JPS5837539A - Flowing method for carrier gas of flameless atomic light absorption analysis - Google Patents

Flowing method for carrier gas of flameless atomic light absorption analysis

Info

Publication number
JPS5837539A
JPS5837539A JP13578581A JP13578581A JPS5837539A JP S5837539 A JPS5837539 A JP S5837539A JP 13578581 A JP13578581 A JP 13578581A JP 13578581 A JP13578581 A JP 13578581A JP S5837539 A JPS5837539 A JP S5837539A
Authority
JP
Japan
Prior art keywords
atomizing
carrier gas
atomization
high temperature
carried out
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP13578581A
Other languages
Japanese (ja)
Other versions
JPS6249574B2 (en
Inventor
Masahiro Shibata
柴田 雅裕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP13578581A priority Critical patent/JPS5837539A/en
Publication of JPS5837539A publication Critical patent/JPS5837539A/en
Publication of JPS6249574B2 publication Critical patent/JPS6249574B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/71Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light thermally excited
    • G01N21/74Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light thermally excited using flameless atomising, e.g. graphite furnaces

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Geology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Environmental & Geological Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PURPOSE:To decrease the fluctuation of atom vapor at the time of atomizing and to restrain the consumption of an atomizing part at the time of cleaning, by stopping a carrier gaseous flow for 0.1-5sec before atomizing and also, starting again immediately after the atomizing. CONSTITUTION:A sample solution is charged into an atomizing part of a high temperature furnace and is dried, thereafter, heat treatment is carried out. A sheath gaseous flow is stopped by closing a solenoid valve for carrier gaseous flow and atomization is carried out after 0.1-5sec at the latter half of said heat treatment. At the same time, the absorption intensity of light having some specific wavelength by atom vapor is detected by using a hollow cathode lamp, a spectroscope and a detector and the density of metals to be measured is measured. Further, the solenoid valve for the carrier gas flow is opened immediately after the atomization and a carrier gas flow is flowed again and then, heat cleaning of the atomizing part of the high temperature furnace is carried out at high temperature. Hereby, the fluctuation of atom vapor is decreased and the measurement of atomic absorbance is performed in good accuracy.

Description

【発明の詳細な説明】 本発明は、環境計測、医学・労働衛生・公衆衛生、石油
化学工業、金属・冶金工業、非金属工業、食品・水産工
業、電子工業等の分野で広く応用されている、微量分析
を目的としたフレームレス原子吸光光度の自動分析法に
関するものである。
[Detailed description of the invention] The present invention is widely applied in fields such as environmental measurement, medicine/occupational health/public health, petrochemical industry, metal/metallurgy industry, non-metal industry, food/fishery industry, electronic industry, etc. This paper relates to an automatic flameless atomic absorption spectrometry analysis method for trace analysis.

電子工業分野、特に半導体材料、オプトエレクトロニク
ス材料を用いたデバイスの研究・開発、製品の製造にお
いては、その目的とするデノ(イスの性能を制御するた
め、より微量な成分元素、不純物元素の分析を行なう必
要がある。例えば Si半導体やGaAs  等の化合
物半導体中のFe tCu +AllCr、Siの微量
不純物の分析は重要な課題である。
In the field of electronics industry, especially in the research and development of devices and manufacturing of products using semiconductor materials and optoelectronic materials, in order to control the performance of the intended denomination device, trace amounts of component elements and impurity elements are For example, analysis of trace impurities such as Fe tCu +AllCr and Si in compound semiconductors such as Si semiconductors and GaAs is an important issue.

