JPS5841740A - Manufacturing of transparent material having interference color or opalescent color - Google Patents

Manufacturing of transparent material having interference color or opalescent color

Info

Publication number
JPS5841740A
JPS5841740A JP13819481A JP13819481A JPS5841740A JP S5841740 A JPS5841740 A JP S5841740A JP 13819481 A JP13819481 A JP 13819481A JP 13819481 A JP13819481 A JP 13819481A JP S5841740 A JPS5841740 A JP S5841740A
Authority
JP
Japan
Prior art keywords
color
dispersion
transparent material
spheres
silica spheres
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13819481A
Other languages
Japanese (ja)
Inventor
Kojiro Shimodaira
下平 高次郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute for Research in Inorganic Material
Original Assignee
National Institute for Research in Inorganic Material
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute for Research in Inorganic Material filed Critical National Institute for Research in Inorganic Material
Priority to JP13819481A priority Critical patent/JPS5841740A/en
Publication of JPS5841740A publication Critical patent/JPS5841740A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/22Surface treatment of glass, not in the form of fibres or filaments, by coating with other inorganic material
    • C03C17/23Oxides

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Coating Of Shaped Articles Made Of Macromolecular Substances (AREA)
  • Surface Treatment Of Glass (AREA)
  • Silicon Compounds (AREA)

Abstract

PURPOSE:To obtain a transparent material having interference color or opalescent color, by dipping a transparent material in a dispersion of amorphous silica spheres having uniform particle diameter thereby attaching a thin silica film having uniform thickness, to the material, and heating the material at a temperature below the damaging temperature of the transparent material and the thin film. CONSTITUTION:A transparent material made of transparent glass or plastic is dipped in a dispersion of amorphous silica spheres having uniform particle diameter of <=1mu to effect the deposition of a thin film having uniform thickness and composed of the sillica spheres, and the coated material is heated at a temperature above 70 deg.C and below the damaging temperature of the transparent material and the thin film to obtain the objective transparent material having interference color or opalescent color. The dispersion of silica spheres can be prepared either by hydrolyzing a silicic acid ester in an ammoniacal alcohol, or by treating sodium silicate with an ion exchange resin and heat-treating the resultant silicic acid. When the thin film is composed of a monolayer of the silica spheres, the material has interference color, and when it is multilayer, the material exhibits opalescent color.

Description

【発明の詳細な説明】 本発明社千渉色または遊色を呈する透明皮膜を面上に形
成させた透明体の製造法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing a transparent body on which a transparent film exhibiting bright colors or play-of-color is formed.

膜に見られる物理的な色は、光の波長程度の厚さを持つ
膜Kitける干渉色で、l−以下の薄膜に観察される。
The physical color observed in a film is an interference color observed in a film having a thickness of approximately the wavelength of light, and is observed in a thin film of 1- or less thickness.

これ線膜表面からの反射光と、膜底面からの反射光があ
る特定の波長の光のみ強め合う結果である。この現象は
水面上の油膜や石鹸泡廖どKllめられる。膜の厚さを
このような寸法で浄−にするには、粒径のそろったlμ
以下の球体藪皺曹物の表11に密に配列させることによ
って達成し得られる。
This is the result of the fact that the light reflected from the surface of the line film and the light reflected from the bottom of the film of a certain wavelength only intensify each other. This phenomenon can be seen in oil films and soap bubbles on the water surface. In order to maintain the thickness of the film with such dimensions, lμ of uniform particle size must be used.
This can be achieved by densely arranging the spherical corrugated carbonates shown in Table 11 below.

