JPS5842147A - Deflection coil for image pickup tube - Google Patents

Deflection coil for image pickup tube

Info

Publication number
JPS5842147A
JPS5842147A JP13853181A JP13853181A JPS5842147A JP S5842147 A JPS5842147 A JP S5842147A JP 13853181 A JP13853181 A JP 13853181A JP 13853181 A JP13853181 A JP 13853181A JP S5842147 A JPS5842147 A JP S5842147A
Authority
JP
Japan
Prior art keywords
coil
spot
deflection coil
image pickup
diameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13853181A
Other languages
Japanese (ja)
Inventor
Kentaro Oku
健太郎 奥
Masakazu Fukushima
正和 福島
Masanori Maruyama
丸山 優徳
Shigeru Ehata
江幡 茂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Denshi KK
Hitachi Ltd
Original Assignee
Hitachi Denshi KK
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Denshi KK, Hitachi Ltd filed Critical Hitachi Denshi KK
Priority to JP13853181A priority Critical patent/JPS5842147A/en
Publication of JPS5842147A publication Critical patent/JPS5842147A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J29/00Details of cathode-ray tubes or of electron-beam tubes of the types covered by group H01J31/00
    • H01J29/46Arrangements of electrodes and associated parts for generating or controlling the ray or beam, e.g. electron-optical arrangement
    • H01J29/70Arrangements for deflecting ray or beam
    • H01J29/72Arrangements for deflecting ray or beam along one straight line or along two perpendicular straight lines
    • H01J29/76Deflecting by magnetic fields only

Abstract

PURPOSE:To improve the focus characteristic over the entire screen at the dynamic focusing, in a SM type image pickup tube, by bringing the spot shape of the deflected electron beam near to a circle thereby reducing the direction dependability of the resolution. CONSTITUTION:The out of roundness of the corner spot is such that the optimal value is existing for the coil length L and it will become smaller as the distance between the mesh target will become longer. Since the deflection coil is arranged at the outside of the glass tube 13, its diameter Dc must be longer than the average inner diameter D. Consequently the coil length preferable for the out of roundness of the corner spot and the dynamic focus is in the range of 1.05D< L<1.9D while the coil diameter is in the range of 1.0D<Dc<2.0D. When regulating the axial length of the flatwise coil, the spot shape of the electron beam deflected to the circumferential section of the screen is brought near to a circle resulting in the improvement of the dynamic focus characteristic.

Description

【発明の詳細な説明】 本発明はtI!電集束、電磁偏向型(以下8M型と呼ぶ
)撮惨管の偏向コイル構成に関するものであるO 第1図に静電集束電磁偏向型、いわゆゐ8M型撮倫管の
断面概略図を示す。カソードlより放出された電子は、
第1格子2により制御されながら第2格子3により加速
され微小孔30に制限され細い電子ビームとなる。上記
のカソード、第1格子及び第2格子からなる3極部は電
子ビーム発生部を早成する。そして、電子ビーム発生部
からの電子ビームを第3格子4と第4格子5と第5格子
6の3個の円筒状電極により形成された静電レンズ所謂
主レンズにより、光導電ターゲ、トlO上に集束させる
。同時に上記ビームは同筒状のガラス管13の外部に設
けた偏向コイル8.9の磁界の作用により光導電ターゲ
ットlO上を走査し、光学像に対応した電気信号を光導
電ターゲット上から読み出す。電子ビームを走査するた
めに設けられた上記偏向コイル(8:水平偏向コイル、
9;垂直偏向コイル)は、第2図の様な相い対した一対
の水平偏向コイル及び類似構造の垂直偏向コームをメッ
シェ状電極70にほぼ垂直に入射させ、光導電ターゲッ
ト上に到達できる様に第5格子6とメ、シ凰状電極を有
すそ円筒リングの第6格子7により形成された静電レン
ズ所謂コリメーションレンズが設けられている。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides tI! This is related to the deflection coil configuration of an electrostatic focusing, electromagnetic deflection type (hereinafter referred to as 8M type) imaging tube. Figure 1 shows a cross-sectional schematic diagram of an electrostatic focusing and electromagnetic deflection type (hereinafter referred to as 8M type) imaging tube. . The electrons emitted from the cathode l are
The electron beam is accelerated by the second grating 3 while being controlled by the first grating 2, and is restricted by the microhole 30 to become a narrow electron beam. The triode consisting of the cathode, the first grating and the second grating forms an electron beam generating part. Then, the electron beam from the electron beam generator is directed to a photoconductive target, a photoconductive target, and an electrostatic lens formed by three cylindrical electrodes, a third grating 4, a fourth grating 5, and a fifth grating 6. Focus on the top. At the same time, the beam is scanned over the photoconductive target IO by the action of the magnetic field of the deflection coil 8.9 provided outside the cylindrical glass tube 13, and an electrical signal corresponding to the optical image is read out from the photoconductive target. The above-mentioned deflection coil (8: horizontal deflection coil,
9; Vertical deflection coil) is a pair of horizontal deflection coils facing each other as shown in FIG. An electrostatic lens, so-called collimation lens, formed by a fifth grating 6 and a sixth grating 7 of a base cylindrical ring having a cylindrical electrode is provided.

