JPS5837742A - Digital differential analyzer - Google Patents

Digital differential analyzer

Info

Publication number
JPS5837742A
JPS5837742A JP56134058A JP13405881A JPS5837742A JP S5837742 A JPS5837742 A JP S5837742A JP 56134058 A JP56134058 A JP 56134058A JP 13405881 A JP13405881 A JP 13405881A JP S5837742 A JPS5837742 A JP S5837742A
Authority
JP
Japan
Prior art keywords
register
bit
parallel
adder
differential analyzer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP56134058A
Other languages
Japanese (ja)
Other versions
JPS6138494B2 (en
Inventor
Yukiro Tsuji
辻 征郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP56134058A priority Critical patent/JPS5837742A/en
Publication of JPS5837742A publication Critical patent/JPS5837742A/en
Publication of JPS6138494B2 publication Critical patent/JPS6138494B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F7/00Methods or arrangements for processing data by operating upon the order or content of the data handled
    • G06F7/60Methods or arrangements for performing computations using a digital non-denominational number representation, i.e. number representation without radix; Computing devices using combinations of denominational and non-denominational quantity representations, e.g. using difunction pulse trains, STEELE computers, phase computers
    • G06F7/64Digital differential analysers, i.e. computing devices for differentiation, integration or solving differential or integral equations, using pulses representing increments; Other incremental computing devices for solving difference equations

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computational Mathematics (AREA)
  • Mathematical Analysis (AREA)
  • Mathematical Optimization (AREA)
  • Mathematical Physics (AREA)
  • Pure & Applied Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Computing Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Feedback Control In General (AREA)

Abstract

PURPOSE:To eliminate disadvantages of series and parallel operating systems respectively, by providing a Y register group arranged with n-set of m-bit registers in parallel and an S register group with the similar constitution. CONSTITUTION:A YM1 register 22 and an SM1 register 25 are connected to an adder 28 via connecting lines 29 and 32. The content of the YM1 register 22 and of the SM1 register 25 is summed at an adder 28, and the result of addition is stored in the register 25 via a connecting line 35. Similarly, the operation of YM2+SM2,-, YMn+SMn is executed in parallel. Taking a time required for the addition of one-bit as DELTAt', the time required for m-sets of integrating operation for n-bit with this constitution is mXDELTAt', and the operation time can be decreased to 1/n in comparison with a series operation.

Description

【発明の詳細な説明】 本発明はディジタル微分解析器に関する。[Detailed description of the invention] The present invention relates to a digital differential analyzer.

既知のディジタ/L/微分解析器における基本演算は積
分である。積分はx、yの2つの入力が与えられ念とき −fydx を満足する。これは微分形を用−て dz−ydx となる、ディジタ/1/微分解析器における積分器では
dx、dzとして量子化を行っ念有限の徽小量△2.Δ
ZKついて △z −y△X の演算を行う、ディジタル微分解析器における積分器の
基本構成を第1rHに示す。Yレジスタ1には、初期値
y、ボセットされ、Yレジスタ増分パルスIPが入力線
5に入力するたびに、加算器4aを介して、加算され、
Yレジスタ1の内容は。
The basic operation in known digital/L/differential analyzers is integration. Integration is given two inputs, x and y, and satisfies -fydx. Using the differential form, this becomes dz-ydx.The integrator in the digital/1/differential analyzer quantizes it as dx and dz, and assumes a finite small amount △2. Δ
The basic configuration of an integrator in a digital differential analyzer that calculates Δz −yΔX with respect to ZK is shown in the first rH. The initial value y is set in the Y register 1, and is added via the adder 4a every time the Y register increment pulse IP is input to the input line 5.
The contents of Y register 1 are:

変化分△yにより 3’1−71 r+△y となる、Yレジスタ1の出力は、ANDゲート3を介し
て加算@abの入力@Bに接続される。Sレジスタ2の
出力は加算器4bの入力線9&tJI続される。AND
ゲート50入力入力釦7算パルスAPが入力されるとY
l/Nスタ1の内容とSレジスタ2の内容が加算器4b
を介して加算され、加算結果は接続線10奢経由してS
レジスタ2&C格納される。ovpはオーバフローパル
スでアル。
The output of the Y register 1, which is 3'1-71 r+Δy due to the change Δy, is connected to the input @B of the addition @ab via the AND gate 3. The output of S register 2 is connected to input line 9&tJI of adder 4b. AND
Gate 50 input input button 7 Y when arithmetic pulse AP is input
The contents of l/N star 1 and the contents of S register 2 are added to adder 4b.
The addition result is sent to S via the connection line 10.
Stored in registers 2&C. ovp is an overflow pulse.

