JPS5841230A - Fuel injection apparatus for internal-combustion engine - Google Patents

Fuel injection apparatus for internal-combustion engine

Info

Publication number
JPS5841230A
JPS5841230A JP13991281A JP13991281A JPS5841230A JP S5841230 A JPS5841230 A JP S5841230A JP 13991281 A JP13991281 A JP 13991281A JP 13991281 A JP13991281 A JP 13991281A JP S5841230 A JPS5841230 A JP S5841230A
Authority
JP
Japan
Prior art keywords
negative pressure
volumetric efficiency
engine speed
fuel injection
engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13991281A
Other languages
Japanese (ja)
Inventor
Yukinobu Nishimura
西村 幸信
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP13991281A priority Critical patent/JPS5841230A/en
Publication of JPS5841230A publication Critical patent/JPS5841230A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/2406Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
    • F02D41/2496Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories the memory being part of a closed loop
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/2406Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

PURPOSE:To control the air-fuel ratio with high accuracy, by correcting the volumetric efficiency by the product of the quantity of correction according to the negative pressure and that according to the engine speed in a fuel injection apparatus which is designed to supply fuel on the basis of the flow rate of intake air measured from the negative pressure in an intake pipe and the engine speed. CONSTITUTION:Representing the engine speed, negative pressure and volumetric efficiency of an engine respectively at the X-axis, Y-axis and Z-axis, the volumetric efficency is represented in a monotonous curved surface. In a high-output range (-100- 0mm.Hg), however, change of the volumetric efficiency is great as compared with that in an ordinary range of operation (-100--500mm.Hg). Here, if the volumetric efficiency is calculated from the product of a one-dimensional map of the negative pressure and that of the engine speed mapped over the entire operational range of engine, an approximation error greater than 5% is produced in a high-out-put range. In order to overcome this problem, the volumetric efficiency is approximated in the high-output range by making product of the one-dimensional mapped by a different engine speed and that of the negative pressure using the same value, whereby it is enabled to reduce the approximation error to about 2%.

Description

【発明の詳細な説明】 この発明はスピードデエンテイシテイ方式の燃料噴射装
置において、機関の容積効率の補正方法の改良に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an improvement in a method for correcting the volumetric efficiency of an engine in a speed derivation type fuel injection system.

従来この種の装置としては回転数による容積効率の補正
を行なうものが知られている。しかしこれだけでは全て
の運転領域の容積効率の変化を包含することはできない
。又別の装置では負圧と回転数との2次元マツプにより
容積効率の変化を含んだ基本噴射量を求めるものが知ら
れている。この場合は原理的には全ての運転領域の容積
効率の補正が可能である。
Conventionally, devices of this type that correct volumetric efficiency based on the number of revolutions are known. However, this alone cannot cover changes in volumetric efficiency in all operating regions. Another device is known that uses a two-dimensional map of negative pressure and rotational speed to determine the basic injection amount including changes in volumetric efficiency. In this case, it is theoretically possible to correct the volumetric efficiency in all operating regions.

しかしながら、その為には数多くのマツプポイントが必
要であり、マツプのルックアップ操作も煩雑になる。さ
らに特定領域のみ精度を上げるような場合には操作はま
すます煩雑になる。
However, this requires a large number of map points, and the map lookup operation becomes complicated. Furthermore, if the accuracy is to be increased only in a specific area, the operation becomes even more complicated.

本発明は上記のような従来の欠点を除去するためになさ
れたもので、容積効率を負圧による1次元マツプと回転
数による1次元マツプの積で表わすことにより少ないマ
ツプポイントで精度よくかつ簡単な操作で補正量を求め
ることができる装置を提供することを目的としている。
The present invention was made in order to eliminate the above-mentioned drawbacks of the conventional technology, and by expressing the volumetric efficiency as the product of a one-dimensional map based on negative pressure and a one-dimensional map based on rotational speed, it is possible to easily and accurately use fewer map points. The purpose of the present invention is to provide a device that can determine a correction amount with simple operations.

