JPS5839251B2 - magnetic bearing device - Google Patents

magnetic bearing device

Info

Publication number
JPS5839251B2
JPS5839251B2 JP18146580A JP18146580A JPS5839251B2 JP S5839251 B2 JPS5839251 B2 JP S5839251B2 JP 18146580 A JP18146580 A JP 18146580A JP 18146580 A JP18146580 A JP 18146580A JP S5839251 B2 JPS5839251 B2 JP S5839251B2
Authority
JP
Japan
Prior art keywords
yoke
electromagnetic
magnetic
rotor
radial direction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP18146580A
Other languages
Japanese (ja)
Other versions
JPS57103926A (en
Inventor
力 村上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KOKU UCHU GIJUTSU KENKYU SHOCHO
Original Assignee
KOKU UCHU GIJUTSU KENKYU SHOCHO
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KOKU UCHU GIJUTSU KENKYU SHOCHO filed Critical KOKU UCHU GIJUTSU KENKYU SHOCHO
Priority to JP18146580A priority Critical patent/JPS5839251B2/en
Publication of JPS57103926A publication Critical patent/JPS57103926A/en
Publication of JPS5839251B2 publication Critical patent/JPS5839251B2/en
Expired legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/04Bearings not otherwise provided for using magnetic or electric supporting means
    • F16C32/0406Magnetic bearings
    • F16C32/044Active magnetic bearings
    • F16C32/0459Details of the magnetic circuit
    • F16C32/0461Details of the magnetic circuit of stationary parts of the magnetic circuit
    • F16C32/0465Details of the magnetic circuit of stationary parts of the magnetic circuit with permanent magnets provided in the magnetic circuit of the electromagnets

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Mechanical Engineering (AREA)
  • Magnetic Bearings And Hydrostatic Bearings (AREA)

Description

【発明の詳細な説明】 本発明は、永久磁石の吸引力と電磁コイルの制御吸引力
との相互作用により、ステータ部に対しロータ部を非接
触で支持する磁気軸受装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a magnetic bearing device that supports a rotor part in a non-contact manner with respect to a stator part through the interaction of the attractive force of a permanent magnet and the controlled attractive force of an electromagnetic coil.

磁気軸受とは、回転している物体を支持する力として、
磁気力を利用する軸受である。
A magnetic bearing is a force that supports a rotating object.
This is a bearing that uses magnetic force.

この磁気軸受は摩擦・疲労による寿命の制限がないこと
、摩擦トルクが極めて小さいこと、真空・高温・低温等
の特殊な環境に対する適合性が優れている等の著しい特
色があるために近年盛んに研究されている。
These magnetic bearings have become popular in recent years due to their remarkable characteristics, such as no life limit due to friction or fatigue, extremely low friction torque, and excellent suitability for special environments such as vacuum, high temperature, and low temperature. being researched.

そしてこの用途としては、例えば遠心分離器、真空ポン
プ、ジャイロ、精密測定器、人工衛星用制御機器等の使
用が有望視されている。
As for this application, for example, use in centrifugal separators, vacuum pumps, gyros, precision measuring instruments, control equipment for artificial satellites, etc. is considered to be promising.

一般には、この種の磁気軸受は永久磁石と電磁コイルと
を使用し、永久磁石による吸引力の不平衡を、電磁コイ
ルによる吸引力で平衡させるようになっている。
Generally, this type of magnetic bearing uses a permanent magnet and an electromagnetic coil, and the unbalanced attraction force of the permanent magnet is balanced by the attraction force of the electromagnetic coil.

然しなから回転軸と直交方向の軸廻り剛性を向上させる
ために、一般には軸方向に背が高くかつ無駄な重量が多
く、小型で軽量化が要求される人工衛星等の搭載には不
適当なものが多かった。
However, in order to improve the rigidity around the axis in the direction orthogonal to the rotation axis, it is generally taller in the axial direction and has a lot of unnecessary weight, making it unsuitable for mounting on artificial satellites etc. that require small size and light weight. There were many things.