Yレジスタ1の場合は、ANDゲート3への演算パルス
APと演算パルスAPの入力する間釦なされる。
In the case of the Y register 1, the button is pressed while the calculation pulse AP and the calculation pulse AP are input to the AND gate 3.

W!12図にnビット直列演算方式のディジタル微分解
析器の構成図を示す、Yレジスタ1%Sレジスタ2は各
々nビットであり、Yレジスタ1は接続線13を介して
加算器4bに接続され、Sレジスタ2は接続!i&14
を介して加算inbに接続され、加算結果は接続線15
を経白しとSレジスタ2に格納される。加算器4bの出
力はキャリーフリップフロップ12に接続され、各ビッ
トごとの加算演算にともなうキャリー信号を保持し、次
ビットの加算演算の入力として接#!16を介して、加
算器4bの入力となる。キャリーフロップフロップ12
の出力は、ANDゲート3により、加算タイミングtn
のときのキャリーをオーバフローパルスOVPとして取
り出す。なお、この図疋おりてYレジスタ1の増分回路
部分は省略して示しである。
W! FIG. 12 shows a configuration diagram of a digital differential analyzer using an n-bit serial operation method. Each of the Y register 1% and the S register 2 has n bits, and the Y register 1 is connected to the adder 4b via a connecting line 13. S register 2 is connected! i&14
is connected to the addition inb through the connection line 15, and the addition result is connected to the connection line 15.
is stored in S register 2. The output of the adder 4b is connected to a carry flip-flop 12, which holds the carry signal associated with the addition operation for each bit, and connects it as an input for the addition operation of the next bit. 16, it becomes an input to the adder 4b. carry flop flop 12
The output of tn is determined by the AND gate 3 at the addition timing tn
The carry at the time is taken out as an overflow pulse OVP. Note that the increment circuit portion of the Y register 1 is omitted from this figure.

第3図に実用に共する直列演算方式のディジタル微分解
析器の構成図を示す、YMレジスタ19は(nxm)ビ
ットで構成され、nビットのレジスタがm個直列に接続
された構成となる。SMしシス120は(nxm )ビ
ットで構成され%nビットのvNスタボm個直列に接続
されな構成となる。τMしシス11?の内容とSMレジ
スJ120の内容は加算JI41)を介して加算され、
加算結果#iE3MvNx12oK格IAすり、 #−
5ya  itオーバフローレシス#21に格納される
。加算はS、十丁、、8.+Y、、−・・と順次実行さ
れ(Si。
FIG. 3 shows a block diagram of a digital differential analyzer using a serial operation method that is used in practical use. The YM register 19 is composed of (nxm) bits, and has a configuration in which m registers of n bits are connected in series. The SM system 120 is composed of (nxm) bits, and has a configuration in which m vN stabs of n bits are connected in series. τM and Sis 11? The contents of and the contents of SM register J120 are added via addition JI41),
Addition result #iE3MvNx12oK rating IA slip, #-
5ya it is stored in overflow ratio #21. The addition is S, Jucho, 8. +Y, -... are executed sequentially (Si.

+Y1)の加算演算には(Si−、+Yi−,)以前K
111行されたオーバフローが反映される1本構成の直
列演算方式による演算時間は、1ビツトの加算に要する
時間を△を時間とするとnビットの演算時間は n×Δt となLm個の積分演算に要する時間は mxnxΔt となる、直列演算方式によるディジタル微分解析器は八
−ドウエア規模が小さ−と−う利点はあるが、演算速度
がおそ−と−う欠点をもつ、演算を高速化する手段とし
て第2図の構成から成る積分器をディジタル微分解析器
の1演算単位として。
For the addition operation of +Y1), (Si-, +Yi-,) is previously K
The calculation time for a single-line serial calculation system that reflects the overflow of 111 lines is: If the time required to add one bit is △, then the calculation time for n bits is n x Δt. Lm integral calculations The time required for the calculation is mxnxΔt.A digital differential analyzer using a serial calculation method has the advantage of having a small 8-domain scale, but has the disadvantage of slow calculation speed.It is a means of speeding up calculations. Assume that the integrator with the configuration shown in Fig. 2 is one calculation unit of the digital differential analyzer.

