JPS5839748A - Treatment of sintered ore - Google Patents

Treatment of sintered ore

Info

Publication number
JPS5839748A
JPS5839748A JP13833481A JP13833481A JPS5839748A JP S5839748 A JPS5839748 A JP S5839748A JP 13833481 A JP13833481 A JP 13833481A JP 13833481 A JP13833481 A JP 13833481A JP S5839748 A JPS5839748 A JP S5839748A
Authority
JP
Japan
Prior art keywords
sintered ore
sintering
screen
particles
blast furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP13833481A
Other languages
Japanese (ja)
Other versions
JPS5935971B2 (en
Inventor
Yojiro Yamaoka
山岡 洋次郎
Hirohisa Hotta
堀田 裕久
Kazuhiro Furukawa
古川 和博
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP13833481A priority Critical patent/JPS5935971B2/en
Publication of JPS5839748A publication Critical patent/JPS5839748A/en
Publication of JPS5935971B2 publication Critical patent/JPS5935971B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Abstract

PURPOSE:To increase the productivity of sintered ore and to improve the coke unit and quality by carrying out the classification of favorable sintered ore and grain size reduction in a stage for conveying product sintered ore from a sintering plant to a blast furnace. CONSTITUTION:Sintered ore manufactured with a sintering machine 1 is crushed with a crusher 2, stored in a storage chamber 3 once, fed to an ore vessel 7 at the side of a blast furnace 10 through the final screen 4 of the sintering plant, and sieved with a sieve 8 under the vessel 7. The plus mesh is charged into the furnace 10, and the minus mesh is returned. Minus meshes under powder drawing screens 5, 6 in the conveying system ranging from the screen 4 to the vessel 7 are fed to a multistage screen 12 together with the minus mesh under the sieve 8. They are sieved with the upper screen having 5mm. mesh and the lower screen having 2mm. mesh. The plus mesh 16 on the upper screen is charged into the furnace 10, the plus mesh 17 on the lower screen is fed to a stowage 14 as starting material for sintered ore, and the minus mesh 18 under the lower screen is finely crushed to <=0.5mm. with a rod mill 13 and fed to the stowage 14. Thus, the operation of the blast furnace is stabilized, and pseudo granules are accurately formed in the manufacture of sintered ore.

Description

【発明の詳細な説明】 本発明は焼結鉱の処理方法に係り、焼結設備から高炉へ
の成品焼結鉱搬送過程にお(・て好ましく・焼結鉱の分
級と微細化処理をなし高炉操業の安定化を図ると共に擬
似粒子形成に適した焼結原料の調整をなし焼結鉱の生産
性を高めると共にコークス原単位および品質の改善を図
ろうとするものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for treating sintered ore. The aim is to stabilize blast furnace operation, adjust sintering raw materials suitable for pseudo-particle formation, increase productivity of sintered ore, and improve coke consumption and quality.

焼結工場のような焼結設備においては焼結機から搬出さ
れた焼結鉱をクラッシャに掛けてから貯槽に収容し、こ
れを成品焼結鉱として高炉に搬ぶが、このように焼結設
備から送り出された成品焼結鉱に混在した51未満の粉
粒および搬送中に発生した粉粒は高炉装入層における通
気性を著しく阻害し高炉操業に悪影響を与える。即ち高
炉操業にお〜゛てはその通気性確保と鉱石の還元性改善
目的から高炉装入物の小粒化、整粒化が積極的に推進さ
れその操業成績向上に大きく寄与して来たが、前記のよ
うな5簡未満の粉粒が多量に混入した場合には通気性劣
化、ガス流れの不安定を来し、スリップ多発、ガス利用
率の低下を来し、延〜・ては棚吊り燃料比増大、出銑比
低下などの悪影響を来す。従って通常高炉捲下設備の鉱
石庫にお〜・て焼結鉱の切出秤量に際し庫下篩により上
記したような粉粒の除去が行なわれるが、実際にはこの
庫下篩のみで該粉粒が適切に除去されず、一部はそのま
ま高炉に装入されて−・る。なおこの庫下篩の篩下粉は
全量がそのまま焼結用配合原料として貴び使用されて℃
・るが5−以上の瞬結原料として粗大なものや耐着粒子
として好ましくな〜・ものが多く、既て焼結されたもの
である造粒焼結過程にお−・て必ずしも有効となし得ず
、むしろ阻害する傾向すら有して〜・る。
In sintering equipment such as a sintering factory, the sintered ore discharged from the sintering machine is put into a crusher and stored in a storage tank, and then transported to the blast furnace as finished sintered ore. Particles of less than 51 particles mixed in the finished sintered ore sent out from the equipment and particles generated during transportation significantly impede air permeability in the blast furnace charge layer and adversely affect blast furnace operation. In other words, in blast furnace operations, the reduction and granulation of blast furnace charge particles has been actively promoted in order to ensure air permeability and improve the reducibility of ore, and this has greatly contributed to improving operational performance. If a large amount of powder particles of less than 5 particles as mentioned above are mixed in, it will cause deterioration of air permeability and instability of gas flow, resulting in frequent slips and a decrease in gas utilization rate. This results in negative effects such as an increase in the suspension fuel ratio and a decrease in the pig iron production ratio. Therefore, when cutting and weighing sintered ore in the ore storehouse of blast furnace winding equipment, the above-mentioned powder particles are removed using a sieve under the storehouse, but in reality, only the sieve under the storehouse is used to remove the powder particles. The grains are not properly removed and some are simply charged into the blast furnace. In addition, the entire amount of the under-sieve powder from this warehouse sieve is used as a raw material for sintering.
・There are many coarse materials with a particle size of 5 or more that are preferable as instant sintering raw materials or anti-adhesion particles, and they are not necessarily effective in the granulation and sintering process of already sintered materials. In fact, it has a tendency to hinder rather than gain.