本発明の目的は、上述の欠点を解消すると共に、ロータ
部をステータ部に対し回転させながら、かつロータ部を
ステータ部に対し姿勢の制御もでき、しかも回転中のロ
ータの振れ廻りをも減衰可能な磁気軸受装置を提供する
ことにあり、その内容は、非接触で相対的に回転し得る
ロータ部とステータ部とを有する2組の磁気軸受から放
り、各々のロータ部同志及びステータ部同志を非磁性体
から成る連結部材により接続した装置であって、少なく
とも一方の磁気軸受に於いて、ロータ部或いはステータ
部又はこれら双方に永久磁石を介在し、ロータ部は円環
状のヨークから成り、その外周部は回転軸方向を句〈2
個の端部を有し、内周部は回転軸の半径方向を向く端部
を有し、ステータ部ば回転軸の半径方向の外側に配置す
る磁性体から成る円環状の第1の電磁ヨークと、内側に
配置する磁性体から成る円状の第2の電磁ヨークとを有
し第1の電磁ヨークは、第1の電磁コイルを巻回すると
共に、円周方向に沿った開口部を設け、該開口部内に挿
入したロータ部ヨークの前記外周部の端部との間に、永
久磁石及び第1の電磁コイルによる磁束を軸方向に通過
させる第1及び第2の空隙磁路を形成し、第2の電磁ヨ
ークは、ロータ部ヨークの内周部の前記回転軸の半径方
向を向く端部と対向して第3の空隙磁路を形成する半径
方向を向く端部を有すると共に、前記第3の空隙磁路を
形成する第2の電磁ヨークの端部を軸対称に3個以上に
分割し、分割された第2の電磁ヨーク部分の少なくとも
2個に第2の電磁コイルを巻回し永久磁石及び第2の電
磁コイルによる磁束を第3の空隙磁路では半径方向に通
過させるようにしたことを特徴とするものである。
It is an object of the present invention to eliminate the above-mentioned drawbacks, and also to be able to control the attitude of the rotor part relative to the stator part while rotating the rotor part relative to the stator part, and to also attenuate the wobbling of the rotating rotor. The purpose is to provide a possible magnetic bearing device, which consists of two sets of magnetic bearings each having a rotor part and a stator part that can rotate relative to each other in a non-contact manner. are connected by a connecting member made of a non-magnetic material, in which at least one of the magnetic bearings has a permanent magnet interposed in the rotor part, the stator part, or both, the rotor part consisting of an annular yoke, Its outer periphery is expressed in the direction of the rotational axis.
an annular first electromagnetic yoke made of a magnetic material, the inner peripheral part of which has an end facing in the radial direction of the rotating shaft, and the stator part of which is disposed outside the rotating shaft in the radial direction; and a circular second electromagnetic yoke made of a magnetic material disposed inside. , forming first and second air-gap magnetic paths through which the magnetic flux from the permanent magnet and the first electromagnetic coil passes in the axial direction between the outer circumferential end of the rotor yoke inserted into the opening. , the second electromagnetic yoke has an end facing in the radial direction forming a third air gap magnetic path opposite to the end facing in the radial direction of the rotating shaft of the inner peripheral part of the rotor part yoke, and The end of the second electromagnetic yoke that forms the third air gap magnetic path is divided into three or more parts axially symmetrically, and a second electromagnetic coil is wound around at least two of the divided second electromagnetic yoke parts. It is characterized in that the magnetic flux generated by the permanent magnet and the second electromagnetic coil is passed through the third air gap magnetic path in the radial direction.

本発明を図示の実施例に基づいて詳細に説明する。The present invention will be explained in detail based on illustrated embodiments.

第1図は本発明に係る磁気軸受装置の縦断面図であり、
第2図は第1図の■−■線に沿った拡大断面図である。
FIG. 1 is a longitudinal sectional view of a magnetic bearing device according to the present invention,
FIG. 2 is an enlarged sectional view taken along the line ■-■ in FIG. 1.

本装置は2個の磁気軸受1,1′から成り、磁気軸受1
と磁気軸受1′とは上下対称に構成されている。
This device consists of two magnetic bearings 1 and 1'.
and the magnetic bearing 1' are configured vertically symmetrically.

磁気軸受1,1′は、それぞれロータ部2とステータ部
3を有し、ロータ部2,2同志及びステータ部3,3同
志は、例えばアルミニウム、銅等の非磁性体から成る連
結部材4,5によって連結されている。
The magnetic bearings 1 and 1' each have a rotor part 2 and a stator part 3, and the rotor parts 2 and 2 and the stator parts 3 and 3 each have a connecting member 4 made of a non-magnetic material such as aluminum or copper. connected by 5.

ロータ部2は円環状の磁性体のヨーク6から成シ、外周
部はT字状に形成され、その2個の端部7,8は軸Z、
Z方向を向いて配置され、内周部は2個の端部9,10
に形成され、一方の端部9は半径方向を向き他方の端部
10は軸方向を向いている。
The rotor part 2 is made up of an annular magnetic yoke 6, and its outer peripheral part is formed in a T-shape, and its two ends 7 and 8 are connected to the axis Z,
It is arranged facing the Z direction, and the inner peripheral part has two end parts 9 and 10.
, with one end 9 facing in the radial direction and the other end 10 facing in the axial direction.

ステータ部3は2個の径の異る円環状の第1の電磁ヨー
ク11と略円板状の第2の電磁ヨーク12から成り、電
磁ヨーク11.12同志は半径方向に磁化された永久磁
石13に接続されている。
The stator section 3 consists of two annular first electromagnetic yokes 11 and a substantially disk-shaped second electromagnetic yoke 12 with different diameters, and the electromagnetic yokes 11 and 12 are permanent magnets magnetized in the radial direction. 13.