特にGaAs  中においてはCr、Siの微量不純物
の分析が大切なテーマとなっている。このような微量不
純物の分析方法は種々あるが、その中の一つにフレーム
レス原子吸光光度法がある。それは次のようなものであ
る。
In particular, analysis of trace impurities such as Cr and Si in GaAs is an important theme. There are various methods for analyzing such trace impurities, one of which is flameless atomic absorption spectrometry. It is something like this:

高温度へ雰囲気にふ・かれた物質は解離されて、原子の
蒸気となる。この場合1.原子は高いエネルギーレベル
のものと、低いエネルギーのものがある。原子吸光分析
は、この低いエネルギーレベルの原子の性質を利用する
。低いエネルギーレベルの原子は、ある特定の大きさの
エネルギーが与えられると、それを吸収して高いエネル
ギーレベルにうつる。原子吸光分析では光エネルギーと
して与える。光エネルギーの大きさは波長と関係する。
Substances exposed to high temperatures dissociate into atomic vapor. In this case 1. Atoms have high energy levels and low energy levels. Atomic absorption spectrometry takes advantage of this low energy level property of atoms. When an atom at a lower energy level is given a certain amount of energy, it absorbs it and transfers it to a higher energy level. In atomic absorption spectrometry, it is given as light energy. The amount of light energy is related to the wavelength.

したがって、元素によって、ある特定の波長の光だけが
吸収され、その吸収の強さは原子蒸気の密度、すなわち
、もともとの物質中の濃度に比例することになる。この
ような原理を利用して分析を行なうのが原子吸光分光光
度計である。
Therefore, only light of a certain wavelength is absorbed by an element, and the strength of that absorption is proportional to the density of the atomic vapor, that is, the concentration in the original substance. An atomic absorption spectrophotometer performs analysis using this principle.

原子吸光光度計は、原子が吸収するエネルギーレベルに
相当する波長の光を出す光源(ホローカソードランプ)
、原子蒸気をつくり出す原子化部としての高温炉、必要
な波長の光を選び出す分光器と検知器ふ・よびその他、
高温炉を制御する電気制御部又はフレームを制御するガ
ス制御部信号を処理する電気処理部からなっている。(
第1図)次に光源から検出器までの原子吸収の過程及び
定置法の過程を第2図に示す。
An atomic absorption photometer uses a light source (hollow cathode lamp) that emits light at a wavelength corresponding to the energy level absorbed by atoms.
, a high-temperature reactor as an atomization unit that creates atomic vapor, a spectrometer and detector that selects light of the necessary wavelength, and others.
It consists of an electric control section that controls the high temperature furnace, a gas control section that controls the frame, and an electric processing section that processes signals. (
FIG. 1) Next, FIG. 2 shows the process of atomic absorption from the light source to the detector and the process of the emplacement method.

第2図(a)において、ランプは測定する元素の線スペ
クトルを放出し、黒色部は特定波長(共鳴線)を表わす
In FIG. 2(a), the lamp emits a line spectrum of the element to be measured, with the black areas representing specific wavelengths (resonance lines).

第2図(b)において、高温炉原子化部中のサンプルは
共鳴線でエネルギーを吸収し、共鳴線以外の線スペクト
ルはそのまま通過する。
In FIG. 2(b), the sample in the high-temperature reactor atomization section absorbs energy at the resonance line, and the line spectrum other than the resonance line passes through as is.

第2図(C)において、分光器は共鳴線付近の光のみを
通す働きをしている。
In FIG. 2(C), the spectrometer functions to pass only light near the resonance line.

の吸収により減少した共鳴線の大きさのみを検出する。detects only the magnitude of the resonance line that has decreased due to absorption.

第1図で光源ランプの線巾が極めて小さく、安定してお
り、原子化部で化学反応が起っていない場合を考えると
、log−L’= ABS = K、f、N、1.とな
Iν す、測定しようとする金属濃度は吸光度に比例する訳で
ある。又、分析感度を上げるにはf値の大きい共鳴線を
選ぶとか、lを大きくとるのがよいことがわかる。
Considering the case in FIG. 1 where the line width of the light source lamp is extremely small and stable, and no chemical reaction is occurring in the atomization section, log-L'=ABS=K, f, N, 1. Therefore, the metal concentration to be measured is proportional to the absorbance. It is also understood that in order to increase the analysis sensitivity, it is better to select a resonance line with a large f value or to increase l.

なお、実際の検量線はスペクトル線の様々な影響により
広い濃度範囲にわたり直線性を示すことは少い。
Note that actual calibration curves rarely exhibit linearity over a wide concentration range due to various influences of spectral lines.