即ちこのような焼結目的で一般的に採用されて〜・るド
ワイトロイド式のような焼結機における焼結過程は配合
原料を構成する鉄鉱石、雑原料、造滓剤およびコークス
などを混合すると共に水分を添加し擬似粒子として造粒
した後焼結機に装入し1点火炉で原料表層部に点火して
下向きに空気を吸引せしめるととKより原料中のコーク
スを燃焼させ、その発熱により原料粒子相互の焼結反応
な(・し溶融(半溶融)反応を図り、これを冷却するこ
とにより気孔率が高く、原料の鉄鉱石とは全く異った鉱
物組成を形成するものであるが、ここで擬似粒子化とは
前記造粒過楊で水の表面張力により核となる粗粒(核粒
子)の周りに微粉(耐着粒子)を耐着させることであり
In other words, the sintering process in a sintering machine such as the Dwight Lloyd type, which is generally adopted for such sintering purposes, mixes the iron ore, miscellaneous raw materials, slag forming agent, coke, etc. that make up the blended raw materials. At the same time, water is added and the material is granulated as pseudo particles, then charged into a sintering machine, the surface layer of the material is ignited in an ignition furnace, and air is sucked downward. The heat generated causes a sintering or melting (semi-melting) reaction between the raw material particles, and by cooling this, a mineral composition with high porosity and completely different from that of the raw material iron ore is formed. However, pseudo-particle formation here means that fine powder (adhesion-resistant particles) is made to adhere around coarse particles (core particles) that become cores due to the surface tension of water in the granulation filter.

暁ベットにお〜・て通気性を確保し均−且つ的確な焼結
を円滑に進行せしめ、その生産性、品質およびコークス
原単位を確保する上にお(・て枢要な工程である。とこ
ろがこのような擬似粒子造粒過程で極端に大きな粒子や
核粒子および耐着粒子の何れともなり得な(・ような中
間粒子が混入した場合にはその造粒成形が乱され、又略
均等な造粒が得られ難いこととなって、何れにしても円
滑適切な造粒をなし得な〜・こととなる。又焼結過程は
種々の化学組成をもつ混合粉体の中、融液の発生し易〜
・粒子の組合わせ(低融点の化学組成領緘に相当した粒
子の組合わせ)のところから融液が生成し、昇温と共に
その量が増加し且つ拡がって融液間の反応及び合体を通
じて結合が進むものと昭められるが、高温での滞留時間
が短し・ため前記滴下の焼結粉粒のように主として51
以上の粒径をもった粗粒原料は完全に溶融せず第4図に
示すように未反応のまま残留することが多く、一方擬似
粒子の粒径が小さく焼結ベッドの通気性が損われる場合
にはムラ焼けなどを発生して焼結の生産性、コークス原
単位を悪化し、焼結鉱の品質も大幅に低下することとな
る。
This is an important process to ensure air permeability in the Akatsuki bed, to facilitate uniform and accurate sintering, and to ensure productivity, quality, and coke consumption. In the process of granulating pseudo-particles, if intermediate particles such as extremely large particles, core particles, or adhesion-resistant particles are mixed in, the granulation will be disrupted, and the granulation will be approximately uniform. This makes it difficult to obtain granulation, and in any case, smooth and appropriate granulation cannot be achieved.In addition, the sintering process involves mixing the melt in a mixed powder with various chemical compositions. Easy to occur ~
・A melt is generated from a combination of particles (a combination of particles corresponding to a chemical composition range with a low melting point), and as the temperature rises, its amount increases and spreads, and it is bonded through reactions and coalescence between the melts. However, due to the short residence time at high temperatures, the sintered powder grains that were dropped are mainly 51
Coarse-grained raw materials with a particle size above the above are often not completely melted and remain unreacted as shown in Figure 4, while the particle size of pseudo particles is small and the permeability of the sintering bed is impaired. In this case, uneven burning occurs, which deteriorates sintering productivity and coke consumption rate, and the quality of the sintered ore deteriorates significantly.