外側に配置された第1の電磁ヨーク11はその一部に第
1の電磁コイル14が巻回された断面四角形の枠体から
成り、その内側には円周方向に沿って開口部15が設け
られ、その開口部15内にロータ部2のヨーク6のT字
状端部7,8が挿入され、開口部15の端部16,17
との間に第1及び第2の空隙磁路18及び19が形成さ
れている。
The first electromagnetic yoke 11 disposed on the outside consists of a frame with a rectangular cross section around which the first electromagnetic coil 14 is wound, and an opening 15 is provided inside the frame along the circumferential direction. The T-shaped ends 7 and 8 of the yoke 6 of the rotor section 2 are inserted into the opening 15, and the ends 16 and 17 of the opening 15 are inserted.
First and second air gap magnetic paths 18 and 19 are formed between the two.

内側に配置された第2の電磁ヨーク12は片側の断面が
四角形の枠体の外隅部が円周方向に沿って切欠されてト
リ、との切欠によって生じた半径方向を向く端部20は
軸対称に例えば十字状の分割部分21a。
The second electromagnetic yoke 12 disposed inside has a rectangular cross section on one side, and an outer corner of the frame is notched along the circumferential direction. For example, a cross-shaped divided portion 21a is axially symmetrical.

21b、21c、21dに分割されてむり、かつ分割さ
れた分割部分21a〜21dごとに第2の電磁コイル2
2a、22b、22c、22dが巻回されている。
21b, 21c, and 21d, and a second electromagnetic coil 2 is provided for each divided portion 21a to 21d.
2a, 22b, 22c, and 22d are wound.

この分割部分21a〜21dから成る端部20はロータ
部2のヨーク6の半径方向を向く端部9と対向して第3
の空隙磁路23を形成している。
The end portion 20 consisting of the divided portions 21a to 21d is located at the third end facing the end portion 9 of the yoke 6 of the rotor portion 2 facing in the radial direction.
An air gap magnetic path 23 is formed.

又、第2の電磁ヨーク12の他方の端部24は軸方向を
向き、ロータ部2のヨーク6の端部10と対向し、第4
の空隙磁路25が形成されている。
The other end 24 of the second electromagnetic yoke 12 faces the axial direction and faces the end 10 of the yoke 6 of the rotor section 2.
An air gap magnetic path 25 is formed.

そしてロータ部2の軸方向の位置を検出するための1個
の軸方向位置検出器26がステータ部3に取付けられて
配置され、軸方向制御回路27を介して2組の磁気軸受
1,1′の双方の第1の電磁コイル14.14に供給す
る電流を制御するようになっている。
An axial position detector 26 for detecting the axial position of the rotor section 2 is attached to the stator section 3 and is connected to the two sets of magnetic bearings 1 and 1 via an axial control circuit 27. ' The current supplied to both first electromagnetic coils 14 and 14 is controlled.

又、磁気軸受1,1′ごとにロータ部2の半径方向の位
置を検出する半径方向位置検出器28x、28y(図示
せず)、28’x、 28’y (図示せず)が設けら
れ、それぞれ制御回路29x、29y(図示せず)、2
9’x 。
Further, radial position detectors 28x, 28y (not shown), 28'x, 28'y (not shown) are provided for each magnetic bearing 1, 1' to detect the radial position of the rotor section 2. , control circuits 29x, 29y (not shown), 2, respectively.
9'x.

29′y(図示せず)を介して、それぞれの磁気軸受1
,1′の第2の電磁コイル22a、22c及び22b、
22dに電流が供給される。
29′y (not shown), each magnetic bearing 1
, 1' second electromagnetic coils 22a, 22c and 22b,
A current is supplied to 22d.

この半径方向位置検出器28x、28y、28’x、2
8’yは実施例ではX、Y平面に於いて、X−X方向及
びY−Y方向の位置をそれぞれ検出するために磁気軸受
1,1′ごとに2個ずつふり割けられていて、X−X、
Y−Y方向ごとにそれぞれの方向を向く分割部分21a
〜21dの第2の電磁コイル22a〜22dに電流を供
給することになる。
This radial position detector 28x, 28y, 28'x, 2
In the embodiment, two 8'y are allocated for each of the magnetic bearings 1 and 1' in order to detect the position in the X-X direction and the Y-Y direction on the X and Y planes, respectively. -X,
Divided portions 21a facing each direction in each Y-Y direction
Current is supplied to the second electromagnetic coils 22a to 22d.

即ち、第2図に於いてX−X方向の位置制御は第2の電
磁コイル22a及び22cにより、Y−Y方向は電磁コ
イル22b及び22dにより行なわれる。
That is, in FIG. 2, position control in the X-X direction is performed by second electromagnetic coils 22a and 22c, and position control in the Y-Y direction is performed by electromagnetic coils 22b and 22d.

