JPS5838837A - Capillary viscometer - Google Patents

Capillary viscometer

Info

Publication number
JPS5838837A
JPS5838837A JP13679381A JP13679381A JPS5838837A JP S5838837 A JPS5838837 A JP S5838837A JP 13679381 A JP13679381 A JP 13679381A JP 13679381 A JP13679381 A JP 13679381A JP S5838837 A JPS5838837 A JP S5838837A
Authority
JP
Japan
Prior art keywords
viscosity
flow rate
liquid
mass
constant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP13679381A
Other languages
Japanese (ja)
Other versions
JPH0150852B2 (en
Inventor
Osamu Mita
三田 治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP13679381A priority Critical patent/JPS5838837A/en
Publication of JPS5838837A publication Critical patent/JPS5838837A/en
Publication of JPH0150852B2 publication Critical patent/JPH0150852B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N11/00Investigating flow properties of materials, e.g. viscosity, plasticity; Analysing materials by determining flow properties
    • G01N11/02Investigating flow properties of materials, e.g. viscosity, plasticity; Analysing materials by determining flow properties by measuring flow of the material
    • G01N11/04Investigating flow properties of materials, e.g. viscosity, plasticity; Analysing materials by determining flow properties by measuring flow of the material through a restricted passage, e.g. tube, aperture
    • G01N11/08Investigating flow properties of materials, e.g. viscosity, plasticity; Analysing materials by determining flow properties by measuring flow of the material through a restricted passage, e.g. tube, aperture by measuring pressure required to produce a known flow

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Measuring Volume Flow (AREA)

Abstract

PURPOSE:To enables the measurement of the viscosity of a low viscosity liquid by adjusting the flow rate of a liquid to be inspected at a high accuracy by flow inspecting means according to information signal pertaining to the mass flow rate from a mass flowmeter. CONSTITUTION:A flow controller 6 receives analogue or digital output signals from a mass flowmeter 2 and sends signals to a revolution controller 5 according to the value thereof to adjust the rotation of a motor 4 thereby controlling and maintaining the mass flow rate at a fixed value. Here, the temperature and mass flow rate of a liquid are kept so constant to cause little variation in the density and a constant value is obtained from pir<4>rho/8LW=K'. A differential pressure P1-P2 obtained in a differential pressure converter 7 is sent to a viscosity receiver/recorder 8 and combined with the value K' obtained with the mass flowmeter 2 to form an equation eta=K'(P1-P2) which gives the viscosity of the liquid.

Description

【発明の詳細な説明】 この発明は低粘度筐体の粘度を置る為の細管式粘度計に
関し、筐体流路に質量流量針を設置して質量流量を一定
に制御することによって、該低粘度液体の粘度を精度よ
く測定しうるようにしたものである。
[Detailed Description of the Invention] This invention relates to a capillary viscometer for determining the viscosity of a low-viscosity housing, and a mass flow rate needle is installed in the housing flow path to control the mass flow rate to a constant value. This allows the viscosity of low-viscosity liquids to be measured with high accuracy.

従来の筐体用細管式粘度針においては、次の原塩式に基
づいて粘度層を求めていた。
In the conventional capillary type viscosity needle for the housing, the viscosity layer was determined based on the following raw salt formula.

7=す鴇:幻 ・LQ ここに1.萼:粘度(pois・) rig管の内径の”/2(e−) L:細管の長さ  (・鳳 ) Q:Ial管中を流れる液体の容積流量<6!opg ハ;細管入ロ部液体圧力 (/、、、)h;細管出口部
液体圧力 (門4♂) である。この式において% K x j SLは定数で
あるから1!I管式粘度計においては、Q;一定、した
がって−=K(一定)の条件のもとに、hとLQ hとを測定して、 マ;K・(バーh) より粘度を求めていた。
7=Suto: Illusion/LQ Here 1. Calyx: Viscosity (pois・) Inner diameter of rig tube /2 (e-) L: Length of thin tube (・鳳) Q: Volumetric flow rate of liquid flowing in Ial tube <6!opg C: Capillary tube entrance part Liquid pressure (/,,,)h: Liquid pressure at the outlet of the thin tube (gate 4♂).In this equation, % K x j SL is a constant, so in the 1!I tube type viscometer, Q: constant, Therefore, under the condition of -=K (constant), h and LQ h were measured, and the viscosity was determined from M;K.(bar h).