本発明は無定形のシリカ球を使用して透明なガラス′t
たは樹脂の透明体の表面に皮膜を形成させ、干渉色また
は遊色を呈する透明体を製造する方法を提供するにある
。■濁液中のシリカ球の生成過程を電子■做鏡で観察す
ると、1個の球はコoo 1程変の大きさの微小″&均
一粒子が凝集体となってお染、この凝集過程で均一な寸
法の球状となって−る。しれは分散系0Ilill!面
エネルギーの減少とφう熱力学的な解釈が可能であり、
且つ直径が非常f小さいことによる球自体の自己束縛力
の大きいことKよる麦面積最小の形態、すなわち球にな
ろうとする駆動力の存在が示唆される。従って、生成し
た球は懸濁液中においてすでKかな抄の高密度の状態と
なってお9、その寸法は乾燥や加熱などの処理によって
も変化しな―。また、懸濁液中のシリカ球の直径は生成
条件の制御によって自白に変化し得られ、生成した球の
直径Fi畷濁液中における寸法と膜を構成する球となっ
た時の寸法と変らなく、また加熱処理によってもその寸
法はrらない特徴を有することが分った。
The present invention uses amorphous silica spheres to create transparent glass 't.
It is an object of the present invention to provide a method for producing a transparent body that exhibits interference colors or play-of-color by forming a film on the surface of a transparent body made of a resin or a transparent body. When observing the formation process of silica spheres in a turbid liquid using an electronic mirror, one sphere is found to be agglomerated by microscopic and uniform particles with a size of about 1 mm, and this aggregation process is observed. It has a spherical shape with uniform dimensions.The deflection is a dispersed system 0Illill!It can be interpreted thermodynamically as a decrease in surface energy.
In addition, the extremely small diameter F means that the self-constraining force of the sphere itself is large, which suggests the existence of a form with the smallest surface area, that is, the existence of a driving force that causes the ball to become a sphere. Therefore, the formed spheres are already in a high-density state in the suspension9, and their dimensions do not change even after treatments such as drying or heating. In addition, the diameter of the silica spheres in the suspension can be changed easily by controlling the formation conditions, and the diameter of the generated spheres (Fi) differs from the size in the suspension and the size when they become the spheres constituting the membrane. It was also found that the size of the film does not change even after heat treatment.

本発明はこの特性を利用し5lll以下の粒径であり、
かつ粒径のそろった無定形のシリカ球の分散液をつくヤ
、この分散液に透明なガラスまたは樹脂の透明体を浸漬
して均一厚さの薄膜を付着させた後、 70℃以上で、
透明体ならびに薄膜が損傷されな≠温度で加熱するとと
Kより、干渉色または遊色を呈する透明皮膜をその表面
に待った透明体を得ることに成功した。!μ以下の粒径
であ抄、ネク粒径のそろった無定形のシリカ球の分散液
を作島方法としては、(1)珪酸エステルをアンモニア
性アルコール中にお−て加水分解せしめる方法、r2)
珪酸ソーダをイオン交換樹脂で処理して珪酸を作抄、こ
れを加熱処理する方法が挙げられる。これらの方法によ
ると、目的分散液が容易に得られる。透明壜ガラスまた
は樹脂の表面に形成させる膜を一層にするか、あるーは
多層にするかは、分1fIvIの濃度によって決定され
る。前記(1)の珪酸エステルから作られるシリカ球の
懸濁液の通常の製置(体積分率)はo、i −0,J程
度である。この程菫では一層膜の生成が容易で、浸漬保
持時間および引出し速**どの影響線始んどない。これ
社懸濁液中のシリカ球が非常に激しくブラウン運動をし
てお)、かつ、球はそれぞれの持つ負電荷によって相互
に付着することが防止されているため、透明体とは容易
に付着するが、球同志は付着し難い関係にあるためと考
えられる。
The present invention takes advantage of this property and has a particle size of 5 lll or less,
After preparing a dispersion of amorphous silica spheres with a uniform particle size and immersing a transparent glass or resin body in this dispersion to form a thin film of uniform thickness,
When heated at a temperature that does not damage the transparent body or thin film, we succeeded in obtaining a transparent body with a transparent film on its surface that exhibits interference colors or play-of-color. ! Methods for preparing a dispersion of amorphous silica spheres with a particle size of less than μ are as follows: (1) a method of hydrolyzing a silicate ester in ammoniacal alcohol; )
Examples include a method of treating sodium silicate with an ion exchange resin to produce silicic acid, and then heat-treating this. According to these methods, the desired dispersion liquid can be easily obtained. Whether the film to be formed on the surface of the transparent bottle glass or resin is a single layer or multiple layers is determined by the concentration of 1fIvI. The usual preparation (volume fraction) of the suspension of silica spheres made from the silicate ester (1) is about o, i -0, J. With Violet, it is easier to form a layered film, and there are no influence lines on immersion holding time and withdrawal speed. The silica spheres in this company's suspension undergo extremely violent Brownian motion), and because the spheres are prevented from adhering to each other by their own negative charges, they easily adhere to transparent objects. However, it is thought that this is because the balls have a difficult to adhere to relationship.