更にロータ部2とステータ部3との連結部材4.5間に
は、電磁コイル及び永久磁石から成るモータ部30が設
けられ、ステータ部3に対しロータ部2を駆動するため
の回転力を与えるようになっている。
Further, a motor section 30 consisting of an electromagnetic coil and a permanent magnet is provided between the connecting member 4.5 between the rotor section 2 and the stator section 3, and provides rotational force to the stator section 3 for driving the rotor section 2. It looks like this.

伺、31はロータ部2周囲に設けたフライホイールを示
している。
31 indicates a flywheel provided around the rotor portion 2.

永久磁石13からの実整で示す磁束φ1は、第2の電磁
ヨーク12内を通過して第3の空隙磁斃23及び第4の
空隙磁路25を通ってヨーク6に流れ、外周部の端部7
,8で二岐に分岐され、方は第1の空隙磁路18を通過
して第1の電磁ヨーク11内を通り永久磁石13に戻り
、他方は第2の空隙磁路19を通過し、第1の電磁ヨー
ク11内を通って永久磁石13に戻ることになる。
The magnetic flux φ1 shown in actual alignment from the permanent magnet 13 passes through the second electromagnetic yoke 12, passes through the third air gap magnetic path 23 and the fourth air gap magnetic path 25, flows to the yoke 6, and flows into the yoke 6 at the outer periphery. End 7
, 8, one side passes through the first air gap magnetic path 18 and returns to the permanent magnet 13 through the inside of the first electromagnetic yoke 11, and the other side passes through the second air gap magnetic path 19, It passes through the first electromagnetic yoke 11 and returns to the permanent magnet 13.

尚、永久磁石13の極性を逆にすれば磁束〆1は逆の順
序に流れることは勿論である。
Of course, if the polarity of the permanent magnet 13 is reversed, the magnetic flux 1 will flow in the reverse order.

今ここで、連結部材4の存在を無視し、第1の電磁コイ
ル11に電流が供給されていない場合を考えてみると、
永久磁石13から発生される磁束φ1により第1、第2
及び第4の空隙磁路18,19及び25にはそれぞれ軸
方向に互に吸引する吸引力が作用することになる。
Now, if we ignore the existence of the connecting member 4 and consider the case where no current is supplied to the first electromagnetic coil 11,
The magnetic flux φ1 generated from the permanent magnet 13 causes the first and second
Attraction forces that attract each other in the axial direction act on the fourth air-gap magnetic paths 18, 19, and 25, respectively.

然し第1及び第2の空隙磁路18,19に作用する吸引
力は互に逆方向であり、はぼ相殺されることになって、
第3の空隙磁路25に作用する吸引力が全体としてロー
タ部2のヨーク6に作用し、ヨーク6は軸方向に変位し
第1及び第4の空隙磁路18及び25が閉じられること
になる。
However, the attractive forces acting on the first and second air-gap magnetic paths 18 and 19 are in opposite directions and are almost canceled out.
The attractive force acting on the third air gap magnetic path 25 acts on the yoke 6 of the rotor section 2 as a whole, and the yoke 6 is displaced in the axial direction, thereby closing the first and fourth air gap magnetic paths 18 and 25. Become.

従って永久磁石13からの磁束グ。は、第2の空隙磁路
19の磁気抵抗が犬となるためここを通る磁束数が少な
くなり、殆ど第1の空隙磁路18を通過することになる
Therefore, the magnetic flux from the permanent magnet 13. Since the magnetic resistance of the second air-gap magnetic path 19 becomes a dog, the number of magnetic fluxes passing through this becomes small, and most of the magnetic flux passes through the first air-gap magnetic path 18.

そこで軸方向位置検出器26でヨーク6の軸方向変位を
検出して軸方向制御回路27に出力することにより、第
1の電磁コイル14に電流が供給され、永久磁石13か
らの主な磁束方向に対して第1の空隙磁路18には逆の
方向に、第2の空隙磁路19には同方向に第1の電磁コ
イル14からの点線で示す磁束グ。
Therefore, by detecting the axial displacement of the yoke 6 with the axial position detector 26 and outputting it to the axial direction control circuit 27, current is supplied to the first electromagnetic coil 14, and the main magnetic flux direction from the permanent magnet 13 is The magnetic flux from the first electromagnetic coil 14 is shown by dotted lines in the opposite direction to the first air-gap magnetic path 18 and in the same direction to the second air-gap magnetic path 19 .

を通過させ、第2の空隙磁路19の吸引力を強め、第1
の空隙磁路18の永久磁石13による吸引力を弱めるよ
うに作用させる。
passes through, strengthens the attractive force of the second air gap magnetic path 19, and
The attraction force of the permanent magnet 13 of the air gap magnetic path 18 is weakened.

するとヨーク6は第1及び第4の空隙磁路18及び25
の間隙を開くように軸方向に移動するようになる。
Then, the yoke 6 connects the first and fourth air gap magnetic paths 18 and 25.
It begins to move in the axial direction to open the gap.