なお、上記の電子ビーム発生部、主レンズ部及びコリメ
ーシ箇ンレンズ部を構成する各電極は1ガラス管13内
化同心的に配置されている。光導電ターゲット10はガ
ラス管13の端部にインジウムリング12を介して設け
られた前面1[11の内側に設けられている。
The electrodes constituting the electron beam generating section, the main lens section, and the collimating lens section are arranged concentrically within one glass tube 13. The photoconductive target 10 is provided inside the front surface 1 [11] provided at the end of the glass tube 13 via an indium ring 12.

従来8M1l撮像管の偏向コイルは英国特許第1.16
0,075号会報に述べられている様にコイルの管軸方
向の長さく第2図のL)が最終静電レンズ電極内径(第
1図のDl)の20倍から2.5倍の範囲にあるものが
好ましいとされていた。しかし上配範圓の偏向コイルを
第1図に示した構成の8MI[撮像管に用いた場合には
、画面中心て電気的焦点を谷せ、画面周辺に偏向した時
の電子ビームのスポットの形状は、第3図において印で
示した様−こ、長径が管軸方向Pを向いた楕円形になる
。ここで、画面の右上だけ番こついて示したが、ビーム
スポットは上下右左対称である。上記のビームスポット
の形状は8M1l撮像管化共通であることが通説になっ
ている。(例えば、倉重他:ビジコン電子銃における集
束偏向系の収差;テレビジ、ン学会画像変換装置研究会
、ED580(1981)の33ペ一ジ番と記述されて
いる。)ビームが楕円形であれば、第4図の様な斜め縞
めパターンを撮像した時の振幅変調度(すなわち、ある
空間周波数の斜め縞パターンを撮像した時の信号出力の
振幅と空間周波数が十分低い斜め縞パターンを撮像した
時の信号出力の振幅との比)は斜め縞パターンの傾きθ
に依存し、解像度に方向依存性を主する。なお、図にお
いて、矢印Qはビーム進行方向を示す。特に第5図の様
に前面板11に2つの傾きの異った斜め縞の色ストライ
プフィルター81.82(81g赤色値断フィルター、
8zs青色達断フィルター)を有し、一つの撮像管から
赤、緑、青の色信号を取り出す周波数分離単管カラー撮
像管においては、電子ビーム形状が嬉3図の(()の様
な楕円形になると、各色ストライプフィルターに対する
振幅変調度が異なり、色むらの原因となる。
The deflection coil of the conventional 8M1l image pickup tube is covered by British Patent No. 1.16.
As stated in Bulletin No. 0,075, the length of the coil in the tube axis direction (L in Figure 2) is in the range of 20 to 2.5 times the inner diameter of the final electrostatic lens electrode (Dl in Figure 1). It was said that those in However, when the upper range deflection coil is used in an 8MI image pickup tube with the configuration shown in Figure 1, the electrical focus is set at the center of the screen, and the spot of the electron beam when deflected to the periphery of the screen is The shape is an ellipse with the major axis facing the tube axis direction P, as shown by the mark in FIG. Although only the upper right corner of the screen is shown here, the beam spot is symmetrical both vertically and horizontally. It is generally accepted that the shape of the beam spot described above is common to all 8M1l image pickup tubes. (For example, it is described in Kurashige et al.: Aberration of the focusing/deflecting system in a vidicon electron gun; Television Society Image Conversion Device Study Group, ED580 (1981), page 33.) If the beam is elliptical, , the degree of amplitude modulation when imaging a diagonal stripe pattern as shown in Figure 4 (i.e., the amplitude of the signal output when imaging a diagonal stripe pattern with a certain spatial frequency and the spatial frequency of a diagonal stripe pattern that is sufficiently low) The ratio of the amplitude of the signal output at
The direction dependence is mainly on the resolution. Note that in the figure, an arrow Q indicates the beam traveling direction. In particular, as shown in FIG.
In a frequency-separated single-tube color image pickup tube that extracts red, green, and blue color signals from a single image pickup tube, the electron beam shape is an ellipse as shown in Figure 3 (()). If the shape is different, the degree of amplitude modulation for each color stripe filter will be different, causing color unevenness.