分散液のシリカ濃度状例えば限外−適法などKより高め
ることができる。濃度が高くなると、シ13 を球のブ
ラウン運動は相互に影響を及ばすようY、zbs次第に
不活発と壜る。しかしながら、球の持つ負電荷は変らな
―ので、相互に付着することは殆んどない。
The silica concentration of the dispersion can be higher than K, for example by ultra-compatible methods. As the concentration increases, the Brownian motions of the spheres influence each other, so that Y and zbs gradually become inactive. However, since the negative charge of the spheres remains unchanged, they almost never stick to each other.

ところが透明体の面に付着し、一層の膜を形成したシリ
カ球の電荷は、近接してきたシリカ球を反発するほど強
くな−ので、一層の上に衝突したシリカ球が一層を形成
しているシリカ球三個の中心の凹部の最も安定した位置
に付着することKeる。このようKして第2層が成長し
、続いて第三1が成長する。この多層組織は等大球の面
心立方n充填に相当し、最も密度の高−910方で、透
明体の面に接する面は、結晶学的褒・現を借9るならば
ll1面に相当する球のつtb方である。球のこのよう
な密充填組織は球の寸法が光の波長程度の大きさである
ため、空隙の親画的三次元配列゛が丁度光の回折格子の
役割をすることと愈9、白色光のブラッグ反射によって
特定の波長の光のみ強め合う方向が生じ、特定の波長の
光すなわち色と、その方向とは連続的に変化し、所■遊
色がその組織から見られる。外観は天然のオパールと殆
んど変らな製膜が生成したことになる。
However, the electric charge of the silica spheres that adhere to the surface of the transparent body and form a layer is strong enough to repel the silica spheres that come close to it, so the silica spheres that collide with the surface of the transparent body form a layer. Be sure to attach it to the most stable position of the recess in the center of the three silica balls. In this way, the second layer grows, and then the third layer grows. This multilayer structure corresponds to the face-centered cubic n packing of an equal-sized sphere, and the -910 side has the highest density, and the surface in contact with the surface of the transparent body is the ll1 plane if we borrow from crystallographic theory. This is the tb side of the corresponding ball. In such a densely packed structure of spheres, the dimensions of the spheres are about the same as the wavelength of light, so the typical three-dimensional array of voids acts exactly as a diffraction grating for light. Bragg reflection causes a direction in which only light of a specific wavelength becomes stronger, and the light of a specific wavelength, or color, and its direction change continuously, and play-of-color can be seen from the tissue. This means that a film was produced that had an appearance that was almost the same as natural opal.

ガラスとシリカ球との接着力は非常に大きい。The adhesive force between glass and silica spheres is very strong.

特に単層薄膜の場合は、70〜100℃程度の加熱で強
固にガラス資面に接着し、物理的K11−させることは
極めて困難となる。しかし、多層膜となると状況が変シ
1球同志O付着力の弱−ことが原因で削離することがあ
る。シリカ球そのものは前述C1艶か&!)の高密度に
&つで−るので、球同志all!着を強めるための加熱
処理、すなわち、焼結社此咬的高一温度を必要とする。
In particular, in the case of a single-layer thin film, it is extremely difficult to firmly adhere it to the glass surface by heating at about 70 to 100° C. and to make it physically K11-. However, when it comes to multilayer films, the situation changes and the balls may peel off due to the weak adhesion between the balls. Is the silica ball itself C1 glossy? ) Because of the high density of &, all the balls are comrades! Heat treatment to strengthen adhesion, that is, sintering requires high temperatures.

700℃〜t′00℃tIIで焼結しても組織を余に強
くなし得ない。従って、遊色を呈する厚膜の場合は、適
当な添加剤を浸透させて、球と糟の接着力を高め゛る必
要がある。膜自体はシリカ質そのものであるので熱膨張
係数は小さ−、ガラスとの熱膨張係数の差が太き−と、
膜がIIIIIL易−ので、ガラスとしイは低熱膨張係
数のものを使用することが望ましい。ただし、熱膨張係
数の大11%/hガラスであっても、そのガラスの管状
または球状の内面に施す場合は膜に庄一応力が働くこと
になるやで膜が剥離することf&い。
Even if it is sintered at 700°C to t'00°C tII, the structure cannot be made too strong. Therefore, in the case of a thick film exhibiting play-of-color, it is necessary to infiltrate a suitable additive to increase the adhesive strength between the ball and the glue. The film itself is made of siliceous material, so its coefficient of thermal expansion is small, and the difference in coefficient of thermal expansion from glass is large.
Since the membrane is extremely fragile, it is desirable to use glass with a low coefficient of thermal expansion. However, even if the glass has a large coefficient of thermal expansion of 11%/h, if it is applied to the inner surface of a tubular or spherical glass, Shoichi stress will be applied to the film and the film may peel off.