本発明は上記したような実情に鑑み仔細な検討と推考を
重ねて創案されたものであって。
The present invention was created after careful consideration and speculation in view of the above-mentioned circumstances.

焼結工場から高炉に成品焼結鉱を送る搬送系MK粉抜き
スクリーンを設けて細粒分を除去するととてより高炉へ
の細粒分混入を防止し、しかも前記粉抜きスクリーンに
よって篩別された篩下を51及び2簡の各分級点で夫々
再#、l!s別せしめ、その2〜5mの一部又は全部を
そのまま焼結用原料として使用し、一方その2m以下を
更に0−5 M未満に微粉砕し擬似粒子成形に適した瞬
結原料とすることを提案するものである。
By installing an MK powder removal screen in the transport system for transporting the finished sintered ore from the sintering factory to the blast furnace to remove fine particles, it is possible to prevent the fine particles from entering the blast furnace. Re-sieve the bottom of the sieve at each classification point of 51 and 2 points, respectively # and l! Separate the s and use part or all of the 2 to 5 m as raw material for sintering, while the 2 m or less is further pulverized to less than 0-5 M and used as an instant sintering raw material suitable for pseudo particle forming. This is what we propose.

このような本発明につ(・て史に説明すると、上記し九
ような本発明方法な実施するに適したフローの1例は第
1図と第2図に示す通りであり、第1図に示すものにお
〜・ては焼結機1で焼結された焼結鉱がクラッシャー2
で破砕されてから一旦貯室3に収容されたものが焼結工
場最終スクリーン4を経て高炉10側の鉱石槽7に送ら
れ、該鉱石槽Tに附設された庫下s8により篩別され、
その篩上が高炉10に装入され、篩下は返鉱とされるも
のであるが、本発明にお(・ては上記のような焼結工場
最終スクリーン4から鉱石槽7に到る搬送系に第1、第
2の粉液スクリーン5,6を設け、これらの粉液スクリ
ーン5.6の篩下な前記スクリーン8の篩下と共に多段
スクリーン12に供給する。即ちこの多段スクリーン1
2にお(・て上段が5−のスクリーンで下段が2mのス
クリーンであ妙、上段スクリーン篩上16はそのまま高
炉に送られ、下段スクリーンの篩上17はそのまま焼結
鉱原料として積付部14に送られるが、下段スクリーン
の篩下1Bは史にロッドミル13にきられて微粉化され
、全量が0.5 m以下とされてから横付部14に送ら
れて焼結鉱の原料とされるように成っている。
To briefly explain the present invention, one example of a flow suitable for carrying out the method of the present invention as described above is shown in FIGS. 1 and 2, and FIG. The sintered ore sintered in the sintering machine 1 is transferred to the crusher 2.
After being crushed in the storage chamber 3, the crushed ore is sent to the ore tank 7 on the blast furnace 10 side through the sintering factory final screen 4, and is sieved by the lower storage s8 attached to the ore tank T.
The upper part of the sieve is charged into the blast furnace 10, and the lower part of the sieve is used as return ore. The system is provided with first and second liquid powder screens 5 and 6, and the under-sieves of these liquid powder screens 5 and 6 and the under-sieve of the screen 8 are supplied to the multi-stage screen 12. That is, the multi-stage screen 1
In 2, the upper screen is a 5-meter screen and the lower screen is a 2m screen.The upper screen 16 is sent to the blast furnace as it is, and the lower screen 17 is sent to the loading section as sintered ore raw material. The sieve 1B of the lower screen is cut into a fine powder by the rod mill 13, and after the total amount is reduced to 0.5 m or less, it is sent to the horizontal section 14 where it is used as a raw material for sintered ore. It is designed to be done.