このようにしてヨーク6の軸方向位置を軸方向位置検出
器26で検出しながら、軸方向制御回路27で第1の電
磁コイル14に供給する電流を調節することになり、ヨ
ーク6は軸方向の所定位置で安定することになる。
In this way, while detecting the axial position of the yoke 6 with the axial position detector 26, the axial direction control circuit 27 adjusts the current supplied to the first electromagnetic coil 14. It becomes stable at a predetermined position.

この状態に於いてロータ部2とステータ部3は軸方向に
非接触状態となる。
In this state, the rotor section 2 and the stator section 3 are in a non-contact state in the axial direction.

実際には2組の磁気軸受1,1′を上下対称に設け、こ
れらの間に連結部材4を介在しているので、それぞれの
第1の電磁コイル14に電流を供給しなくともロータ部
2とステータ部3の間に作用する永久磁石13による吸
引力は中央位置では殆ど相殺されほぼ吸引力は平衡する
In reality, two sets of magnetic bearings 1 and 1' are vertically symmetrically provided, and the connecting member 4 is interposed between them, so that the rotor section 2 does not need to be supplied with current to each first electromagnetic coil 14. The attractive force by the permanent magnet 13 acting between the stator section 3 and the stator section 3 is almost canceled out at the center position, and the attractive force is almost balanced.

然しこの位置は不安定であり、しかも負荷の存在や設定
条件によシロータ部2の変位を回避することは不可能で
あって、この第1の電磁コイル14に供給する制御電流
は不可欠であるが、然し極めて少ない電流で効果的に制
御し得るものである。
However, this position is unstable, and it is impossible to avoid displacement of the shirring rotor section 2 due to the presence of a load or setting conditions, so the control current supplied to the first electromagnetic coil 14 is essential. However, it can be effectively controlled with very little current.

又、永久磁石13による磁束φ1はその一部がフ 第3
の空隙磁路23を通過することにより、第2の電磁ヨー
ク12とロータ部2のヨーク6との間に吸引力が作用す
ることになるが、平衡が崩れるとヨーク6は一方的に第
2の電磁ヨーク12に接触することになる。
Also, part of the magnetic flux φ1 due to the permanent magnet 13 is
By passing through the air-gap magnetic path 23 of It comes into contact with the electromagnetic yoke 12 of.

このために第2の電磁ヨーク120半径方向の端部20
に分割部分21を3個以上設け、それぞれの方向に独立
してヨーク6の位置を側割することが必要となる。
For this purpose, the second electromagnetic yoke 120 has a radial end 20
It is necessary to provide three or more divided portions 21 and separately divide the position of the yoke 6 in each direction.

実施例に於いては、4個の分割部分21a〜21dを設
け、それぞれに第2の電磁コイル22a〜22dが巻回
されているので、X−X方向及びY−Y方向にそれぞれ
配置された半径方向位置検出器28X。
In the embodiment, four divided parts 21a to 21d are provided, and the second electromagnetic coils 22a to 22d are wound around each part, so that the second electromagnetic coils 22a to 22d are arranged in the X-X direction and the Y-Y direction, respectively. Radial position detector 28X.

28′X及び28y、28’yの信号によりX−X方向
及びY−Y方向用にそれぞれ設けられた御制回路29x
、29’x及び29y、29’yを介して第2の電磁コ
イル22a〜22dに流れる電流を調節する。
Control circuits 29x are provided for the X-X direction and the Y-Y direction, respectively, using signals 28'X, 28y, and 28'y.
, 29'x and 29y, 29'y to adjust the current flowing to the second electromagnetic coils 22a to 22d.

即ち、磁気軸受1のロータ部2のヨーク6がX−X方向
の右側に片寄った場合を想定してみると、永久磁石13
からの磁束φ1は第3の空隙磁路23を通過する際に分
割部分21aに多く流れ、分割部分21cK流れる磁束
は少なくなり、分割部分21aでの吸引力は犬に、分割
部分21cでの吸引力は小となる。
That is, assuming that the yoke 6 of the rotor portion 2 of the magnetic bearing 1 is biased to the right side in the X-X direction, the permanent magnet 13
When passing through the third air gap magnetic path 23, much of the magnetic flux φ1 flows into the divided portion 21a, and less magnetic flux flows through the divided portion 21cK. The force becomes small.

そこで同方向に巻回した第2の電磁コイル22a、22
cを用いて、これらの電磁コイル22a、22cにより
発生する磁束φ3が前記永久磁石13の磁束φ、による
一方的な吸引力を打消すような方向に制御電流を供給す
る。
Therefore, the second electromagnetic coils 22a, 22 wound in the same direction
Using c, a control current is supplied in a direction such that the magnetic flux φ3 generated by these electromagnetic coils 22a and 22c cancels the unilateral attractive force due to the magnetic flux φ of the permanent magnet 13.