本発明は、8M型撮像管において、偏向された電子ビー
ムのスポット形状を円形に近づけ、解像度の方向依存性
を小さくシ、動的フを一カス時の画面−面にわたるフォ
ーカス特性を向上させることを目的とする。
The present invention, in an 8M type image pickup tube, makes the spot shape of a deflected electron beam closer to a circular shape, reduces the directional dependence of resolution, and improves the focus characteristics across the screen during dynamic imaging. With the goal.

以下、本発明を実施例を参照して詳細に説明する。従来
例の説明で述べたように、8M1l撮像管において、画
面中心で電気的焦点を合わせた時の、画面周辺でのビー
ムスポット形状は通常楕円形でありその長軸は管軸方向
を向いているものとされていた。しかし本願発明者らは
偏向コイルを6ターンの線素で近似して磁場を計算し、
また撮像管内での電場を差分法により求め、撮像管内で
の電子軌道追跡を行なうた結果、偏向コイルの長さく第
1図のLH及びLvあるいは第2図のL)を短かくすゐ
に従い、第3図の(イ)→(→→(ハ)の様にスポット
形状がほぼ円形に近づき、つい−ζは長軸の向きが管軸
方向に喬直に向くことを見い出した。
Hereinafter, the present invention will be explained in detail with reference to Examples. As mentioned in the explanation of the conventional example, when an 8M1L image pickup tube is electrically focused at the center of the screen, the beam spot shape around the screen is usually elliptical, with its long axis pointing in the direction of the tube axis. It was assumed that there were. However, the inventors calculated the magnetic field by approximating the deflection coil with a 6-turn wire element,
In addition, as a result of determining the electric field within the image pickup tube by the differential method and tracking the electron trajectory within the image pickup tube, we found that the length of the deflection coil is longer than LH and Lv in Figure 1, or L) in Figure 2 is shorter. As shown in Figure 3 (A)→(→→(C)), the spot shape approaches a nearly circular shape, and it was discovered that -ζ's long axis is oriented perpendicularly to the tube axis direction.