第2図に示すものにお(・ても全般的な構成関係は第1
図に示したものと同様であるが、前記多段スクリーン1
2における上段スクリーンの篩上16はそのまま高炉1
11C送られることなくロッドミル15に送られて粉砕
処理を受けてから再び多段スクリーン12に送られるよ
うにしたものであり、下段スクリーンの篩上1Tおよび
篩下につ(・ての処理は第1図に示すものと同然である
Although the general structural relationship is the same as shown in Figure 2,
Similar to that shown in the figure, the multi-stage screen 1
The sieve top 16 of the upper screen in 2 is directly transferred to the blast furnace 1.
11C, it is sent to the rod mill 15 and subjected to pulverization processing, and then sent to the multistage screen 12 again. It is the same as shown in the figure.

上記したようなフローによる作用につ(・て説明すると
、上記した庫下篩8のみ、これに第1の粉砕スクリーン
5のみを併用した場合および第1、第2の粉液スクリー
ン5.6を用(・た場合のトータル粉率は一般的に次の
第1表に示すよってなる。
Regarding the effect of the flow as described above, in the case where only the above-mentioned lower sieve 8 is used together with only the first crushing screen 5, and when the first and second powder screens 5.6 are used together. In general, the total powder ratio when using (・) is as shown in Table 1 below.

第1表 粉率は成品通過量に対する一511II粉の割合である
The powder ratio in Table 1 is the ratio of 1511II powder to the amount of product passing through.

即ち上記のように第1、第2の粉液スクリーン5又は5
,6を用(・ることKよりトータル粉率は約11%又は
約14%と大幅に増加することになり、従って高炉10
に装入される焼結鉱の粉量は大幅に低減されることは明
かであり、この具体的な関係に′:)L・ては第3図に
示す通りであって−5−の粉率増加に伴〜・V/ΔPが
低下し、スリップの発生回数も大幅に増加することとな
る。
That is, as described above, the first and second powder screens 5 or 5
, 6 (from KotoK, the total powder ratio will be significantly increased to about 11% or 14%, so the blast furnace 10
It is clear that the amount of sintered ore powder charged is significantly reduced, and this specific relationship is as shown in Figure 3. As the ratio increases, V/ΔP decreases, and the number of times slips occur increases significantly.

又1例として上記鉱石槽Tの庫下篩8につ(・ての篩下
の粒度を測定した結果は次の第2表の通りであって、5
mm以上が40%以上も含有されている。
As an example, the particle size of the bottom sieve 8 of the ore tank T was measured as shown in Table 2 below.
The content is 40% or more of mm or more.

第2表(飼 ところがこのような粗粒(5鳩以上)は焼結に悪影響を
及ぼすことは前記し第4図に示した通りであり、このよ
うな庫下篩8の篩下を粉液スクリーン5,6の篩下と共
に多段スクリーン12に送って上段スクリーンにより5
1の分級点で篩分けし、その篩上な高炉10に送ること
により庫下粉だけからでも40%以上の5■以上の粗粒
分を回収でき、全般的には高炉装入量の増大を来し、し
かもこの高炉装入原料に訃ける5+s未満粉粒量が大幅
に低減されると共に焼結原料として回送される原料中の
5−以上粗粒量も大きく縮減され、何れの面からも好ま
しく・−石三島の効果をもたらす。即ち斯うした篩下粉
における粒度分布は上記のような改善前後にお(・て次
の第3表のように変化する。
Table 2 (As mentioned above, such coarse particles (more than 5 grains) have a negative effect on sintering, as shown in Figure 4. It is sent to the multi-stage screen 12 together with the lower sieves of screens 5 and 6, and is passed through the upper screen to 5
By sieving at classification point 1 and sending it to the blast furnace 10 above the sieve, more than 40% of the coarse particles of 5 cm or more can be recovered from just the powder under the warehouse, and the amount charged to the blast furnace is generally increased. Furthermore, the amount of particles less than 5+s that fall into the raw material charged into the blast furnace is significantly reduced, and the amount of coarse particles greater than 5-s in the raw material sent as sintering raw material is also greatly reduced. It is also preferable--brings the effect of Ishimishima. That is, the particle size distribution of the under-sieve powder changes as shown in Table 3 before and after the above-mentioned improvement.