磁束φ3は点線で示すように、分割部分21cから第3
の空隙磁路23を通ってヨーク6に流入し、一部は第4
の空隙磁路25を通過して第2の電磁ヨーク12に戻る
ことになるが、多くはヨーク6内で対称的に円周方向に
別れ、再び第3の空隙磁路23を通過して分割部分21
aに至り、第2の電磁ヨーク12の十字状の中心部を経
て分割部分21cに戻ることになる。
As shown by the dotted line, the magnetic flux φ3 flows from the divided portion 21c to the third
flows into the yoke 6 through the air gap magnetic path 23, and a portion flows into the fourth
It passes through the air gap magnetic path 25 and returns to the second electromagnetic yoke 12, but in most cases it splits symmetrically in the circumferential direction within the yoke 6, and then passes through the third air gap magnetic path 23 again and is divided. Part 21
a, passes through the cross-shaped center of the second electromagnetic yoke 12, and returns to the divided portion 21c.

その過程に於いて分割部分21cが面する第3の空隙磁
路23では電磁コイル22a、22cによる磁束φよは
永久磁石13からの磁束φ1 と同方向となり、その吸
引力を強め、分割部分21aが面する空隙磁路23では
永久磁石13からの磁束φ1と逆方向となってその吸引
力を弱める結果、ヨーク6を元の位置に押し戻すことに
なる。
In the process, in the third air-gap magnetic path 23 facing the divided portion 21c, the magnetic flux φ from the electromagnetic coils 22a and 22c becomes in the same direction as the magnetic flux φ1 from the permanent magnet 13, increasing the attractive force and increasing the magnetic flux φ1 from the permanent magnet 13. In the air gap magnetic path 23 facing the magnetic flux φ1 from the permanent magnet 13, the direction is opposite to that of the magnetic flux φ1, weakening its attractive force and pushing the yoke 6 back to its original position.

Y−Y方向の制御についても、第2の電磁コイル22b
、22dを用いて同様に実施することになる。
Regarding control in the Y-Y direction, the second electromagnetic coil 22b
, 22d.

この制御は単にヨーク6を中立位置に調整するだけでな
く、意識的に一方に片寄らせることも可能である。
This control not only simply adjusts the yoke 6 to the neutral position, but also makes it possible to intentionally shift it to one side.

従って上下の磁気軸受1,1′をそれぞれ独立的に片寄
らせることにより、ロータ部2をステータ部3に対して
傾斜させることができることになる。
Therefore, by independently biasing the upper and lower magnetic bearings 1 and 1', the rotor section 2 can be tilted relative to the stator section 3.

この傾斜は人工衛星などの姿勢の制御に極めて有力であ
る。
This tilt is extremely effective in controlling the attitude of artificial satellites.

実施例に於いては磁束φ1を発生する永久磁石13をス
テータ部3に介在させたが、ステータ部3ではなくロー
タ部2に挿入しても同様の作用効果を有するものであり
、更には永久磁石をロータ部2、ステータ部3の双方に
配置しても支障はない。
In the embodiment, the permanent magnet 13 that generates the magnetic flux φ1 is interposed in the stator section 3, but the same effect can be obtained even if the permanent magnet 13 is inserted in the rotor section 2 instead of the stator section 3. There is no problem even if the magnets are arranged in both the rotor part 2 and the stator part 3.

又、第4の空隙磁路25を軸方向に向けここを通る磁束
が軸方向に通過するようにしたが、これは横方向の剛性
をかせぐためであり、これを半径方向に通過するように
して空隙磁路23とは逆方向の半径方向に吸引力が作用
するようにすれば横方向の制御力は強くなる。
In addition, the fourth air gap magnetic path 25 is oriented in the axial direction so that the magnetic flux passing through it passes in the axial direction, but this is to obtain rigidity in the lateral direction, and the magnetic flux is made to pass in the radial direction. By making the attraction force act in the radial direction opposite to the air gap magnetic path 23, the lateral control force becomes stronger.

更に第2の電磁コイル21a〜21dによる磁束φ3が
第4の空隙磁路25を通ることで軸方向の制御に干渉す
ることを防止するために、ロータ部2のヨーク6の端部
10付近に永久磁石を介在して、磁束φ3が空隙磁路2
5を通過し難くすることもできる。
Furthermore, in order to prevent the magnetic flux φ3 generated by the second electromagnetic coils 21a to 21d from passing through the fourth air gap magnetic path 25 and interfering with the axial control, a magnetic flux is provided near the end 10 of the yoke 6 of the rotor section 2. The magnetic flux φ3 flows through the air gap magnetic path 2 through a permanent magnet.
5 can be made difficult to pass.

尚、第4の空隙磁路25は必ずしも必要不可欠なもので
はなく、場合によっては省略してもよい。
Note that the fourth air gap magnetic path 25 is not necessarily essential, and may be omitted depending on the case.