1181図は本発明を説明する為の図で、機関の容積効
率をZ軸に、回転数をX軸に、負圧をY軸にとって表わ
したものである。同図に示されるように容積効率は単調
な曲面として表わされるが、高出力域(負圧が−100
W Hg〜OW f(g近辺)では通常運転域(負圧が
−100a Hg 〜−500W f(g近辺)に比べ
、容積効率の変化が大きい。そこで後述するような方法
により全域1こわたって回転数によりマツピングされた
1次元マツプと、負圧によりマツピングされた1次元マ
ツプによる横で容積効率を集似した場合は高出力域で5
%以上の近似誤差を生ずる。そこで本発明では高出力域
では上記とは異なる回転数によりマツピングされた1次
元マツプを用いて上記と同じ負圧によりマツピングされ
た1次元マツプとの積をとり容積効率を近似する。これ
により本発明では全域にわたって近似誤差を約296に
押えることができる。この値は理論空燃比(14,7)
に対して0.8であ゛り実用上問題はない。
Fig. 1181 is a diagram for explaining the present invention, and shows the volumetric efficiency of the engine on the Z axis, the rotation speed on the X axis, and the negative pressure on the Y axis. As shown in the figure, the volumetric efficiency is expressed as a monotonous curved surface, but it is
In the W Hg to OW f (near g), the change in volumetric efficiency is larger than in the normal operating range (negative pressure is -100a Hg to -500W f (near g). Therefore, by the method described later, the rotation over the whole range is When the volumetric efficiency is horizontally approximated by a one-dimensional map mapped by numbers and a one-dimensional map mapped by negative pressure, it is 5 in the high output range.
% or more of approximation error. Therefore, in the present invention, in the high output range, a one-dimensional map mapped at a rotation speed different from the above is used, and the volumetric efficiency is approximated by taking the product of the one-dimensional map mapped at the same negative pressure as above. As a result, the present invention can suppress the approximation error to about 296 over the entire range. This value is the stoichiometric air-fuel ratio (14,7)
The difference is 0.8, which poses no practical problem.

次に本発明で用いる1次マツプの一作成例を第2図によ
り説明する。図においてPi(i = i、2・・・m
)は前記負圧による1次元マツプであり、Nj(j、=
1.2・・・n)は前記回数による1次元マツプである
Next, an example of creating a primary map used in the present invention will be explained with reference to FIG. In the figure, Pi (i = i, 2...m
) is a one-dimensional map due to the negative pressure, and Nj(j,=
1.2...n) is a one-dimensional map based on the number of times.

Tij(i=1.2・m、 j=1.2−n )は添字
がそれぞれ負圧、回転数の添字と対応する容積効率を示
す2次元マツプである。
Tij (i=1.2·m, j=1.2−n) is a two-dimensional map in which the subscripts indicate the volumetric efficiency corresponding to the subscripts of negative pressure and rotational speed, respectively.

前記負圧マツプ211回転数マツプNjのそれぞれの要
素の横が前記容積効率の良い近似となるよう、最小2乗
法により各々の要素を求める。まず最適なPiを求める
為には次式が最小値をとればよい。
Each element of the negative pressure map 211 rotation speed map Nj is determined by the method of least squares so that the side of each element is a good approximation of the volumetric efficiency. First, in order to find the optimal Pi, the following equation should take the minimum value.

、Σ(Nj )”   (i = 1.2・m )j=
1 同様に最適なNjを求める為には次式が最小値をとれば
よい。
, Σ(Nj)” (i = 1.2・m)j=
1 Similarly, in order to find the optimal Nj, the following equation should take the minimum value.

g(i、j)=Σ (Tij −Pi−Nj )”1=
1 (INJ 、Σ(Pi )”   (j=1.2・n)1=1 (1) 、 [21で示す(m+n)の式から前記容積
効率をよく近似する1次マツプPi、Njが得られる。
g(i,j)=Σ(Tij −Pi−Nj)”1=
1 (INJ, Σ(Pi)" (j=1.2・n) 1=1 (1), [From the equation (m+n) shown in 21, a linear map Pi, Nj that closely approximates the volumetric efficiency is obtained. It will be done.

以上のように本発明では数種の1次マツプの横により容
積効率のよい近似を得ることができる為、簡単な構成で
精度の高い空燃比制御ができる効果・がある。
As described above, in the present invention, it is possible to obtain a volumetrically efficient approximation by using several types of primary maps, and therefore, there is an effect that highly accurate air-fuel ratio control can be performed with a simple configuration.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は容積効率を、負圧と回転数とをパラメータとし
て表わした図である。 第2図は容積効率、回転数による1次元マツプ、負圧に
よる1次元マツプを示した図である。 図中、Tijは容積効率のマツプ要素、Pi、Njはそ
れぞれ負圧、回転数による1次元マツプの要素を示す。 代理人  葛 野 信 −
FIG. 1 is a diagram showing volumetric efficiency using negative pressure and rotational speed as parameters. FIG. 2 is a diagram showing a one-dimensional map based on volumetric efficiency and rotational speed, and a one-dimensional map based on negative pressure. In the figure, Tij represents a map element of volumetric efficiency, and Pi and Nj represent elements of a one-dimensional map based on negative pressure and rotational speed, respectively. Agent Shin Kuzuno −

Claims (1)