第3表 焼結原料は一般的にその混合、水分添加、造粒過程で2
〜5mの粒子を核とし、その周囲に帆51未満の微粉を
附着して擬似粒子を形成するが、2〜0.5 mの粒子
は核にもならず、又耐着粉ともなり難〜・ところから単
独のままで存在し着物率分布として検討すると第6図に
示すようなこととなる。そこで本発明ではこのような事
実関係を踏まえて上記した多段スクリーン12における
下段スクリーンの篩上をそのまま上記した造粒核となる
焼結原料として回送し、一方それより粒度の小さし・2
■以下のものにつ(・てのみロードミル13による微細
化処理を経しめ、その全量を()、51以下として焼結
原料に回送する。即ちこのようにする仁とにより造粒核
とそれに対する耐着細粉のみとなり、それらの何れにも
属せず、仮りに附着しても容易に剥脱するような不安定
な粒子はなくなることとなり、特K O,5tpm以下
の耐着粉粒を配合原料中[10チ以上と多配合すること
が可能となり、a粒時において目的の擬似粒子を的確且
つ有効に形成すると共に、このようにして耐着粒子の多
配合されたものは第7図に示すように焼結速度、成品−
歩留、生産率、強度、コークス原単位および耐還元粉化
性の如きの何れからしても硬質の焼結鉱を得しめる。即
ち0.5〜2曝のように造粒核とも耐着粒子ともなりM
R・中間粒度の粉粒が混在したものは焼結ペッドでの通
気性を阻害し、その生産性その他を劣化するもので、こ
のような原因を解消するならばこの第7図に示すような
有利な焼結鉱の製造を図り得る。このような技術性から
して単VC0,5〜2mの下段スクリーン篩上のみでは
耐着粒子又は核粒子の何れか一方の不足するような場合
に第2図に示す如く多段スクリーン12の上段スクリー
ン篩上1Bをロードミル15に送って粉砕し、これを再
び多段スクリーン12に送って篩別し上記耐着粒子の不
足を補うことにより、適切な造粒焼結作業を実施し得る
Table 3: Sintered raw materials are generally used in the mixing, water addition, and granulation processes.
Particles of ~5 m are used as cores, and fine powder of less than 51 mm is attached around them to form pseudo particles, but particles of 2 to 0.5 m do not become cores and are difficult to become powder-resistant. -However, if it exists alone and is considered as a kimono rate distribution, it will be as shown in Figure 6. Therefore, in the present invention, based on such facts, the sieve surface of the lower screen in the multi-stage screen 12 described above is sent as is as the sintering raw material that becomes the granulation nuclei, and on the other hand, the sintered material with a smaller particle size
■The following items (-) are subjected to a finer treatment using a tensile road mill 13, and the entire amount () is reduced to 51 or less and sent to the sintering raw material. Only the adhesion-resistant fine powder is present, and there are no unstable particles that do not belong to any of these types and would easily peel off even if they were attached, and special adhesion-resistant powder particles of KO, 5 tpm or less are blended. It is now possible to mix more than 10 particles in the raw material, and the desired pseudo-particles can be accurately and effectively formed at the time of a grain. Sintering speed, finished product as shown
Hard sintered ore can be obtained in terms of yield, production rate, strength, coke consumption, and resistance to reduction powdering. In other words, as in the case of 0.5 to 2 exposures, both granulation nuclei and adhesion-resistant particles become M
A mixture of powder particles with R/intermediate particle size obstructs the air permeability of the sintered ped and deteriorates its productivity and other aspects.To eliminate this cause, it is necessary to use the method shown in Fig. 7. It is possible to produce advantageous sintered ore. In view of such technical characteristics, if only the lower screen sieve with a single VC of 0.5 to 2 m is insufficient in either adhesion-resistant particles or core particles, the upper screen of the multi-stage screen 12 as shown in Fig. 2 may be used. Appropriate granulation and sintering work can be carried out by sending the sieved material 1B to the road mill 15 for pulverization, and then sending it again to the multistage screen 12 for sieving to compensate for the lack of adhesion-resistant particles.