透明樹脂に膜を形成させる場合は、材質的な差から、接
着剤または充填剤の助けを必要とする。
When forming a film on transparent resin, the help of an adhesive or filler is required due to the difference in material.

接着剤としては適当な樹脂系接着剤が使用される。A suitable resin adhesive is used as the adhesive.

ただし、シリカ球と等しい屈折率の接着剤を使用すると
、遊色が消えるので、そのような接着剤の使用はさけな
社ればならない。接着剤としては例えばエポキシ系樹脂
等が挙げられる。シリカ球の付着は物理的な作用のみで
あるので、乾燥後の膜は干渉色または遊色を示すが密着
して−ないので、871頭でこすれば容易に脱落する。
However, if an adhesive with a refractive index equal to that of the silica sphere is used, the play of color will disappear, so use of such an adhesive should be avoided. Examples of adhesives include epoxy resins. Since the silica spheres are attached only by physical action, the film after drying exhibits interference colors or play-of-color, but is not in close contact with the film and can be easily removed by rubbing with an 871 head.

これを70℃以上に加熱すると1強固に付着され、脱落
することがなく壜る。
When this is heated to 70°C or higher, it becomes firmly attached and can be bottled without falling off.

実施例1゜ エチル”アルコール10コd、アンモニア水(濃度21
%)z*sJ、蒸留水lダーを5oolIjH角フラス
コに秤量採取し、さもに別のフラスコにテトラエチルシ
リケート1117をメチルアルコール3グーに溶解する
。両液を手早く混和し、スターラーでゆつく抄と後件す
る。テトラエチルシリケーFは次第に加水分解し、水和
珪駿ゾルの懸濁液となる。液の温度紘B0に保持するが
、精密な温調は必要としない。
Example 1 10 d of ethyl alcohol, ammonia water (concentration 21
%)z*sJ, 1 liter of distilled water was weighed and collected in a 5 ool IJH corner flask, and in another flask, tetraethyl silicate 1117 was dissolved in 3 ml of methyl alcohol. Quickly mix both liquids and stir with a stirrer. Tetraethyl silica F is gradually hydrolyzed to become a suspension of hydrated silica sol. The temperature of the liquid is maintained at B0, but precise temperature control is not required.

約1時間攪拌を続けると、平均粒径0.22μの単分散
シリカ球とな鰺、その幾何標準偏差はi、oダで、非常
によく大きさがそろっ光球の分散系ができあがる。
When stirring is continued for about 1 hour, a dispersion system of monodisperse silica spheres with an average particle size of 0.22 μm and a geometric standard deviation of i and o da, and very uniformly sized photospheres is completed.

この分散液に化学的に清浄に面をもつガラス片會゛I!
液し、約/j分浸漬保持した後ゆっく艶と液か5ポラス
片を引き上げ、そのtま風乾する。
A piece of glass with a chemically clean surface is applied to this dispersion.
After pouring the liquid and keeping it immersed for about 1 minute, slowly remove the porous piece from the liquid and air dry it for 1 minute.

建燥すると表面に美しいm−紫色の干渉色が見られ、球
の付着したことが確認された。これを10℃の乾燥器で
/#時間乾燥すると、膜はガラス面に強固に接着する。
After drying, a beautiful m-purple interference color was observed on the surface, confirming that the balls had adhered. When this is dried in a dryer at 10° C. for # hours, the film firmly adheres to the glass surface.

膜の干渉色の色調はこの乾燥操作でも全く変化しなかっ
た。
The interference color tone of the film did not change at all during this drying operation.

実施例2 純粋のケイ瞭ナトリウム溶液を陽イオン型のイオン交換
樹脂アンバーライトXR/20 (商品名)を入れたカ
ラム中を通すことKよってシリカを含有するシリカゾル
をり(る。交換反応はNa25iO,+JHR−+■、
Sin、 + JNaR”1”あられされる。
Example 2 A silica sol containing silica is removed by passing a pure sodium chloride solution through a column containing a cation-type ion exchange resin Amberlite XR/20 (trade name). ,+JHR−+■,
Sin, + JNaR"1" hail.

