JPS5837496B2 - Optical fiber length measurement method - Google Patents

Optical fiber length measurement method

Info

Publication number
JPS5837496B2
JPS5837496B2 JP10236976A JP10236976A JPS5837496B2 JP S5837496 B2 JPS5837496 B2 JP S5837496B2 JP 10236976 A JP10236976 A JP 10236976A JP 10236976 A JP10236976 A JP 10236976A JP S5837496 B2 JPS5837496 B2 JP S5837496B2
Authority
JP
Japan
Prior art keywords
optical fiber
length
measuring
light
fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP10236976A
Other languages
Japanese (ja)
Other versions
JPS5328447A (en
Inventor
敬一郎 岩崎
英之 滝本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP10236976A priority Critical patent/JPS5837496B2/en
Publication of JPS5328447A publication Critical patent/JPS5328447A/en
Publication of JPS5837496B2 publication Critical patent/JPS5837496B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Testing Of Optical Devices Or Fibers (AREA)

Description

【発明の詳細な説明】 近年、光学ファイバの低損失化が急速に進み、ファイバ
を伝送線路とした光通信方式が注目されている。
DETAILED DESCRIPTION OF THE INVENTION In recent years, the loss of optical fibers has been rapidly reduced, and optical communication systems using fibers as transmission lines are attracting attention.

この通信方式を実現するためには、種々の技術開発が要
求されるが、その中で、伝送路の伝送特性評価技術は特
に重要である。
In order to realize this communication system, various technological developments are required, and among them, transmission characteristic evaluation technology of transmission paths is particularly important.

この伝送特性評価は、常に対伝送距離について行なわれ
るものであり、正確な伝送距離の測長が要求される。
This transmission characteristic evaluation is always performed on the transmission distance, and requires accurate measurement of the transmission distance.

1た、布設後、接続されたファイバケーブルに対して、
最終的なケーブル長の測長は、その後の伝送特性評価の
上で必須項目となる。
1. After installation, for the connected fiber cable,
Measuring the final cable length is essential for subsequent evaluation of transmission characteristics.

現在、一般的に用いられている測長方法は、超短パルス
光(パルス幅〜300ピコ秒)を被測長フイアバに入射
させ、他端あるいは入射端で、上記パルス光を検出し、
入射時間に対する遅延時間を測定し、測長を行うもので
ある。
Currently, the length measurement method commonly used is to input ultrashort pulsed light (pulse width ~300 picoseconds) into the fiber to be measured, and detect the pulsed light at the other end or input end.
The length is measured by measuring the delay time with respect to the incident time.

この場合、入射したパルス波形と同形のパルスを検出す
ることが理想的であるが、光学ファイバ固有のパルス歪
特性により、検出パルス波形は変形する。
In this case, it is ideal to detect a pulse with the same shape as the incident pulse waveform, but the detected pulse waveform is deformed due to the pulse distortion characteristics inherent to the optical fiber.

1た伝送損失によるパルス波高値の劣化により、検出系
での信号対雑音比は極度に劣化する。
In addition, the signal-to-noise ratio in the detection system is extremely degraded due to the deterioration of the pulse peak value due to the transmission loss.

したがって、遅延時間測定は難かしくなり、測定精度は
劣化することになる。
Therefore, delay time measurement becomes difficult and measurement accuracy deteriorates.

本発明は被測長ファイバの長さに関係なく、高精度で光
学ファイバ長を測長する光学ファイバ測長方法釦よびそ
の装置に関するものであり、以下、図面により本発明の
実施例を示す。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention relates to an optical fiber length measuring method button and apparatus for measuring the length of an optical fiber with high precision regardless of the length of the fiber to be measured, and embodiments of the present invention will be described below with reference to the drawings.

図において、被測長ファイバ1の片端2に被測長ファイ
バを伝搬する光波に対しほとんど100俤反射する全反
射鏡3を配置し、被測長ファイバ10入射端4より入射
する光波強度のうち、伝送損失を除いた大部分の光波が
全反射鏡3により反射され被測長ファイバ1の入射端4
より出射する。
In the figure, a total reflection mirror 3 that reflects almost 100 waves of light waves propagating through the length-measuring fiber 1 is arranged at one end 2 of the length-measuring fiber 1, and the light wave intensity incident from the input end 4 of the length-measuring fiber 10 is , most of the light waves excluding transmission loss are reflected by the total reflection mirror 3 and reach the input end 4 of the fiber 1 to be measured.
Emits more light.