本発明方法によるものの具体的な実施例につ(・て、そ
の比較例たる従来例と共に説明すると以下の如くである
A specific example of the method according to the present invention will be described below along with a conventional example as a comparative example.

実施例1 前記した第1図に示す装置によって実施した。Example 1 The experiment was carried out using the apparatus shown in FIG. 1 described above.

先ず従来例として鉄鉱石、石灰石、ドロマイト、ケイ石
、蛇紋岩、コークス、返鉱な配合したものKお℃・て、
後述本発明実施例1と同じ配合割合をとったものは次の
第4表の通りである。
First, as a conventional example, a mixture of iron ore, limestone, dolomite, silica, serpentine, coke, and return ore is used.
Table 4 below shows the same blending ratios as in Example 1 of the present invention, which will be described later.

これに対し第1図の装置で本発明を実施したものの配合
は次の第5表の通りであって、スクリーン5,6及び8
からの篩下11が多段スクリーン12で箇別され、その
上段スクリーン篩上は高炉10に送られ、下段スクリー
ンの篩上は更に微粉化されて配合されることから粒度組
成にお(・て相当に異ったものとなる。
On the other hand, the composition of the apparatus in which the present invention is implemented using the apparatus shown in FIG. 1 is as shown in Table 5 below.
The lower sieve 11 from the screen is separated by a multi-stage screen 12, the upper screen sieve is sent to the blast furnace 10, and the lower screen sieve is further pulverized and blended. It will be different.

上記のような配合によるものは何れも水を加えて造粒し
たものを50−試験鋼により負圧1300smムqで吸
引し、鍋焼給鉱となしたが、この焼結鉱の製造結果及び
その製品品質につ(゛て測定した結果を要約して示すと
次の第6表の通りである。。
All of the above-mentioned compositions were granulated by adding water and suctioned with a negative pressure of 1300 smq using a 50-test steel to produce pot sintered ore. The results of the product quality measurements are summarized in Table 6 below.

第6表 □ 即ち本発明によるものは焼結鉱の生産率。Table 6 □ That is, the production rate of sintered ore according to the present invention.

強度、成品歩留を共に向上し、しかも還元粉化率(RD
I)を低減し、RIを向上し得るものであり、−丈高炉
操業にお〜・ても好まし〜゛結果得しめることが確認さ
れた。
Improves both strength and product yield, and reduces reduction rate (RD)
It has been confirmed that this method can reduce I) and improve RI, which is also favorable for long blast furnace operation.

実施例2 第2図に示した装置によって本発明方法を実施した。Example 2 The method of the present invention was carried out using the apparatus shown in FIG.

即ち配合割合を同じとした従来法の焼結鉱製造のための
配合関係は次の第7表に示す通りである。
That is, the composition relationship for producing sintered ore by the conventional method with the same composition ratio is as shown in Table 7 below.

これに対し第2図の装置によって処理された本発明の実
施例2による配合は次の第8表のようになる。
On the other hand, the formulation according to Example 2 of the present invention processed by the apparatus shown in FIG. 2 is as shown in Table 8 below.

これらの配合によるものは実施例1と同様に造粒、焼結
した結果について実施例1と同様に示すと次の第9表の
通りである。
These formulations were granulated and sintered in the same manner as in Example 1, and the results are shown in Table 9 below.

第9!I! 即ちこの場合においても実施例と同等以上に何れも好ま
しい結果を得ることができた。
Ninth! I! That is, in this case as well, results that were equal to or better than those of the examples could be obtained.