磁気軸受1と1′とは対称的ではなく若干具なる機構の
ものであってもよいし、更には一方の磁気軸受1又は1
′では第1の電磁コイル14を省略してもよい。
The magnetic bearings 1 and 1' may not be symmetrical and may have a slightly different mechanism, or even one of the magnetic bearings 1 or 1 may have a slightly different mechanism.
', the first electromagnetic coil 14 may be omitted.

ロータ部2を半径方向の全方向に制御するには、第2の
電磁ヨーク120半径方向を向く端部20を3個以上に
分割することが必要であるが、第2の電磁コイル22は
その全てに巻回するのではなく2個以上に巻回すれば理
論的に制御が可能である。
In order to control the rotor section 2 in all radial directions, it is necessary to divide the radially facing end 20 of the second electromagnetic yoke 120 into three or more parts. Theoretically, control is possible by winding two or more parts instead of all the parts.

実施例の分割部分21a〜21dは端部20に設けたが
、第2の電磁ヨーク12全体を3個以上に分割し、その
間を非磁性体により接続しても半径方向の制御は可能で
ある。
Although the divided parts 21a to 21d in the embodiment are provided at the end 20, radial control is also possible by dividing the entire second electromagnetic yoke 12 into three or more parts and connecting them with a non-magnetic material. .

以上説明したように本発明に係る磁気軸受装置は、2個
の磁気軸受を用いて、ステータ部に対するロータ部の軸
方向位置を制御すると共に、それぞれの磁気軸受に於い
て半径方向の位置を制御できるようにしたので、姿勢の
安定した装置として使用できる。
As explained above, the magnetic bearing device according to the present invention uses two magnetic bearings to control the axial position of the rotor part with respect to the stator part, and also controls the radial position of each magnetic bearing. This allows it to be used as a device with a stable posture.

又、ロータ部は僅かな角度ながら低エネルギーで傾斜で
きるので、人工衛星等に於ける姿勢制御には極めて効果
的である。
Furthermore, since the rotor section can be tilted at a small angle with low energy, it is extremely effective for attitude control in artificial satellites and the like.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明に係る磁気軸受装置の一実施例を示すもの
であり、第1図はその縦断面図、第2図は第1図に於け
る■−■線に沿った断面図である。 符号1,1′は磁気軸受、2はロータ部、3はステータ
部、4,5は連結部材、6はヨーク、7゜8.9.10
は端部、11は第1の電磁ヨーク、12は第2の電磁ヨ
ーク、13は永久磁石、14は第1の電磁コイル、15
は開口部、16.17は端部、18は第1の空隙磁路、
19は第2の空隙磁路、20は端部、21a〜21dは
分割部分、22a〜22dは第2の電磁コイル、23/
/i第3の空隙磁路、24は端部、25は第4の空隙磁
路、26は軸方向位置検出器、27は軸方向制御回路、
28x、28’xは半径方向位置検出器、29X。 29′Xは半径方向制御回路。
The drawings show an embodiment of the magnetic bearing device according to the present invention, and FIG. 1 is a longitudinal cross-sectional view thereof, and FIG. 2 is a cross-sectional view taken along the line ■-■ in FIG. 1. 1 and 1' are magnetic bearings, 2 is a rotor part, 3 is a stator part, 4 and 5 are connecting members, 6 is a yoke, 7°8.9.10
is an end, 11 is a first electromagnetic yoke, 12 is a second electromagnetic yoke, 13 is a permanent magnet, 14 is a first electromagnetic coil, 15
is an opening, 16.17 is an end, 18 is a first air gap magnetic path,
19 is a second air gap magnetic path, 20 is an end, 21a to 21d are divided parts, 22a to 22d are second electromagnetic coils, 23/
/i third air gap magnetic path, 24 is an end, 25 is a fourth air gap magnetic path, 26 is an axial position detector, 27 is an axial control circuit,
28x, 28'x are radial position detectors, 29X. 29'X is a radial direction control circuit.

Claims (1)

