-24 1989-05-26 Videocolor DEVICE FOR CORRECTING NORTH-SOUTH GEOMETRIC DEFORMATIONS OF A CATHODE RAY TUBE, PARTICULARLY AN ASPHERICAL TUBE
DE69020478T2 (en) * 1989-10-02 1996-02-22 Philips Electronics Nv Color picture tube system with reduced stain growth.
US5028850A (en) * 1990-07-19 1991-07-02 Rca Licensing Corporation Deflection system with a controlled beam spot
US5327051A (en) * 1990-07-19 1994-07-05 Rca Thomson Licensing Corporation Deflection system with a pair of quadrupole arrangements
FR2824184B1 (en) * 2001-04-27 2003-09-26 Thomson Licensing Sa COLORED CATHODE TUBE WITH INTERNAL MAGNETIC SHIELD

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2591159A (en) * 1950-05-29 1952-04-01 Gilfillan Bros Inc Magnetic means for producing compensations and other effects in a cathode-ray tube
US3106658A (en) * 1956-06-08 1963-10-08 Zenith Radio Corp Magnetic compensator
US3376450A (en) * 1966-08-24 1968-04-02 Itt Permanent magnets assembly means for correction of pincushion distortion in cathode ray tubes
DE2506268C2 (en) * 1975-02-14 1977-01-20 Standard Elektrik Lorenz Ag DEFLECTION SYSTEM FOR COLOR TELEVISION TUBES
GB1521299A (en) * 1975-10-24 1978-08-16 Ferranti Ltd Cathode ray tube assemblies

Also Published As

Publication number Publication date
US4217566A (en) 1980-08-12
DE2823598C2 (en) 1986-05-07
JPS53148230A (en) 1978-12-23
DE2823598A1 (en) 1978-12-07

Similar Documents

Publication Publication Date Title
JPS5843856B2 (en) In-line color picture tube device
JP3061389B2 (en) Color picture tube equipment
GB2083689A (en) Self-convergent deflection yokes
JPS5843857B2 (en) In-line color picture tube device
US4723094A (en) Color picture device having magnetic pole pieces
KR830000206B1 (en) In-line color water tube device
JPH0417238A (en) Color picture tube and deflector
JP2825265B2 (en) Color picture tube and deflection device
JP2859900B2 (en) Color picture tube
JPS62262350A (en) Color television display tube with frame astigmation correction
JPH0359931A (en) Deflection yoke for color television picture tube
JPS63207035A (en) Color picture tube
JPS5925080Y2 (en) Semi-toroidal electromagnetic deflection yoke
JP2862575B2 (en) Color picture tube
JP3215132B2 (en) In-line color picture tube device
JP2703138B2 (en) Deflection yoke
KR100356297B1 (en) Deflection yoke
KR940004072Y1 (en) Vertical center raster compensation device in deflecting yoke
JP2692858B2 (en) Color picture tube equipment
JP2886614B2 (en) Color cathode ray tube
JPS59173933A (en) Color picture tube
JPS61188841A (en) Color picture tube device
JPH0433238A (en) Color picture tube device
JPH0427658B2 (en)
JPH0129301B2 (en)