以上説明したような本発明によるときは高炉に装入され
る焼結鉱中の微細粉粒を有効に除去して安定した有利な
高炉操業を実現し得ると共に焼結鉱の製造に関しても的
確な擬似粒子形成を図り好ましく・焼結鉱の生産を鵠し
め、生産率や成品歩留りを向上し得ると共に強度や耐還
元粉化性などに卓越した成品を提係し得るものであって
何れの面からしても工業的効果の大き〜・発明である。
According to the present invention as described above, it is possible to effectively remove fine particles from sintered ore charged into a blast furnace, thereby realizing stable and advantageous blast furnace operation, and also to accurately produce sintered ore. It is possible to improve the production of sintered ore by aiming at the formation of pseudo-particles, and to improve the production rate and product yield, as well as to provide products with excellent strength and reduction powdering resistance. This is an invention with great industrial effects.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明の技術的内容を示すものであって、第1図
と第2図は夫々本発明の製造フローの1例を示した説明
図、第3図は高炉内通気性およびスリップの発生と装入
物中5−未満の粉粒量との関係を示した図表、第4図は
焼結鉱製造時における5−以上の粗粒原料と元鉱残留率
の関係を示した図表、第5図は−じ〈焼結鉱につ(・て
の強度と5−以上の粗粒原料配合率との関係を示した図
表、第6図は焼結鉱造粒時における原料粉粒の粒度分布
と清粉率の関係を示した図表、第7図は篩下粉配合率と
得られる焼結鉱につ〜・ての焼結性状の関係を示した図
表である。 然してこれらの図面にお〜・て、1は焼結機、5.6は
夫々粉液きスクリーン、8は庫下篩。 10は高炉、11は篩下返鉱、12は多段スクリーン、
13はロッドミル、14は積付部。 16は多段スクリーンの篩上、17は多段スクリーンの
下段スクリーン篩上、18は0.5−以下とされた耐着
粒子用造粒原料を示すものである。 特許出願人 日本鋼管株式会社 発   明   者 山   岡   洋 次 部間 
         堀   1)  裕   大同  
        古   川   和   博111、
s   III −1ms*(零) 纂タ  I す5m露(亨ど) 箒 イ  1 @7@
The drawings show the technical content of the present invention, and Figures 1 and 2 are explanatory diagrams showing an example of the manufacturing flow of the present invention, respectively, and Figure 3 shows the ventilation inside the blast furnace and the occurrence of slip. Figure 4 is a diagram showing the relationship between the amount of grains of less than 5 in the charge, and Figure 4 is a diagram showing the relationship between the raw material with coarse grains of 5 or more and the residual rate of original ore during the production of sintered ore. Figure 5 is a chart showing the relationship between the strength of sintered ore and the blending ratio of coarse grain raw materials of 5 or more, and Figure 6 shows the particle size of raw material powder during granulation of sintered ore. Figure 7 is a diagram showing the relationship between distribution and refined powder ratio, and Figure 7 is a diagram showing the relationship between the under-sieve powder content ratio and the sintered properties of the obtained sintered ore. 1 is a sintering machine, 5.6 is a powder screen, 8 is a sieve under the warehouse, 10 is a blast furnace, 11 is a return ore under the sieve, 12 is a multistage screen,
13 is a rod mill, 14 is a loading section. 16 is on the sieve of the multistage screen, 17 is on the lower screen of the multistage screen, and 18 is the granulation material for adhesion-resistant particles having a particle size of 0.5 or less. Patent applicant: Nippon Kokan Co., Ltd. Inventor: Yoji Yamaoka
Hori 1) Yutaka Daido
Kazuhiro Furukawa 111,
s III -1ms* (zero) 纂田 I su5m dew (to) Broom I 1 @7@

Claims (1)