したがって、かかる細管式粘度計では、容積流量Qを一
定とすることが不可欠であり、送wlポンプとしての定
量ポンプの体積流量の定量性がiI定精度を決める基幹
的要件となるので、定量ポンプには計量性が良く、脈動
の少ないギャプンプが用いられている。
Therefore, in such a capillary viscometer, it is essential to keep the volumetric flow rate Q constant, and the quantitative performance of the volumetric flow rate of the metering pump as a feed pump is a fundamental requirement that determines the iI constant accuracy. Gap pumps are used, which have good measuring performance and less pulsation.

しかし、粘度がLOOP以下の低粘度筐体においては、
ギヤポンプの計量部のスキマから液体の洩れが生じ、定
量性の確保を期すことは耀かしくなる0が・細管式粘度
針を使用する以上、qが一定と云う東件は常に満足しな
ければならないので、ギヤポンプの計量性を向上させる
ため、計量部のスキマを小さくする手段がとられるが1
該スキマでの筐体の洩れは避られず、体積流量の計量性
が失われる一方1計量部のスキマを狭くすると、この部
分での焼き付きが発生し易く、ギヤが回転手簡に至るこ
とになる。したがって、スキマを狭くすることには自づ
から猥度があり% −10CP以下の流体の体積計量に
よる送液には技術的限界が生じ、従来の細管式粘度計で
は精度の良い一定は出来なかった。
However, in a low viscosity case with a viscosity below LOOP,
Liquid leaks from the gap in the measuring section of the gear pump, making it difficult to ensure quantitative accuracy.As long as a capillary viscosity needle is used, the condition that q is constant must always be satisfied. Therefore, in order to improve the metering performance of gear pumps, measures are taken to reduce the gap in the metering section.
Leakage of the casing at this gap is inevitable, and the ability to measure the volumetric flow rate is lost.On the other hand, if the gap in one metering section is narrowed, seizure is likely to occur in this area, and the gear may become difficult to rotate. Become. Therefore, narrowing the gap is inherently obscene, and there is a technical limit to transferring fluids by volume measurement of less than %-10CP, and conventional capillary viscometers are unable to measure viscosity with high precision. Ta.

そこで、このような同層を解決するために、この発明に
おいては、被検液である筐体を質量流量で捉え、質量流
量計を筐体流路に設置して、質量流量を質量流量計で測
定し、該質量流量計からの信号により、ポンプの駆動回
転数を制御して質量流量Wを一定値に維持すると共に、
液体の密度変動を無くして一シニL冨[’とし、hと島
の圧力差をLw 検出して、粘度1を マーに′・(R−Pk>として求
めるようにしたものであり、具体的には、被検液流路に
、被検液流動手段、被検液の粘度を細管の両側の圧力に
応じて一定する細管式粘度針、および質量流量を一定す
る質量流量針を介在させ、前記質量流量計からの質量流
量に関する情報信号に応じて前記被検液流動手段による
被検液の流動量を1節させることによって、ポンプのス
キマでの流体の洩れを考慮することなく1また、該スキ
マを特に狭くすることもなく1低粘度筐体の粘度を精度
よく測定することを可能にするものである。。
Therefore, in order to solve this problem of the same layer, in this invention, the casing that is the test liquid is measured by the mass flow rate, a mass flowmeter is installed in the casing flow path, and the mass flow rate is measured by the mass flowmeter. and control the driving rotation speed of the pump based on the signal from the mass flowmeter to maintain the mass flow rate W at a constant value,
The density fluctuation of the liquid is eliminated, and the pressure difference between h and the island is detected as Lw, and the viscosity 1 is calculated as ′・(R-Pk>). In this method, a test liquid flowing means, a capillary type viscosity needle that keeps the viscosity of the test liquid constant according to the pressure on both sides of the capillary, and a mass flow needle that keeps the mass flow rate constant are interposed in the test liquid flow path, By controlling the flow rate of the test liquid by the test liquid flow means in accordance with the information signal regarding the mass flow rate from the mass flowmeter, the flow rate of the test liquid can be adjusted to one level without considering fluid leakage in the gap of the pump. This makes it possible to accurately measure the viscosity of a low-viscosity casing without narrowing the gap in particular.