このゾルに存在する粒子は非常にこまかく、これが凝集
して2次コロイド粒子に成長する。このと暑にゲル化し
ないように水酸化ナトリウムを加えて液のpHを9.0
以上の値とし、且つテ1℃の温度に加熱して数百時間加
熱を続けて粒子を徐々に成長させる。加熱によりゾルか
ら水が除かれるのでその分を新しいシリカゾルの補給に
よっていつ%溶液の量を一定に保持する。このようにし
て成長した粒子の直径はO02〜0.参ミクロンとな9
%単分散のシリカゾルを形成する。粒子の平均直径は煮
沸処理の時間と新しいシリカゾルの補給回数に依存し、
それらの多い種粒子の直径は大きくなる。
The particles present in this sol are very fine and aggregate to form secondary colloidal particles. Add sodium hydroxide to adjust the pH of the solution to 9.0 to prevent it from gelling in the heat.
The above value is set, and the particles are gradually grown by heating to a temperature of 1° C. and continuing heating for several hundred hours. Since water is removed from the sol by heating, the amount of water is replenished with new silica sol to keep the amount of the solution constant. The diameter of the particles grown in this way is O02~0. Sanmicron 9
% monodisperse silica sol is formed. The average diameter of the particles depends on the boiling treatment time and the number of times of replenishment of fresh silica sol;
The diameter of those seed particles becomes larger.

このようにして製造されたシリカ分散液に化学的に清浄
な面をもつガラス片を浸漬し、約11分間浸漬保持した
後ゆつ〈艶と液からガラス片を引き上げ、その11風乾
する。これをl0℃に保持された乾燥器中で約10時間
乾燥するととによ抄、粒子の密充填配列による膜状とな
9ガラス表面に強固に接着する。
A piece of glass with a chemically clean surface was immersed in the silica dispersion prepared in this way, and after being kept immersed for about 11 minutes, the glass piece was removed from the liquid and air-dried. When this is dried for about 10 hours in a dryer maintained at 10° C., it forms a film with tightly packed particles and is firmly adhered to the surface of the glass.

この回折性の膜の厚さはシリカ球の直径にほぼ等いら 実施例五 実施例1と全く同様の方法で単分散シリカ球の分散液を
製造し、この分散液に化学的に清浄な面をもつ透明樹脂
片を浸漬し、約13分浸漬後ゆっく染と濠から樹脂片を
引き上けそのまま風乾する。
The thickness of this diffractive film is approximately equal to the diameter of the silica spheres. Example 5 A dispersion of monodisperse silica spheres was prepared in exactly the same manner as in Example 1, and this dispersion was coated with a chemically clean surface. After dipping for about 13 minutes, the resin piece was slowly dyed, and the resin piece was lifted up from the moat and air-dried.

乾燥後の表面Ka美しm−紫色の干渉色が見らガ、シリ
カ球の付着による形成が確認される。
After drying, a purple interference color was observed on the surface, confirming that it was formed by adhesion of silica spheres.

この干渉色を持った#I11片を、あらかじめメタフェ
ニレンジアシンのような硬化剤を加えである液状エポキ
シ樹脂に浸漬し、該表面に強固な樹脂の硬化膜を形成せ
しめ、シリカ球の剥落を防止し。
The #I11 piece with this interference color is immersed in liquid epoxy resin to which a hardening agent such as metaphenylene diacin has been added in advance to form a strong cured resin film on the surface and prevent the silica spheres from falling off. Prevent.

且つ干渉色の発現に効果あらしめた。Moreover, it was effective in developing interference colors.

Claims (1)