第6図には、横軸にフィルの長さL(第151jこおい
て、水平偏向コイルについてはLH%喬直偏向コイルに
ついてはLvに対応する。)を第5格子6及び第6格子
7の相対した部分の平均内@D(すなわち、第1図では
(Ds 十Dz )/2 )で規格、化し内偵をとり、
縦軸化は画面周辺部に偏向したビームスポットの真円度
すなわち短径と長径の比をとり、ビームスポットの真円
度の;イル長に対する依存性を示した。ここで、メ、シ
為状電極を有する第6格子7と光導電ターゲットlOと
の間隔aを平均内@Dの0倍及び0.22倍とした。ま
た他の具体的寸法はDI=D、−D  水平偏向コイル
直径DC1K111111,6XD、垂直偏向;イル直
径Dcv−1,7XDであ゛る。水平及び垂直偏向コイ
ルの長さを等しくシ(すなわちLH−Lv−L ’)、
画面のラスターサイズを(0,49XD ) X (0
,65XD)とした。また第5格子6及び第6格子7の
動作電圧はそれぞれ450v及びtooovとした。ま
た、メ、シ&から偏向中心才での距離dを2.07×D
とした。第6図かられかるよう化、コーナースポットの
真円度は、コイル長L#こ対し最適値が存在し、メッシ
エーターゲット間距離aが長くなれば、上記コイル長の
最適値が小さくなる傾向にある。偏向した電子ビームは
メ、シ為へある入射角で入射し、メッシ轟−ターゲッ)
間の強い減速電界中での電子の放物運動の効果により、
ビームが管軸方向に引き伸ばされる。その度合は、メ。
In FIG. 6, the length L of the fill (151j corresponds to LH% for the horizontal deflection coil and Lv for the vertical deflection coil) is plotted on the horizontal axis in the fifth grating 6 and the sixth grating 7. The average of the opposite parts of @D (i.e., (Ds + Dz )/2 in Figure 1) is standardized, and the internal investigation is taken.
For the vertical axis, we took the circularity of the beam spot deflected to the periphery of the screen, that is, the ratio of the short axis to the long axis, and showed the dependence of the circularity of the beam spot on the beam length. Here, the distance a between the sixth grating 7 having the square electrodes and the photoconductive target IO was set to 0 times and 0.22 times the average @D. Further, other specific dimensions are DI=D, -D, horizontal deflection coil diameter DC1K111111,6XD, and vertical deflection coil diameter Dcv-1,7XD. The horizontal and vertical deflection coils are of equal length (i.e. LH-Lv-L'),
Set the raster size of the screen to (0,49XD)
, 65XD). Further, the operating voltages of the fifth grid 6 and the sixth grid 7 were set to 450v and tooov, respectively. Also, the distance d at the center of deflection from Me, C & is 2.07 x D
And so. As can be seen from Figure 6, there is an optimum value for the roundness of the corner spot for the coil length L#, and as the Messier-to-target distance a increases, the optimum value for the coil length tends to become smaller. It is in. The deflected electron beam enters the target at a certain angle of incidence.
Due to the effect of parabolic motion of electrons in a strong decelerating electric field between
The beam is stretched in the direction of the tube axis. The degree is me.

シュータ−ゲット間距離−に比例して増大する◎また既
に述べた様にコイル長が短くなれば、逆にビームは管軸
方向につまる傾向にある。従ってaが長くなれば、上記
の2つの効果を相殺させビームの真円度を向上させるた
めに、さらに短いコイルが必要になる。
It increases in proportion to the distance between the shooter and the target. Also, as already mentioned, if the coil length becomes shorter, the beam tends to become clogged in the tube axis direction. Therefore, if a becomes longer, a shorter coil is required to cancel out the above two effects and improve the roundness of the beam.

第7図には、偏向されたビームスボットが最小になるよ
うに7を一カス電圧(第4格子5の電圧)を調整した所
謂ダイナにツクフォーカス時の最小周辺スポット径をフ
ィルの長さLをパラメータとして示した。第6図と第7
図から、コーナースボ、トの真円度を向上させるコイル
長で、ダイナン、クツオーカス時の最小スポットも最小
となっていることがわかる。
Fig. 7 shows the minimum peripheral spot diameter when focusing on a so-called dyna, in which the voltage of 7 is adjusted (the voltage of the fourth grid 5) so that the deflected beam spot is minimized. is shown as a parameter. Figures 6 and 7
From the figure, it can be seen that the coil length that improves the roundness of the corner grooves and grooves also minimizes the minimum spot during the Dynan and Kutsuokas.

このことは収差理論−こより次の様−ζ理解される。This can be understood from aberration theory as follows.