この発明の実施例を図面について説明すると11は差圧
変換器、2は質量流量計(41開昭54−55!570
号のもの)、3はポンプ、番は該ポンプ駆動用モータ、
5は回転微調節計、6は流量調節針、7は差圧伝送a−
8は粘度記録計でのる。
An embodiment of the present invention will be explained with reference to the drawings. Reference numeral 11 is a differential pressure converter, 2 is a mass flow meter (41 1985-55! 570
number), 3 is the pump, number is the motor for driving the pump,
5 is a rotation fine controller, 6 is a flow rate adjustment needle, and 7 is a differential pressure transmission a-
8 is recorded using a viscosity recorder.

前記差圧変換器1内には各端が験差圧変換器1の外部と
連通する細管11を設け、該細管11の各端面と対向す
る壁面には液封ダイヤ7フムタイプの圧力受圧検出器1
0S10’を設け、該圧力受圧検出器10,10’と前
記差圧伝送117とは導圧鎖管20.20’でそれぞれ
連通される。前記細管11の外周には温室液体を一定温
度に保ち液体密度を一定にするための熱媒(保温水)を
供給するジャケット21を形成する。12はその供給口
であり113は排出口である・まだ前記細管11の外部
との連遥口の一方をパイプ22によって測定液人口9と
連通させ、他方をパイプ14によって質量流量計2と連
通させる。該質量流量計2はパイプ15によってポンプ
3と連通し、該ポンプ3はパイプ15′によって測定液
出口19と連通ずる。
Inside the differential pressure converter 1, a thin tube 11 is provided, each end of which communicates with the outside of the differential pressure converter 1, and a liquid seal diamond 7-hum type pressure receiving pressure detector is installed on the wall surface facing each end of the thin tube 11. 1
0S10' is provided, and the pressure receiving pressure detectors 10, 10' and the differential pressure transmission 117 are communicated with each other through pressure chain pipes 20 and 20'. A jacket 21 is formed around the outer periphery of the thin tube 11 to supply a heating medium (warm water) to keep the greenhouse liquid at a constant temperature and constant liquid density. 12 is its supply port, and 113 is its discharge port.One of the ports communicating with the outside of the thin tube 11 is connected to the measuring liquid port 9 through the pipe 22, and the other is connected to the mass flowmeter 2 through the pipe 14. let The mass flow meter 2 communicates by a pipe 15 with a pump 3, which in turn communicates with a measuring liquid outlet 19 by a pipe 15'.