【特許請求の範囲】 1 焼結工場から高炉に成品焼結鉱を送る搬送系路に粉
抜きスクリーンを設けて細粒分を除去することにより高
炉への細粒分混入を防止し、しかも前記粉抜きスクリー
ンによって篩別され走部下を5■及び2■の各分級点で
夫々再度篩別せしめ、その2〜5日の一部又は全部をそ
のまま焼結用原料として使用し、一方その2−以下を更
KO15−未満に微粉砕して擬似粒子形成に適した焼結
用原料とすることを特徴とする焼結鉱の処理方法。 2 焼結工場から高炉への成品焼結鉱搬送系路に粉抜き
スクリーンを重複して設は細粒分を除去する特許請求の
範囲第1項に記載の焼結鉱の処理方法。 3 粉抜きスクリーンで篩別された篩下における51以
上の粗粒をその11高炉装入用とする特許請求の範囲第
1項又は第2項に記載の焼結鉱の処理方法。 4 粉抜きスクリーンで篩別され念篩下における5ms
+以上の粗粒を粉砕してから再び篩別して得られる2〜
5■をそのまま焼結用原料とし、2暉以下の全量を再度
0.5−以下に微粉砕して擬似粒子形成に適した焼結用
原料とする特許請求の範囲第1項又は第2項に記載の焼
結鉱の処理方法。 50.5−以下の微細粉粒を10嗟以上配合して造粒焼
結する特許請求の範囲第1項から第4項の何れかに記載
の焼結鉱の処理方法。
[Scope of Claims] 1. A powder removal screen is provided on the conveyance path for transporting finished sintered ore from a sintering factory to a blast furnace to remove fine particles, thereby preventing fine particles from entering the blast furnace. After being sieved by a powder removal screen, the running part was sieved again at each classification point of 5■ and 2■, and part or all of the 2 to 5 days was used as raw material for sintering, while the 2- A method for processing sintered ore, which comprises further pulverizing the following to less than KO15 to obtain a raw material for sintering suitable for forming pseudo-particles. 2. The method for treating sintered ore according to claim 1, wherein fine particles are removed by installing overlapping dust removal screens in the finished sintered ore transport system from the sintering factory to the blast furnace. 3. The method for treating sintered ore according to claim 1 or 2, wherein the coarse particles of 51 or more in the bottom of the sieve that have been sieved with a dust removal screen are used for charging into the blast furnace. 4. 5ms after being sieved with a powder removal screen and under a fine sieve.
2~ obtained by crushing coarse particles of + or more and then sieving again
5) is used as a raw material for sintering as it is, and the total amount of less than 2 hours is pulverized again to 0.5- or less to obtain a raw material for sintering suitable for forming pseudo particles.Claim 1 or 2 The method for processing sintered ore described in . 5. A method for treating sintered ore according to any one of claims 1 to 4, which comprises blending 10 times or more of fine powder particles having a particle diameter of 50.5 or less and granulating and sintering the mixture.
JP13833481A 1981-09-04 1981-09-04 How to process sintered ore Expired JPS5935971B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13833481A JPS5935971B2 (en) 1981-09-04 1981-09-04 How to process sintered ore

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13833481A JPS5935971B2 (en) 1981-09-04 1981-09-04 How to process sintered ore

Publications (2)

Publication Number Publication Date
JPS5839748A true JPS5839748A (en) 1983-03-08
JPS5935971B2 JPS5935971B2 (en) 1984-08-31

Family

ID=15219475

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13833481A Expired JPS5935971B2 (en) 1981-09-04 1981-09-04 How to process sintered ore

Country Status (1)

Country Link
JP (1) JPS5935971B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0238256A (en) * 1988-05-25 1990-02-07 Ferag Ag Device for editing at least two print section

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63193271U (en) * 1987-05-28 1988-12-13
JPH03127380U (en) * 1990-04-03 1991-12-20
JPH05290246A (en) * 1992-04-08 1993-11-05 Daiki:Kk Ornamental seal kit for prepaid card and ornamental method for prepaid card

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0238256A (en) * 1988-05-25 1990-02-07 Ferag Ag Device for editing at least two print section

Also Published As

Publication number Publication date
JPS5935971B2 (en) 1984-08-31

Similar Documents

Publication Publication Date Title
EA031206B1 (en) Method for producing manganese containing ferroalloy
JPH0379729A (en) Manufacture of fired pellet
EP0614993B1 (en) Method for producing sintered ore
JPS5839748A (en) Treatment of sintered ore
JP3397091B2 (en) Sinter production method
CN114934173A (en) Reinforced sintering method for fuel fractional addition
JP4087982B2 (en) Granulation method for raw materials for sintering with excellent flammability
JP2000063960A (en) Production of sintered ore
JP2002226920A (en) Sintered ore manufacturing method, and sintered ore
JP3797184B2 (en) Method for producing sintered ore
JP3675105B2 (en) Sintering raw material processing method
JPS5817813B2 (en) A method to improve productivity in the production of sintered ore using fine iron ore
JPH0778256B2 (en) Manufacturing method of mini pellet for sintering
JP2009209408A (en) Method for producing sintered ore
JP2701178B2 (en) Pre-treatment method of sinter ore raw material for blast furnace
JP3198468B2 (en) Sinter production method
JPH07166248A (en) Production of burnt agglomerated ore
JPS60145333A (en) Manufacture of starting material to be sintered
JP2001164325A (en) Method for manufacturing sintered ore for blast furnace and operational method for manufacturing sintered ore for blast furnace
JPH05311252A (en) Manufacture of fired aggregated ore
JPH11236628A (en) Pre-treatment of sintering raw material
JPH05195088A (en) Pre-treatment of raw sintered ore for blast furnace
JPH05311254A (en) Production of sintered ore
KR101525067B1 (en) Method for adjusting precursor powder for sintered ore, and precursor powder for sintered ore
JPH06136456A (en) Production of sintered ore