ビームスボットが楕円である。すなわち非点収差がある
場合には、ビームは一点化集束することができず、線状
に集束する。第8図には、周辺に偏向した電子ビームの
断面を示したが、tangentialfocus f
、 sagjttal focus f’の2つの線状
に集束する。ちょうどfとf′の中間Rに最小スポット
が位置する。無偏向時には、ターゲット上にフォーカス
したビームを偏向すると、儂面湾曲収差を生じ、最小ス
ポットの位置Rはターゲット面Sより手前にくる。フォ
ーカス電圧(第4格子の電圧)を調整すると、最小スポ
ットの位置をターゲット上に移動させ石ことができる。
Beamsbot is elliptical. That is, when there is astigmatism, the beam cannot be focused to a single point, but is focused linearly. Figure 8 shows a cross section of an electron beam deflected to the periphery;
, sagjttal focus f' into two lines. The minimum spot is located exactly at the middle R between f and f'. When the beam is not deflected, when the beam focused on the target is deflected, surface curvature aberration occurs, and the position R of the minimum spot is located in front of the target surface S. By adjusting the focus voltage (voltage of the fourth grid), the position of the minimum spot can be moved onto the target.

このフォーカス調整を偏向に伴い動的に行うことをダイ
ナず、り7ナーカスという。ところで、周辺に偏向した
ビームス(ボット(画面中心セフを一カスをとり、ダイ
ナ2.クツオーカスを併用せず)の真円度が悪くなり短
径ど長餐9差が大きくなると、f及びf′のフナ−カス
線が長くなる。最小スボ、ト径はこの7オーカス線の長
さにほぼ比例する。したがって真円度が悪くなれば、最
小スボ、ト径は大きくなり、逆に真円度が向上すると最
小スボ、ト径は小さくなるのである。
Dynamically performing this focus adjustment along with deflection is called dynaz, ri7 focus. By the way, if the roundness of Beams deflected to the periphery (bot (take one scrap from the center of the screen, do not use Dyna 2. Kutsuokasu together) and the difference between the short axis and the long axis 9 becomes large, f and f' The diameter of the minimum groove becomes longer.The diameter of the minimum groove is approximately proportional to the length of these seven orcus lines.Therefore, as the roundness worsens, the diameter of the minimum groove and groove increases, and conversely the diameter of the groove increases. As this improves, the minimum slot and groove diameters become smaller.

ここで、メッシ為−ターゲット間隔麿には限界があり、
メッシェーターゲ、ト間−ζおける電子の放物運動番こ
よりaを長くすると図形歪(偏向の非直線性、)が増大
する事が知られてい基。ここで、図形歪の許容範囲をl
チ(走査画面の高さに対する歪の割合)以下とし、鳳を
最大0.22XDとする。上記のごとく、図形歪の許容
範囲をl引ζ限定すると、第6図、第7図の8”0.2
2XDとa m O,Oに対する特性より、コーナース
ポットの真円度及びダイナミックフォーカス特性を向上
できるコイルの長さLは、平均内径りの1.3倍から1
.8倍である。ただし上記の最適コイル長範囲はコイル
径DCが平均内径りの1.6倍から1.7倍の場合につ
いての結果である。偏向コイルは、ガラス管13の外側
に配置されるため、その@Dcは平均内径りより大きく
なければならないが、平、均内径りの2倍以上大きくな
ると、偏向コイルが大きくなり、しかも重量となるため
、小型、軽量を特徴とする8M型撮偉管の長所が損なわ
れてしまう。したがって、好ましいコイル径DCの範囲
はD<DC<2.OXDである。この範囲について、最
適〒イル長の範囲を求めた結果を、第9図に示す。斜線
をほどこした部分が、コーナースポットの真円度に関し
て好ましいコイル寸法を与える領域である。右側境界1
m!201及び左側境界1[202はそれぞれ、a−0
及びa■0.22XDに対応するものである。従ってコ
ーナースポットの真円度及びダイナン、クフォーカスに
関して好ましいコイル長の範囲は1.05xD<L<1
.9xD、コイル径の範囲は1.OxD<DC<2.O
xDである。
Here, there is a limit to the distance between Messi and the target,
It is known that the geometric distortion (nonlinearity of deflection) increases when a becomes longer than the parabolic motion of the electron between the mesh target and ζ. Here, the allowable range of figure distortion is l
(the ratio of distortion to the height of the scanning screen) or less, and the maximum value for Otori is 0.22XD. As mentioned above, if the allowable range of figure distortion is limited by ζ, then 8"0.2 in Figures 6 and 7.
From the characteristics for 2XD and a m O, O, the length L of the coil that can improve the roundness of the corner spot and the dynamic focus characteristics is from 1.3 times the average inner diameter to 1
.. It is 8 times more. However, the optimum coil length range described above is a result when the coil diameter DC is 1.6 to 1.7 times the average inner diameter. Since the deflection coil is placed outside the glass tube 13, its @Dc must be larger than the average inner diameter, but if it becomes larger than twice the average inner diameter, the deflection coil becomes large and weighs less. Therefore, the advantages of the 8M type imaging tube, which is characterized by its small size and light weight, are lost. Therefore, the preferred range of coil diameter DC is D<DC<2. It is OXD. FIG. 9 shows the results of determining the optimum file length range for this range. The shaded area is the area that provides the preferred coil dimensions with respect to the roundness of the corner spot. right border 1
m! 201 and left border 1 [202 are respectively a-0
and a■ corresponds to 0.22XD. Therefore, the preferred coil length range for corner spot roundness, Dynan, and focus is 1.05xD<L<1
.. 9xD, coil diameter range is 1. OxD<DC<2. O
It is xD.