【特許請求の範囲】[Claims] (1)吸気管内の負圧と機関回転数に応じ吸入空気量を
計測して該吸入空気量に応じた燃料を機関に供給する燃
料噴射装置において、機関の容積効率の補正を負圧に応
じた補正量と回転数に応じた補正量の積で補正すること
を特徴とする内燃機関燃料噴射装置。 (2、特許請求の範囲第1項記載の内燃機関燃料噴射装
置において機関の高出力域では通常運転域とは異なる、
回転数に応じた補正量を用いて前記補正を行なうことを
特徴とする内燃機関燃料噴射装置。
(1) In a fuel injection device that measures the amount of intake air according to the negative pressure in the intake pipe and the engine speed and supplies fuel to the engine according to the amount of intake air, the volumetric efficiency of the engine is corrected according to the negative pressure. An internal combustion engine fuel injection device characterized in that the internal combustion engine fuel injection device performs correction by the product of a correction amount according to the rotation speed and a correction amount depending on the rotation speed. (2. In the internal combustion engine fuel injection device according to claim 1, the high output range of the engine is different from the normal operating range.
An internal combustion engine fuel injection device characterized in that the correction is performed using a correction amount depending on the rotation speed.
JP13991281A 1981-09-03 1981-09-03 Fuel injection apparatus for internal-combustion engine Pending JPS5841230A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13991281A JPS5841230A (en) 1981-09-03 1981-09-03 Fuel injection apparatus for internal-combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13991281A JPS5841230A (en) 1981-09-03 1981-09-03 Fuel injection apparatus for internal-combustion engine

Publications (1)

Publication Number Publication Date
JPS5841230A true JPS5841230A (en) 1983-03-10

Family

ID=15256528

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13991281A Pending JPS5841230A (en) 1981-09-03 1981-09-03 Fuel injection apparatus for internal-combustion engine

Country Status (1)

Country Link
JP (1) JPS5841230A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6047839A (en) * 1983-08-26 1985-03-15 Toyota Motor Corp Method of detecting pressure in intake pipe of internal-combustion engine
JPS60204940A (en) * 1984-03-29 1985-10-16 Nippon Denso Co Ltd Electronic fuel injection control unit
JPS6336639U (en) * 1986-08-28 1988-03-09
US4884548A (en) * 1987-11-10 1989-12-05 Fuji Jukogyo Kabushiki Kaisha Fuel injection control system for an automotive engine
US5555870A (en) * 1994-04-20 1996-09-17 Hitachi, Ltd. Method and apparatus for sensing air flow into a cylinder of internal combustion engine and method and apparatus for controlling fuel of the internal combustion engine arranged to use the method and apparatus

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6047839A (en) * 1983-08-26 1985-03-15 Toyota Motor Corp Method of detecting pressure in intake pipe of internal-combustion engine
JPS60204940A (en) * 1984-03-29 1985-10-16 Nippon Denso Co Ltd Electronic fuel injection control unit
JPS6336639U (en) * 1986-08-28 1988-03-09
US4884548A (en) * 1987-11-10 1989-12-05 Fuji Jukogyo Kabushiki Kaisha Fuel injection control system for an automotive engine
US5555870A (en) * 1994-04-20 1996-09-17 Hitachi, Ltd. Method and apparatus for sensing air flow into a cylinder of internal combustion engine and method and apparatus for controlling fuel of the internal combustion engine arranged to use the method and apparatus
DE19514423C2 (en) * 1994-04-20 1999-04-01 Hitachi Ltd Method and device for detecting the air flow into a cylinder of an internal combustion engine

Similar Documents

Publication Publication Date Title
US20030177765A1 (en) System for estimating absolute boost pressure in a turbocharged internal combustion engine
JP2008510094A (en) Turbocharger speed determination technique
JP3610839B2 (en) Air-fuel ratio control device for internal combustion engine
JP2776971B2 (en) Control device for internal combustion engine
KR0158880B1 (en) Fuel injection control method in an engine
JPS5841230A (en) Fuel injection apparatus for internal-combustion engine
GB2280048A (en) Method for output torque setting
KR100339122B1 (en) Method and apparatus for detecting cylinder inflow air of internal combustion engines and method and apparatus for fuel control of internal combustion engines using the method and apparatus
JPS6278449A (en) Fuel injection controller of internal combustion engine
JPS6214705B2 (en)
JPH05346336A (en) Correction method for inlet air volume value
JPS6480746A (en) Fuel supply control device for internal combustion engine
JP3041025B2 (en) Internal combustion engine control device
JPS5937245A (en) Air-fuel ratio controlling apparatus for engine
JPH0742893B2 (en) Fuel system air amount estimation control method
JPH0756239B2 (en) Basic control variable setting method for internal combustion engine
JP2668940B2 (en) Fuel supply control device for internal combustion engine
JPH03508Y2 (en)
JPH0214985B2 (en)
JPS5844231A (en) Control device of engine
JPS6316157A (en) Engine intake air quantity learning operating system
JPH01155041A (en) Cylinder inflow gas quantity compensating method
JPS6050249A (en) Method of controlling air-fuel ratio
JPH03217645A (en) Control value calculation
JPH0233431A (en) Fuel injection quantity control method for internal combustion engine