歳 m個の積分単位を構成−4列に演算を実行せしめる方法
がある。一本方式は一般に並列演算方式と呼ばれており
、演算時間は、 nxΔt と高速になる。しかし、並列演算方式はディジタル微分
解析器の構成要素として、n([の加算器とnビットの
レジスタが2m個必要となる。
There is a method of constructing m integral units and performing calculations in -4 columns. The single-line method is generally called a parallel calculation method, and the calculation time is as fast as nxΔt. However, the parallel operation method requires n([ adders and 2m n-bit registers as components of the digital differential analyzer.

本発明の目的は、直列演算方式と並列演算方式の欠点を
補い、利点をとりいれた構成のディジタル微分解析器を
供するKある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a digital differential analyzer having a configuration that compensates for the drawbacks of the serial calculation method and the parallel calculation method and incorporates the advantages.

以下、第4図に示す本発明の一実施例につ−て説明する
。本ディジタA/微分解析器の基本構成要素はmビット
のレジスタn個から成るYしVスI群とmビットのレジ
スタn個から成るSレジスタ群とnビット加算器とオー
バフローパルスIから成る。な訃、増分回路部分は省略
して示しである。
An embodiment of the present invention shown in FIG. 4 will be described below. The basic components of this digital A/differential analyzer are a Y/V/I group consisting of n m-bit registers, an S register group consisting of n m-bit registers, an n-bit adder, and an overflow pulse I. Unfortunately, the incremental circuit portion is omitted from the illustration.

すなわち、本発明によれば図に示す如<smビットのレ
ジスタn個を並列に配置し、各レジオIの1ビツト目を
集合しなレジスタをY、レジオI。
That is, according to the present invention, as shown in the figure, n registers of <sm bits are arranged in parallel, and the first bit of each register I is set as register Y, register I.

2ビツト目を集合したしNx夕をY、レジオI。I gathered the 2nd bit, Nx evening, Y, Regio I.

以下同様にしてmビット目を集合しなレジスタをYmし
シスIとなし1m個のYレジスタ群を構成すする。
Thereafter, in the same manner, the m-th bit is collected and the register is designated as Ym and is designated as system I to form a group of 1m Y registers.

同様に、mビットのレジスタn個繻を並列に配置し、各
レジスタの1ビツト目を集合したレジスタをSlレジス
タ、2ビツト目を集合したレジスタをS、レジスタ、以
下同様にしてmビット目を集ス 合し冷レジスタをSmレジ(りとなし、m個のSレジス
タ群を構成する。YMルジスメ22とSMルジスタ25
は接続!I29と接続線32を介して、加算器2Bに接
続する。YMルジスタnの内容とSMルジスタ257)
内容は加算器28によって加算演算1!85iI!行さ
れ、その加算結果はSMlしyスタフ5に接続線35を
経由して格納される。以下同様にして、YM2+5II
i2.・・・、Yビ Mn+SMnの演算が並行して実行される。1〜ツトの
加算に要する時間をΔt′とすると本構成になるnピッ
)m個の積分演算に要する時間はm×△t′ となり、直列演算に比し、演算時間は1/nに短縮され
る。
Similarly, n m-bit registers are arranged in parallel, and the register that collects the first bit of each register is the Sl register, the register that collects the second bit is the S register, and so on. The cold registers are grouped together to form a group of m S registers. YM Lujisume 22 and SM Lujistor 25
is connected! It is connected to the adder 2B via I29 and the connection line 32. Contents of YM Lujista n and SM Lujista 257)
The content is an addition operation 1!85iI! by the adder 28. The addition result is stored in the SM1 y stuff 5 via the connection line 35. Similarly, YM2+5II
i2. ..., YbiMn+SMn calculations are executed in parallel. If the time required to add 1 to t is Δt', the time required to perform n-pi) m integral operations in this configuration is m x △t', and compared to serial calculation, the calculation time is reduced to 1/n. be done.

以上説明した如く、本発明によれば、直列演算方式と並
列演算方式の各々の欠点をなくし、それらの利点を奮す
る高速、安価なディジタル微分解析器を得ることができ
る。
As described above, according to the present invention, it is possible to obtain a high-speed, inexpensive digital differential analyzer that eliminates the drawbacks of the serial calculation method and the parallel calculation method and takes advantage of their advantages.