定することにより、画面周辺部に偏向した電子ビームの
スポット形状を最も円に近づけ、ダイナ建、クツを一カ
ス特性を向上させることができる。
By setting this value, it is possible to bring the spot shape of the electron beam deflected to the periphery of the screen as close to a circle as possible, and to improve the dynamism characteristic.

従りて、撮像管の画面周辺部での解儂度の角度依存性を
小さくでき、またダイナミックフォーカスを適用すれば
画面内での解儂度の一様性を良くすることができる。特
に周波数分離方式の単管カラ−撮偉管に用いた場合には
、色むらを少なくでき、本発明の効果は極めて顕著であ
る。
Therefore, the angular dependence of the degree of dissolution in the periphery of the screen of the image pickup tube can be reduced, and if dynamic focus is applied, the uniformity of the degree of dissolution within the screen can be improved. In particular, when used in a single frequency separation type color imaging tube, color unevenness can be reduced, and the effect of the present invention is extremely remarkable.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、静電集束、電磁偏向截撮僚管及び偏向コイル
の概略図、 第2図は水平あるいは垂直偏向コイルの概略図、第3図
は周辺ビームスボット形状の変化を示す図、 第4図はくし状の矩形波格子パターンを示す図、第5図
は周波数分離単管カラー撮像管のストライプフィルター
の概略図、 第6図はコイル長とコーナースポットの真円度との関係
を示す図、 第7図はコイル長とダイナミツフッを一カス時の最小ス
ボ、ト径との関係を示す図、 第8図は、偏向した電子ビームの断面を示す図、第9図
はコーナースポ、)の真円度及びダイナミ、クフを一カ
ス特性について好ましいコイル寸法の範囲を示す図であ
る。 l・・・カソード、2・・・第1格子、3−第2格子。 4・・・館3格子、 5 ・・・第4格子、6・・・第
5格子。 7・・・第6格子、 8 ・・・水平偏向コイル、 9
−・・垂直偏向コイル、10・・・光導電ターグ、)、
11・・・前面[,12・・・インジウムリング、30
・・・アノ(−チャー 、 70 ・・・メッシ為状電
極、 81−・・赤色速断フィルター、82−・青色遮
断フィルター 代理人 弁理士 薄 1)利 幸 ′p、1図 笑2図 第3図 晃4目 第5馨 /、5      2.OL//D 88図
Fig. 1 is a schematic diagram of the electrostatic focusing, electromagnetic deflection tube and deflection coil; Fig. 2 is a schematic diagram of the horizontal or vertical deflection coil; Fig. 3 is a diagram showing changes in the shape of the peripheral beam stem; Figure 4 is a diagram showing a comb-shaped square wave grating pattern, Figure 5 is a schematic diagram of a stripe filter for a frequency-separating single-tube color image pickup tube, and Figure 6 is a diagram showing the relationship between coil length and corner spot roundness. , Fig. 7 is a diagram showing the relationship between the coil length and the minimum slot and groove diameter for one dynamometer. FIG. 3 is a diagram showing preferred ranges of coil dimensions in terms of roundness, dynamism, and Kuff characteristics. 1--cathode, 2--first lattice, 3--second lattice. 4...Building 3rd grid, 5...4th grid, 6...5th grid. 7...Sixth grating, 8...Horizontal deflection coil, 9
-...Vertical deflection coil, 10...Photoconductive tag,),
11...Front [, 12...Indium ring, 30
...Anno(-Char, 70...Messy shaped electrode, 81-...Red fast cutting filter, 82-...Blue cutoff filter Representative Patent attorney Usui 1) Toshiyuki'p, Figure 1 lol 2 Figure 3 Zuko 4th item 5th Kaoru /, 5 2. OL//D Figure 88