半導体レーザ発振器5は正弦波信号発生器6により正弦
波光変調される。
The semiconductor laser oscillator 5 is subjected to sinusoidal optical modulation by a sinusoidal signal generator 6 .

ここで、正弦波信号発生器6は大体数10KHzから数
MHz程度の周波数帯域幅を有していて、半導体レーザ
発振器5は、上記周波数帯域に対して十分応答できる。
Here, the sine wave signal generator 6 has a frequency bandwidth of approximately several tens of KHz to several MHz, and the semiconductor laser oscillator 5 can sufficiently respond to the above frequency band.

半導体レーザ発振器5より出射する光変調波7は適当な
光学系(図面では省略)を介した後ビーム・スプリツタ
8によりほぼ半分の光強度は光検出器#19に入射する
The optical modulated wave 7 emitted from the semiconductor laser oscillator 5 passes through a suitable optical system (not shown in the drawing), and then enters a beam splitter 8, where approximately half of the light intensity is incident on a photodetector #19.

一方、ビーム・スブリッタ8を直進する光波は適当な光
学系(図面では省略)を介し、被測長ファイバの入射端
4よりIIJ長ファイバ1内に励振される。
On the other hand, the light wave traveling straight through the beam splitter 8 is excited into the IIJ length fiber 1 from the input end 4 of the fiber to be measured via a suitable optical system (not shown in the drawing).

この光波は上記したように、被測長ファイバ1の片端2
で反射され、再び入射端4より出射し、ビーム・スプリ
ッタ8により、ほぼ半分の光強度が光検出器#210に
入射する。
As mentioned above, this light wave is transmitted to one end 2 of the fiber 1 to be measured.
The light is reflected by the light beam, and then exits again from the incident end 4, and almost half of the light intensity is incident on the photodetector #210 by the beam splitter 8.

光検出器#l9及び光検出器#210の検波出力は、位
相測定器11に導かれ、光検出器#l9の検波出力の位
相に対する光検出器#210の検波出力の位相差量が示
される。
The detected outputs of photodetector #19 and photodetector #210 are guided to a phase measuring device 11, which indicates the amount of phase difference between the detected output of photodetector #210 and the phase of the detected output of photodetector #19. .

光変調波周波数が高々数MHz以下では、光検出器#2
10の検波出力の位相は、光波の伝搬距離の関数で表わ
される。
When the optical modulation wave frequency is at most several MHz or less, photodetector #2
The phase of the detection output of 10 is expressed as a function of the propagation distance of the light wave.

ここで、被測長ファイバの光波伝搬領域の屈折率18を
n。
Here, the refractive index 18 of the light wave propagation region of the fiber to be measured is n.

(伝送光波の波長に対して)、被測長ファイバ長12を
L。
(with respect to the wavelength of the transmitted light wave), the length of the fiber to be measured 12 is L.

、1たビーム・スプリツタ8から被測長ファイバ1の入
射端41での空間距離14を△Lとし、ビーム・スプリ
ツタ8より、それぞれの光検出器9,10に至る空間距
離は等し〈とり、光波の真空中での速さをC、光変調波
の周波数をfmとすれば、上記した位相差△φは ここで、Loを求める方法として2つの方法がある。
, the spatial distance 14 from the beam splitter 8 to the input end 41 of the fiber 1 to be measured is ΔL, and the spatial distances from the beam splitter 8 to the respective photodetectors 9 and 10 are equal. , the speed of the light wave in vacuum is C, and the frequency of the optical modulation wave is fm, the above-mentioned phase difference Δφ is here. There are two methods for finding Lo.

1つは、fmを固定して、△φよりL。を求める方法で
あり、他の1つは、△φが一定値になるようにfmを変
えて、Loを求める方法である。
One is to fix fm and L from △φ. The other method is to change fm so that Δφ becomes a constant value and find Lo.

本発明による測長装置での測長誤差は△φとfmの誤差
が主である。
The length measurement errors in the length measuring device according to the present invention are mainly errors in Δφ and fm.

△φs fmの誤差をそれぞれ、δφ,δfmとし、こ
れによるL。
Let the errors of Δφs fm be δφ and δfm, respectively, and L due to this.

の誤差をδLとすれば これより、 fmを掃引し、位相差△φが例えば2 πになるfmを求める方法を選べば、測定誤差は被測長
ファイバ1の長さを約0.4%の誤差で測長可能となる
If we choose a method of sweeping fm and finding fm where the phase difference Δφ is, for example, 2π, then the measurement error will be approximately 0.4% of the length of the fiber 1 to be measured. The length can be measured with an error of

Lの範囲を0.1からlOKm程度と仮定すれば、fm
の掃引範囲は10KHzからIMHz程度がよい。
Assuming that the range of L is about 0.1 to lOKm, fm
The sweep range is preferably about 10 KHz to IMHz.