【特許請求の範囲】 1、/μ以下の粒径であり、かつ粒径のそろった無定形
のシリカ球の分散液に、透明なガラスまたは樹脂の透明
体を浸11して均一厚さの薄膜を付着させた後、70℃
以上で透明体ならびに薄膜が損傷されな一温度で加熱す
ることを特徴とする干渉色または遊色を呈する透明体の
製造法。 2 シリカ球の分散液が珪酸エステルをアンモニア性ア
ルコール中で加水分解させたものである特許請求の範囲
第1項記戦の透明体の製造法。 五 シリカ球の分散液が珪酸ソーダをイオン−交換樹脂
で処理して珪酸となし、これを加熱処理してlμ以下の
粒径を有するものとした分散液である特許請求の範囲第
1項記載の透明体の5iIl法。
[Claims] A transparent body of glass or resin is immersed in a dispersion of amorphous silica spheres having a particle size of 1.0 μm or less and having a uniform particle size. After attaching the thin film, 70℃
A method for producing a transparent body exhibiting interference color or play-of-color, characterized by heating at a temperature that does not damage the transparent body or thin film. 2. The method for producing a transparent body as set forth in claim 1, wherein the dispersion of silica spheres is obtained by hydrolyzing a silicate ester in ammoniacal alcohol. (v) The dispersion of silica spheres is a dispersion in which sodium silicate is treated with an ion-exchange resin to form silicic acid, which is then heat-treated to have a particle size of 1μ or less. 5iIl method for transparent bodies.
JP13819481A 1981-09-02 1981-09-02 Manufacturing of transparent material having interference color or opalescent color Pending JPS5841740A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13819481A JPS5841740A (en) 1981-09-02 1981-09-02 Manufacturing of transparent material having interference color or opalescent color

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13819481A JPS5841740A (en) 1981-09-02 1981-09-02 Manufacturing of transparent material having interference color or opalescent color

Publications (1)

Publication Number Publication Date
JPS5841740A true JPS5841740A (en) 1983-03-11

Family

ID=15216272

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13819481A Pending JPS5841740A (en) 1981-09-02 1981-09-02 Manufacturing of transparent material having interference color or opalescent color

Country Status (1)

Country Link
JP (1) JPS5841740A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0324243A2 (en) * 1988-01-13 1989-07-19 Minnesota Mining And Manufacturing Company Glass microbubbles to which are adhered dyed silica
EP1615856A1 (en) * 2002-05-31 2006-01-18 PPG Industries Ohio, Inc. Article having an aesthetic coating
JP2020147484A (en) * 2019-03-07 2020-09-17 地方独立行政法人神奈川県立産業技術総合研究所 Inorganic decorative article showing structural color, and method for producing the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0324243A2 (en) * 1988-01-13 1989-07-19 Minnesota Mining And Manufacturing Company Glass microbubbles to which are adhered dyed silica
EP1615856A1 (en) * 2002-05-31 2006-01-18 PPG Industries Ohio, Inc. Article having an aesthetic coating
JP2020147484A (en) * 2019-03-07 2020-09-17 地方独立行政法人神奈川県立産業技術総合研究所 Inorganic decorative article showing structural color, and method for producing the same

Similar Documents

Publication Publication Date Title
JP3761189B2 (en) Composite oxide sol, method for producing the same, and substrate
JP2010189268A (en) Fine particle, sol having fine particle dispersed therein, and substrate having coating film thereon
JPS63307140A (en) Sol-gel process for manufacturing superlow expansion glass
KR101102115B1 (en) Process for producing fine silica-based particle, coating composition for coating film formation, and base with coating film
US2428357A (en) Method of reducing reflection of a transparent body
JPS5841740A (en) Manufacturing of transparent material having interference color or opalescent color
US5131977A (en) Base plate for recording disc and a method for its manufacture
RU2594183C1 (en) Method of producing composite multiferroic based on ferromagnetic porous glass
JPH0857295A (en) Formation of particulate layer on base material, flattening of uneven surface of base material and base material having particulate layer
CN108417475A (en) A kind of preparation method of the metal Nano structure array based on interface induced growth
JPH0368745B2 (en)
CN105862014B (en) Magnesiumalloy surface modifying organic glass corrosion-inhibiting coating method
JP4482679B2 (en) Method for producing silica thin film on substrate surface having arbitrary surface characteristics and surface shape, and composite structure
JP2007044598A (en) Colloidal crystal, filmy particulate structure, filmy cyclic structure and their manufacturing method
JP5142127B2 (en) Method for producing colloidal crystal and colloidal crystal
RU2399586C1 (en) Method of reinforcing photonic-crystalline films based on monodispersed spherical silica particles
KR102087011B1 (en) Method for producing Hollow silica particles with TiO2 shell
JPS6020317A (en) Magnetic disc
Naberezhnov et al. Ferroelectric nanocomposites with governed interface on base of magnetic porous glasses
JPS60226418A (en) Preparation of quartz glass mass
JPS61276907A (en) Production of fine silver particle
JPS632819A (en) Production of quartz glass
JP2006117526A (en) Complex oxide sol and film-coated base material
JP4628474B2 (en) Structural color developing body and method for producing the same
JP4334972B2 (en) Manufacturing method of three-dimensional periodic structure