Claims (1)

【特許請求の範囲】[Claims] 1、陰極部と、主レンズ部と;リメーシ璽ンレンズ部と
を有する静電集束、電磁偏向型撮像管番と用いる偏光コ
イルにおいて、上記偏向コイルの管軸方向の最大炎が上
記コリメーシ曹ンレンズ部の平均内径を基準として1.
05倍から1.90倍の範囲にあり、かつ上記偏向コイ
ルの管軸化直交する断面方向での直径の平均径が上記平
均内径を基準として1.0倍から2.0倍の範囲にある
ことを特徴とする偏向コイル。
1. In a polarizing coil used with an electrostatic focusing or electromagnetic deflection type image pickup tube having a cathode part, a main lens part, and a reimaging lens part, the maximum flame in the tube axis direction of the deflection coil is the collimating lens part. Based on the average inner diameter of 1.
05 times to 1.90 times, and the average diameter of the deflection coil in a cross-sectional direction orthogonal to the tube axis is in the range of 1.0 times to 2.0 times based on the average inner diameter. A deflection coil characterized by:
JP13853181A 1981-09-04 1981-09-04 Deflection coil for image pickup tube Pending JPS5842147A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13853181A JPS5842147A (en) 1981-09-04 1981-09-04 Deflection coil for image pickup tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13853181A JPS5842147A (en) 1981-09-04 1981-09-04 Deflection coil for image pickup tube

Publications (1)

Publication Number Publication Date
JPS5842147A true JPS5842147A (en) 1983-03-11

Family

ID=15224324

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13853181A Pending JPS5842147A (en) 1981-09-04 1981-09-04 Deflection coil for image pickup tube

Country Status (1)

Country Link
JP (1) JPS5842147A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6081061A (en) * 1983-10-07 1985-05-09 松下電器産業株式会社 Manufacture of zirconia ceramic

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6081061A (en) * 1983-10-07 1985-05-09 松下電器産業株式会社 Manufacture of zirconia ceramic

Similar Documents

Publication Publication Date Title
US3702398A (en) Electron beam apparatus
JPH0324734B2 (en)
US3500114A (en) Convergence system for a color picture tube
JPS5842147A (en) Deflection coil for image pickup tube
US3150284A (en) Apparatus for use in conjunction with a cathode ray tube to reduce defocusing and astigmatism of an electron beam thereof
US4713588A (en) Image pickup tube
JPS58192252A (en) Cathode-ray tube device
US4663560A (en) Magnetic focus and electrostatic deflection type image pick-up tube
US3176181A (en) Apertured coaxial tube quadripole lens
US3638064A (en) Convergence deflection system for a color picture tube
JPS6033336B2 (en) Imaging device
US4560899A (en) Electron beam focusing lens
WO2021229732A1 (en) Charged particle beam device, and method for controlling charged particle beam device
US6479951B2 (en) Color cathode ray tube apparatus
JPS58658B2 (en) Ink Yokusen Kansouchi
US4251790A (en) Magnetic focusing and deflection system for electron beam tubes
SU681478A1 (en) Method of correcting astigmatism in cathode ray tubes
JPS5824372Y2 (en) Denshiji Yukoutai
Nakanishi et al. A high-resolution color CRT for CAD/CAM use
JP3074179B2 (en) Cathode ray tube
JPS62268045A (en) Multiple beam crt
JPS62246233A (en) Cathode-ray tube
JPS63310542A (en) Cathode-ray tube
JPS62206750A (en) Image pickup tube
JPS6240132A (en) Cathode-ray tube of magnetic field focusing projection type