1た、一方、fmを固定して△φより測長する方法では
、△φの範囲をOより2πに選べば、となり、最大10
Km程度捷での測長が出来る。
1. On the other hand, in the method of fixing fm and measuring from △φ, if the range of △φ is selected from O to 2π, then the maximum length is 10
Length measurements can be made with a distance of about Km.

以上のように、本発明による光学ファイバ測長装置は、
従来パルス光による方法に対して、周辺測定器類が低周
波領域のものですみ、さらに、単一正弦波変調光を検波
することより、検出系での信号対雑音比が大幅に改善で
き、伝送損失の大きな光学ファイバあるいは長尺化に対
しても十分な利点がある。
As described above, the optical fiber length measuring device according to the present invention has the following features:
Compared to the conventional method using pulsed light, the peripheral measuring instruments only need to be in the low frequency range, and by detecting a single sine wave modulated light, the signal-to-noise ratio in the detection system can be greatly improved. There are sufficient advantages even for optical fibers with large transmission losses or for longer lengths.

さらに、fmを掃引する方法では、被測長ファイバ長の
長短にかかわらず、Lに対して0.4%程度の誤差を有
するのみであり、この点に関してもパルス光による方法
より優れる。
Furthermore, the method of sweeping fm has an error of only about 0.4% with respect to L, regardless of the length of the fiber to be measured, and is superior to the method using pulsed light in this respect as well.

本発明では、光源の選択は自由であり、本実施例では半
導体レーザ発振器を直接変調する方法を用いているが、
他の光源を直接変調あるいは外部変調器による変調手段
でも本質的には問題ない。
In the present invention, the light source can be freely selected, and in this embodiment, a method of directly modulating a semiconductor laser oscillator is used.
There is essentially no problem in directly modulating another light source or using an external modulator.

捷た、本実施例では、被測長ファイバ1の他端2に全反
射鏡3を設置したが、全反射鏡3を設けず、透過光を光
検出器#210に導き、同様に測長することもできる。
In this example, a total reflection mirror 3 was installed at the other end 2 of the fiber 1 to be measured, but the total reflection mirror 3 was not provided, and the transmitted light was guided to the photodetector #210, and the length was measured in the same way. You can also.

以上の如く本発明によれば数KHzから数MHztでの
変調光が得られることのみが必要十分条件と々るので光
源の選択75咄由であり、高々数MHz程度で測長可能
であるので測定器類が低周波領域のものでよい、1た長
尺化に従って変調周波数が低くなるためファイバ固有の
帯域制限を受けない傾向を有するので長尺ファイバに対
しても測長が可能である。
As described above, according to the present invention, the only necessary and sufficient condition is that modulated light at several kHz to several MHzt can be obtained, so there is no limit to the selection of the light source, and length measurement is possible at most several MHz. The measuring instruments may be those in the low frequency range, and since the modulation frequency decreases as the fiber length increases, it tends not to be subject to band limitations inherent to fibers, so it is possible to measure the length of long fibers as well.

変調波成分のみを狭帯域検波することが可能なことより
信号雑音比が大きくとれ、信号光レベルの低下が有利で
あり、伝送損失が増加しても測長が可能である。
Since it is possible to perform narrowband detection of only the modulated wave component, a large signal-to-noise ratio can be achieved, a reduction in the signal light level is advantageous, and length measurement is possible even if transmission loss increases.

数MHz程度1での帯域があればよいので光検出器に高
速性を要求し々い。
Since a band of about several MHz is sufficient, the photodetector is required to have high speed.

又光学ファイバ素線及び光学ファイバケーブルの測長が
出来る等の利点がある。
It also has the advantage of being able to measure the length of optical fiber wires and optical fiber cables.

【図面の簡単な説明】 図は本発明の光学ファイバの測長装置の説明図を示す。 1は被測長ファイバ、3は反射鏡、4は入射端、5は半
導体レーザ発振器、6は正弦波信号発生器、7は光変調
波、8はビームスプリツタ、9は光検出器#1、10は
同#2、11は位相測定器、12は被測長ファイバ長、
13は屈折率、14は空間距離。
BRIEF DESCRIPTION OF THE DRAWINGS The figure shows an explanatory diagram of the optical fiber length measuring device of the present invention. 1 is a fiber to be measured, 3 is a reflecting mirror, 4 is an input end, 5 is a semiconductor laser oscillator, 6 is a sine wave signal generator, 7 is an optical modulation wave, 8 is a beam splitter, 9 is photodetector #1 , 10 is the same #2, 11 is the phase measuring device, 12 is the fiber length to be measured,
13 is the refractive index, and 14 is the spatial distance.