このフレームレス原子吸光光度分析において、従来原子
化時のキャリアーガスの流し方としては、原子化と同時
にキャリアーガス流をストップしていた。
In this flameless atomic absorption spectrophotometric analysis, the conventional method of flowing carrier gas during atomization was to stop the flow of carrier gas at the same time as atomization.

しかしこのような方法においては、原子化時の原子蒸気
のゆらぎが流れの残留にもとすいて大きく、精度が良く
なかった。
However, in this method, the fluctuation of the atomic vapor during atomization was large compared to the residual flow, and the accuracy was not good.

本発明はこれらの欠点を改善する方法を提供するもので
ある。
The present invention provides a method to improve these drawbacks.

本発明は、原子化と同時にキャリアガス流をストップす
るのではなく、原子化前5〜0.1sec  にシース
ガス流をストップするものである。
The present invention does not stop the carrier gas flow simultaneously with atomization, but rather stops the sheath gas flow 5 to 0.1 seconds before atomization.

本発明によ′れば、原子化時の原子蒸気のゆらぎをでき
る限り小さくシ、精度良い原子吸光度測定を行なうこと
、また原子化の直後キャリアガス流を再びスタートシ、
この後に続くクリーニング時の原子化部の消耗をおさえ
ることができる。
According to the present invention, it is possible to perform accurate atomic absorption measurement by minimizing fluctuations in atomic vapor during atomization, and to restart the carrier gas flow immediately after atomization.
It is possible to suppress wear and tear on the atomization section during subsequent cleaning.

このようなガスの流し方は、コンピュータ制御にとって
゛特に好適である。例えば第3図に示すようなプログラ
ム・フロー・チャートを用いることができる。
This method of gas flow is particularly suitable for computer control. For example, a program flow chart as shown in FIG. 3 can be used.

なおC+ d * e * f + gの間加熱処理は
持続されている。
Note that the heat treatment is continued during C+ d * e * f + g.

ここであらかじめ、ある時間tを設定しておき、加熱処
理の後半において、キャリアガスフロー用の電磁弁を閉
じ、を秒後に原子化を行う。tとしては0.1〜5 s
ec  が実用範囲である。
Here, a certain time t is set in advance, and in the latter half of the heat treatment, the electromagnetic valve for carrier gas flow is closed, and atomization is performed after 2 seconds. t is 0.1 to 5 s
ec is the practical range.

次に第4図には本発明の一実施例における結果を示す。Next, FIG. 4 shows the results in one embodiment of the present invention.

ここには原子化の2秒前にキャリアーガスをストップし
た時の原子吸光度ピークを示しである。(吸光度平均値
) m=0.161  (相対誤差)CV□□□) =
 1.3%と極めて良い結果が得られてることが分る。
This shows the atomic absorption peak when the carrier gas was stopped 2 seconds before atomization. (Absorbance average value) m=0.161 (Relative error) CV□□□) =
It can be seen that an extremely good result of 1.3% was obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は高温炉法の原理図であり、第2図は原子吸光測
定過程図である。第3図′は本発明の方法の一プログラ
ム・フローチャート図であり、第4図は本発明の一実施
例を示す為の図である。
FIG. 1 is a diagram of the principle of the high temperature furnace method, and FIG. 2 is a diagram of the atomic absorption measurement process. FIG. 3' is a program flowchart of the method of the present invention, and FIG. 4 is a diagram showing an embodiment of the present invention.

Claims (1)

【特許請求の範囲】[Claims] (1)フレーム・レス原子吸光分析法において、原子化
前o、1〜10 秒間キャリアー・ガス流をストップし
、その後原子吸光度測定を行い、さらに原子化の直後キ
ャリアーガス流を再び゛流すことを特徴とするフレーム
レス原子吸光分析におけるキャリアーガスの流し方。
(1) In flameless atomic absorption spectrometry, the carrier gas flow is stopped for 1 to 10 seconds before atomization, then atomic absorption is measured, and then the carrier gas flow is restarted immediately after atomization. Characteristic method of flowing carrier gas in flameless atomic absorption spectrometry.
JP13578581A 1981-08-29 1981-08-29 Flowing method for carrier gas of flameless atomic light absorption analysis Granted JPS5837539A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13578581A JPS5837539A (en) 1981-08-29 1981-08-29 Flowing method for carrier gas of flameless atomic light absorption analysis