該パイ’;’15.15’の周りにはジャケット23を
WI成するケース16.16’を設け、瀾定筐瀉を一定
に保ち液体密度を一定にする為の熱媒を供給する。18
はその供給口であり、17は排出口である。流量調節針
6は質量流量計2からのアナログあるいはゲイジ#ル出
力信号を受け1該信号値に応じて回転微調節計6へ信号
を送り、該信号により回転微調節計6は毫−夕養の回転
を調節し、質量流量を一定値に制御維持さ曽る◎この際
、液体の温度および質量流量は一定に保たれるので、密
πr4β 度変動はほとんどなく8Lw  ””一定のものとして
求められる。また、差圧変換器7で得られた差圧FS−
Rは粘度受信記録計8へ送られ鴬そこで質、  πr鳴
 β 量流量計2で得られた値に=8Lwとにより、ダ;に’
−(R−P*’)として粘度が求められる。
A case 16.16' forming a jacket 23 is provided around the pi';'15.15', and a heating medium is supplied to keep the flow rate constant and the liquid density constant. 18
is its supply port, and 17 is its discharge port. The flow rate adjustment needle 6 receives an analog or gauge output signal from the mass flow meter 2, and sends a signal to the rotation fine adjustment meter 6 according to the signal value, and the rotation fine adjustment meter 6 uses the signal to adjust the flow rate. The mass flow rate is controlled and maintained at a constant value by adjusting the rotation of the It will be done. Also, the differential pressure FS- obtained by the differential pressure converter 7
R is sent to the viscosity receiving recorder 8, where it is measured, and the value obtained from the flowmeter 2 is equal to 8Lw.
The viscosity is determined as -(R-P*').

以上の構成により、計測を行うときは翫ポンプ3を駆動
し、測定液を流動させ、各ジャケットに熱媒を供給する
と1前記のように質量流量計2からの信号によってモー
タ養は制御され、ポンプ5からの質量流量を一定に鎗持
し、一定の質量に基づ< K’が得られる。一方1細管
11の両端の圧力差は差圧伝送器7より粘度記録計8へ
送られ、そこで前記のX′とにより粘度が求められるこ
とになるO この発明は以上説明したような構成を有するので、ポン
プのスキマでの流体の洩れを考慮することなく、また、
該スキマを特に狭くすることもなく1低粘度筐体の粘度
を精度よく一定することが出来ることになる。また、ギ
ャゴンプは定量−がなくとも送液ポンプとして十分に使
用できることになる。
With the above configuration, when performing measurement, the rod pump 3 is driven, the measurement liquid is made to flow, and a heat medium is supplied to each jacket. 1. As described above, the motor feed is controlled by the signal from the mass flow meter 2. By keeping the mass flow rate from the pump 5 constant, <K' is obtained based on the constant mass. On the other hand, the pressure difference between both ends of one thin tube 11 is sent from the differential pressure transmitter 7 to the viscosity recorder 8, where the viscosity is determined from the above-mentioned X'. This invention has the configuration as described above. Therefore, without considering fluid leakage in the pump gap,
The viscosity of the low-viscosity casing can be kept precisely constant without making the gap particularly narrow. Furthermore, the Gagomp can be used satisfactorily as a liquid pump even without a metering device.

【図面の簡単な説明】[Brief explanation of the drawing]

図は一部断面で示した配置図である。 1 差圧変換器12 質量流量計13 メンプ養 モー
タ、5 回転数調節針、6 流量調節針、7 差圧伝送
器、8 粘度受信記−計、11 細管、2123 ジャ
ケット、 出 願 人   東し株式自社 代理人弁理士   京 谷 四 部
The figure is a layout diagram partially shown in cross section. 1 differential pressure converter 12 mass flow meter 13 maintenance motor, 5 rotation speed adjustment needle, 6 flow rate adjustment needle, 7 differential pressure transmitter, 8 viscosity receiver recorder, 11 capillary tube, 2123 jacket, applicant Toshi Co., Ltd. In-house representative patent attorney Yotsubu Kyotani

Claims (1)