Claims (1)

【特許請求の範囲】 1 正弦波で強度変調された光波を被測長光学ファイバ
に入射させ、この光学ファイバ中を伝搬したことによっ
て生ずる正弦波変調光の位相遅れを検出することによっ
て、光学ファイバ長を測長することを特徴とする光学フ
ァイバの測長方法。 2 前記位相遅れの基準として、被測長光学ファイバの
光入射端での正弦波変調光の位相を零とすることを特徴
とする特許請求の範囲第1項記載の光学ファイバの測長
方法。 3 被測長光学ファイバ中を伝搬する光波は被測長光学
ファイバ中を1回あるいは2回伝搬させることを特徴と
する特許請求の範囲第1項記載の光学ファイバの測長方
法。
[Scope of Claims] 1. An optical fiber is made by inputting a light wave intensity-modulated with a sine wave into an optical fiber to be measured and detecting the phase delay of the sine wave modulated light caused by propagation in the optical fiber. A method for measuring the length of an optical fiber, the method comprising measuring the length of an optical fiber. 2. The method for measuring the length of an optical fiber according to claim 1, characterized in that, as a reference for the phase delay, the phase of the sinusoidally modulated light at the light input end of the optical fiber to be measured is set to zero. 3. The method for measuring the length of an optical fiber according to claim 1, characterized in that the light wave propagating through the length-measuring optical fiber is propagated once or twice through the length-measuring optical fiber.
JP10236976A 1976-08-27 1976-08-27 Optical fiber length measurement method Expired JPS5837496B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10236976A JPS5837496B2 (en) 1976-08-27 1976-08-27 Optical fiber length measurement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10236976A JPS5837496B2 (en) 1976-08-27 1976-08-27 Optical fiber length measurement method

Publications (2)

Publication Number Publication Date
JPS5328447A JPS5328447A (en) 1978-03-16
JPS5837496B2 true JPS5837496B2 (en) 1983-08-16

Family

ID=14325534

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10236976A Expired JPS5837496B2 (en) 1976-08-27 1976-08-27 Optical fiber length measurement method

Country Status (1)

Country Link
JP (1) JPS5837496B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0627027B2 (en) * 1986-12-18 1994-04-13 日本軽金属株式会社 High-strength ceramic material manufacturing method
GB8709900D0 (en) * 1987-04-27 1987-08-05 British Telecomm Surveillance system
CN103837125B (en) * 2014-03-19 2017-04-26 中铁隧道集团有限公司 Convergence monitoring system for tunnel construction

Also Published As

Publication number Publication date
JPS5328447A (en) 1978-03-16

Similar Documents

Publication Publication Date Title
JP3335205B2 (en) Optical system calibration method
JP5752040B2 (en) Compact optical fiber arrangement for anti-chirp FMCW coherent laser radar
JP3279116B2 (en) Laser Doppler velocimeter
JP2954871B2 (en) Optical fiber sensor
EP0092369A2 (en) Light frequency change detecting method and apparatus
US7515275B2 (en) Optical apparatus and method for distance measuring
JP3883458B2 (en) Reflective Brillouin spectral distribution measuring method and apparatus
CN108007307B (en) Optical fiber measuring method and measuring device
JPS5837496B2 (en) Optical fiber length measurement method
Takada et al. High sensitivity and submillimeter resolution optical time-domain reflectometry based on low-coherence interference
US5471300A (en) Apparatus and method for providing a feedback measurement in a laser system
JPS63196829A (en) Method and apparatus for searching fault point of light waveguide
US4397548A (en) Distance measuring system
JPH05203410A (en) Method and device for measuring reflecting point in optical frequency domain
JPH03175333A (en) Light transmission line measuring device
JPS6134403A (en) Optical interferometer
JPS5948668A (en) Optical fiber speedometer
US20230288561A1 (en) Optical interferometric range sensor
CN111637906B (en) Fiber grating demodulation device and method based on self-differencing coherence
US20230288562A1 (en) Optical interferometric range sensor
JPH08334436A (en) Wavelength dispersion measuring method for optical fiber
JPH0875434A (en) Surface form measuring device
JP3298373B2 (en) Low coherence reflectometer
JPS6246227A (en) Method for measuring reflective point of optical part
JPH062261U (en) Distance measuring device