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13578581A JPS5837539A (en) 1981-08-29 1981-08-29 Flowing method for carrier gas of flameless atomic light absorption analysis

Publications (2)

Publication Number Publication Date
JPS5837539A true JPS5837539A (en) 1983-03-04
JPS6249574B2 JPS6249574B2 (en) 1987-10-20

Family

ID=15159783

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13578581A Granted JPS5837539A (en) 1981-08-29 1981-08-29 Flowing method for carrier gas of flameless atomic light absorption analysis

Country Status (1)

Country Link
JP (1) JPS5837539A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3788752A (en) * 1972-03-03 1974-01-29 Perkin Elmer Corp Gas flow controller for a heated sample cell

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3788752A (en) * 1972-03-03 1974-01-29 Perkin Elmer Corp Gas flow controller for a heated sample cell

Also Published As

Publication number Publication date
JPS6249574B2 (en) 1987-10-20

Similar Documents

Publication Publication Date Title
Van Dalen et al. Optimization of the microwave-induced plasma as an element-selective detector for non-metals
Feng et al. Determination of arsenic, antimony, selenium, tellurium and bismuth in nickel metal by hydride generation atomic fluorescence spectrometry
US3843257A (en) Microwave-excited emission detector
Farah et al. Developments and applications of multielement graphite furnace atomic absorption spectrometry
Ebdon et al. Direct atomic spectrometric analysis by slurry atomisation. Part 2. Elimination of interferences in the determination of arsenic in whole coal by electrothermal atomisation atomic absorption spectrometry
Goforth et al. Laser-excited atomic fluorescence of atoms produced in a graphite furnace
Schmidt et al. Direct determination of Ag, Cu and Ni in solid materials by graphite furnace atomic absorption spectrometry using a specially designed graphite tube
Zacharia et al. Direct atomic absorption spectrometry determination of tin, lead, cadmium and zinc in high-purity graphite with flame furnace atomizer
Huang et al. Electron temperatures and electron number densities measured by Thomson scattering in the inductively coupled plasma
Wibetoe et al. Spectral interferences and background overcompensation in zeeman-corrected atomic absorption spectrometry: Part 1. The effect of iron on 30 elements and 49 element lines
Reid et al. Horizontal tungsten coil atomizer and integrated absorbance readout for atomic absorption spectrometry
Costantini et al. Applicability of anodic-stripping voltammetry and graphite furnace atomic-absorption spectrometry to the determination of antimony in biological matrices: a comparative study
JPS5837539A (en) Flowing method for carrier gas of flameless atomic light absorption analysis
Hutton et al. Determination of barium in calcium carbonate rocks by carbon furnace atomic-emission spectrometry
JPH05240784A (en) Apparatus and method for correcting absorption of atomic absorption spectrometry
Redfield et al. Identification and effect of pre-atomisation losses on the determination of aluminium by graphite furnace atomic absorption spectrometry
Matosek et al. Spectrometric analysis of non-metals introduced from a graphite furnace into a microwave-induced plasma
JPS5837540A (en) Automatic analyzing method for flameless atomic absorption
JPS5837541A (en) Automatic analyzing method for flameless atomic absorption
JPS5837538A (en) Measuring method for area absorbance of flameless atomic absorption analysis
Anderson et al. The determination of lead in mosses by means of its catalytic effect on the persulphate oxidation of pyrogallol red
Moreda-Piñeiro et al. Chemometrics approaches for the study of systematic error in inductively coupled plasma atomic emission spectrometry and mass spectrometryElectronic Supplementary Information available. See http://www. rsc. org/suppdata/ja/b0/b008022p/Presented at the Tenth Biennial National Atomic Spectrometry Symposium (BNASS), Sheffield, UK, July 17–20, 2000.
Littlejohn et al. Communications. Automatic graphite probe sample introduction for electrothermal atomic-absorption spectrometry
West X-ray fluorescence spectrometry applied to the analysis of environmental samples
JPS5837542A (en) Automatic analyzing method for flameless atomic absorption