【特許請求の範囲】[Claims] 1 非接触で相対的に回転し得るロータ部とステータ部
とを有する2組の磁気軸受から成り、各々のロータ部同
志及びステータ部同志を非磁性体から戒る連結部材によ
り接続した装置であって、少なくとも一方の磁気軸受に
於いて、ロータ部或いはステータ部又はこれら双方に永
久磁石を介在しロータ部は円環状のヨークから成り、そ
の外周部は回転軸方向を向く2個の端部を有し、内周部
は回転軸の半径方向を向く端部を有し、ステータ部は回
転軸の半径方向の外側に配置する磁性体から戒る円環状
の第1の電磁ヨークと、内側に配置する磁性体から戒る
円状の第2の電磁ヨークを有し第1の電磁ヨークは、第
1の電磁コイルを巻回すると共に、円周方向に沿った開
口部を設け、該開口部内に挿入したロータ部ヨークの前
記外周部の端部との間に、永久磁石及び第1の電磁コイ
ルによる磁束を軸方向に通過させる第1及び第2の空隙
磁路を形成し、第2の電磁ヨークは、ロータ部ヨークの
内周部の前記回転軸の半径方向を向く端部と対向して第
3の空隙磁路を形成する半径方向を向く端部を有すると
共に、前記第3の空隙磁路を形成する第2の電磁ヨーク
の端部を軸対称に3個以上に分割し、分割された第2の
電磁ヨーク部分の少なくとも2個に第2の電磁コイルを
巻回し永久磁石及び第2の電磁コイルによる磁束を第3
の空隙磁路では半径方向に通過させるようにしたことを
特徴とする磁気軸受装置。
1 A device consisting of two sets of magnetic bearings having a rotor part and a stator part that can rotate relative to each other without contact, and each rotor part and stator part are connected by a connecting member made of non-magnetic material. In at least one of the magnetic bearings, a permanent magnet is interposed in the rotor part, the stator part, or both, and the rotor part consists of an annular yoke, the outer periphery of which has two ends facing in the direction of the rotation axis. The inner peripheral part has an end facing in the radial direction of the rotating shaft, and the stator part has a first annular electromagnetic yoke disposed on the outer side in the radial direction of the rotating shaft, and a first annular electromagnetic yoke disposed on the inner side in the radial direction of the rotating shaft. The first electromagnetic yoke has a circular second electromagnetic yoke which is separated from the magnetic material to be arranged, and the first electromagnetic yoke is provided with an opening along the circumferential direction, and the first electromagnetic yoke is provided with an opening along the circumferential direction. First and second air-gap magnetic paths are formed between the rotor section yoke inserted in the rotor section yoke and the end of the outer peripheral section thereof, through which the magnetic flux from the permanent magnet and the first electromagnetic coil passes in the axial direction. The electromagnetic yoke has an end portion facing in the radial direction of the inner peripheral portion of the rotor portion yoke and forming a third air gap magnetic path opposite to the end portion facing the radial direction of the rotating shaft, and The end of the second electromagnetic yoke that forms the magnetic path is divided into three or more parts axially symmetrically, and a second electromagnetic coil is wound around at least two of the divided second electromagnetic yoke parts to form a permanent magnet and a second electromagnetic coil. The magnetic flux from the second electromagnetic coil is
A magnetic bearing device characterized in that the air gap magnetic path is configured to pass in a radial direction.
JP18146580A 1980-12-22 1980-12-22 magnetic bearing device Expired JPS5839251B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18146580A JPS5839251B2 (en) 1980-12-22 1980-12-22 magnetic bearing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18146580A JPS5839251B2 (en) 1980-12-22 1980-12-22 magnetic bearing device

Publications (2)

Publication Number Publication Date
JPS57103926A JPS57103926A (en) 1982-06-28
JPS5839251B2 true JPS5839251B2 (en) 1983-08-29

Family

ID=16101223

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18146580A Expired JPS5839251B2 (en) 1980-12-22 1980-12-22 magnetic bearing device

Country Status (1)

Country Link
JP (1) JPS5839251B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS598488U (en) * 1982-07-08 1984-01-19 豊和工業株式会社 refurbished windows
US5514924A (en) * 1992-04-30 1996-05-07 AVCON--Advanced Control Technology, Inc. Magnetic bearing providing radial and axial load support for a shaft
CN109268390A (en) * 2018-11-26 2019-01-25 北京航空航天大学 A kind of precision tracking bracket multi-coil axial magnetic bearing

Also Published As

Publication number Publication date
JPS57103926A (en) 1982-06-28

Similar Documents

Publication Publication Date Title
EP0191225B1 (en) Magnetic bearing device
US6114788A (en) Motor/active magnetic bearing combination structure
US4000929A (en) Magnetic bearing system
US5179308A (en) High-speed, low-loss antifriction bearing assembly
US4634191A (en) Radial and torsionally controlled magnetic bearing
JP4024382B2 (en) Magnetic bearing device
US4499407A (en) Brushless DC motor assembly with improved stator pole
US5148069A (en) Recessed rotation detectors for brushless motors
JPS6146684B2 (en)
US5175462A (en) Toroidal coil motor
JPH0979258A (en) Small-sized magnetic bearing with at least one active shaft
JPS5839251B2 (en) magnetic bearing device
JPS6146683B2 (en)
US4285248A (en) Two-degree-of-freedom gyroscope
JPH0242127B2 (en)
JPS5950220A (en) Multi-spindle control type magnetic bearing
JPS5854285B2 (en) Five-axis controlled magnetic bearing
JPS5854284B2 (en) magnetic bearing
JPS60256620A (en) Magnetic bearing having rigidity variable mechanism
JP2004316756A (en) Five-axis control magnetic bearing
JPH063375B2 (en) Flex gyroscope
JPS598010Y2 (en) magnetic bearing
JPS6011716A (en) Radially-controlled magnetic bearing
JPH05344674A (en) Bearing device for motor
JPS59200810A (en) Magnetic bearing