【図面の簡単な説明】[Brief explanation of the drawing]

111図は、ディジタル微分解析器を説明するためのブ
ロック結線図、菖2図は従来のnビット直列演算方式の
ディジタル微分解析器を示すブロック結線図、第3図は
従来のm個の積分要素をもつ直列演算方式のディジタル
微分解析器を示すブロック結線図、第4図は本発明の直
並列ディジタル微分解析器の一冥施例を示すブロック結
線図である。 22.23.24:Yレジスタ群、25,26゜27+
Sレジスタ群、28:nビットの加算器。 代理人 弁理士  薄  1) 利  幸臂1図 P 第2図 第3図 第4口
Fig. 111 is a block wiring diagram for explaining a digital differential analyzer, Fig. 2 is a block wiring diagram showing a conventional n-bit serial calculation type digital differential analyzer, and Fig. 3 is a conventional block wiring diagram for explaining a digital differential analyzer with m integral elements. FIG. 4 is a block diagram showing one embodiment of the serial-parallel digital differential analyzer of the present invention. 22.23.24: Y register group, 25, 26° 27+
S register group, 28: n-bit adder. Agent Patent Attorney Susuki 1) Yukio Tori 1 Figure P Figure 2 Figure 3 Figure 4 Entrance

Claims (1)

【特許請求の範囲】 nビットの加算器と対応する各ビットを各々集合して構
成したmビットのレジスタをn個並列に配置して成るY
レジスタ群と、対応する各ビ・ソトを各々集合して構成
したmビットのレジスゲをn個並列にfg!置して成る
Sレジスタ群とを具備し。 加X演算をなすことを特徴とするディジタル微分解析器
[Claims] Y consisting of n m-bit registers arranged in parallel, each consisting of an n-bit adder and a set of corresponding bits.
fg! n m-bit registers, each consisting of a group of registers and a set of corresponding bis and sotos, are arranged in parallel. and a group of S registers. A digital differential analyzer characterized by performing an additive X operation.
JP56134058A 1981-08-28 1981-08-28 Digital differential analyzer Granted JPS5837742A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56134058A JPS5837742A (en) 1981-08-28 1981-08-28 Digital differential analyzer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56134058A JPS5837742A (en) 1981-08-28 1981-08-28 Digital differential analyzer

Publications (2)

Publication Number Publication Date
JPS5837742A true JPS5837742A (en) 1983-03-05
JPS6138494B2 JPS6138494B2 (en) 1986-08-29

Family

ID=15119376

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56134058A Granted JPS5837742A (en) 1981-08-28 1981-08-28 Digital differential analyzer

Country Status (1)

Country Link
JP (1) JPS5837742A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4830423A (en) * 1986-10-27 1989-05-16 Honda Giken Kogyo Kabushiki Kaisha Adjustable windshield for vehicle

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4830423A (en) * 1986-10-27 1989-05-16 Honda Giken Kogyo Kabushiki Kaisha Adjustable windshield for vehicle

Also Published As

Publication number Publication date
JPS6138494B2 (en) 1986-08-29

Similar Documents

Publication Publication Date Title
JPH0740656B2 (en) Infinite impulse response filter
JPS5837742A (en) Digital differential analyzer
JPS60160236A (en) Synchronism system of pcm multiplex converter
JPS58196742A (en) Digital signal multiplexing means
JP2536435Y2 (en) Parity counting circuit
SU919066A1 (en) Follow-up digital frequency multiplier
JPS6313437A (en) Multiplexing circuit
SU675421A1 (en) Digital squarer
SU1256020A1 (en) Digital function generator
SU781819A1 (en) Walsh function generator
JP2580641B2 (en) Block synchronization circuit
JPS5383431A (en) Test method for terminal unit
SU840969A1 (en) Digital integrator
SU610112A1 (en) Arrangement for stochastic simulation of great numbers
SU918952A1 (en) Device for walsh function conversion
JPS61219221A (en) Signaling information transferring device
JPS6025932B2 (en) TDM/FDM conversion method
JPS626734Y2 (en)
SU622070A1 (en) Digital function generator
SU911526A1 (en) Device for multiplying unit-counting codes
SU960820A2 (en) Multi-channel device for priority-based pulse selection
SU819968A1 (en) Repetition rate scaler with fractional devision coefficient
SU805310A1 (en) Multichannel priority device
SU1115053A1 (en) Number-to-pulse exponential function generator
JPS62269432A (en) Parallel operation type frame synchronizing circuit