【特許請求の範囲】[Claims] 被検液流路に、被検液流動手段、被検液の粘度を細管の
両側の圧力に応じて測定する細管式粘度計、および質量
流量を測定する質量流量計を介在させ1前記質量流量計
からの質量流量に関する情報信号に応じて前記被検液流
動手段による被検液の流動量を調節させてなる細管式粘
度計0
The test liquid flow path is provided with a test liquid flow means, a capillary viscometer that measures the viscosity of the test liquid according to the pressure on both sides of the capillary, and a mass flow meter that measures the mass flow rate. A capillary type viscometer 0 in which the flow rate of the test liquid by the test liquid flow means is adjusted according to an information signal regarding the mass flow rate from the meter.
JP13679381A 1981-08-31 1981-08-31 Capillary viscometer Granted JPS5838837A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13679381A JPS5838837A (en) 1981-08-31 1981-08-31 Capillary viscometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13679381A JPS5838837A (en) 1981-08-31 1981-08-31 Capillary viscometer

Publications (2)

Publication Number Publication Date
JPS5838837A true JPS5838837A (en) 1983-03-07
JPH0150852B2 JPH0150852B2 (en) 1989-10-31

Family

ID=15183641

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13679381A Granted JPS5838837A (en) 1981-08-31 1981-08-31 Capillary viscometer

Country Status (1)

Country Link
JP (1) JPS5838837A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995007455A1 (en) * 1993-09-08 1995-03-16 Shell Oil Company Use of viscosity as an in-line diagnositic for high internal phase emulsion generation
WO1996034269A1 (en) * 1995-04-28 1996-10-31 E.I. Du Pont De Nemours And Company Improved differential pressure capillary viscometer and analytical process

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS527751A (en) * 1975-07-08 1977-01-21 Dainippon Printing Co Ltd Photoelectric cell
JPS5452570A (en) * 1977-07-25 1979-04-25 Smith James Everett Method of measuring mass flow* and flow meter

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS527751A (en) * 1975-07-08 1977-01-21 Dainippon Printing Co Ltd Photoelectric cell
JPS5452570A (en) * 1977-07-25 1979-04-25 Smith James Everett Method of measuring mass flow* and flow meter

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995007455A1 (en) * 1993-09-08 1995-03-16 Shell Oil Company Use of viscosity as an in-line diagnositic for high internal phase emulsion generation
WO1996034269A1 (en) * 1995-04-28 1996-10-31 E.I. Du Pont De Nemours And Company Improved differential pressure capillary viscometer and analytical process

Also Published As

Publication number Publication date
JPH0150852B2 (en) 1989-10-31

Similar Documents

Publication Publication Date Title
US5272912A (en) Apparatus and method for measuring viscosities of liquids
US4144754A (en) Multiphase fluid flow meter
CN102016519B (en) Method for generating a diagnostic from a deviation of a flow meter parameter
US20180245463A1 (en) Method for determining a water cut of an oil-water mixture produced from an oil well
CN108760569A (en) Oil-water mixture density and pure oil flow measuring device and method
US6196058B1 (en) On-line viscosity measurement system
CN109932283B (en) Device and method for measuring apparent viscosity of non-Newtonian fluid at high shear rate
JPS5838837A (en) Capillary viscometer
AU2011298248A1 (en) Method and apparatus for calibrating a flow meter
US1870849A (en) Flow quantity meter
US2348593A (en) Apparatus for compensating gas meter readings
JPS6329209Y2 (en)
WO2020249027A1 (en) Temperature-controlled automated online drilling fluid rheology measurement apparatus
McComas et al. Laminar pressure drop associated with the continuum entrance region and for slip flow in a circular tube
Abesekera et al. Liquid flow measurement by cross-correlation of temperature fluctuations
CN107084926B (en) Liquid clarity detection method, system and device
RU2327114C2 (en) Method of determination of levels difference and flow rate of water on open current with prismatic riverbed by method of incline-area
US1068280A (en) Apparatus for measuring flow of liquids in closed conduits.
RU2299404C2 (en) Non-invasive thermal liquid consumption indicator
RU2030714C1 (en) Method of checking flow meters
Fowles et al. Measurement of flow
JP2975284B2 (en) Viscosity measuring device
SU1101544A1 (en) Method of calibrating partial downhole flowmeters
JPS62211542A (en) Fine pipe type viscometer
SU414487A1 (en)