JPS5837496A - Transmitting device of boiling heat - Google Patents

Transmitting device of boiling heat

Info

Publication number
JPS5837496A
JPS5837496A JP13633681A JP13633681A JPS5837496A JP S5837496 A JPS5837496 A JP S5837496A JP 13633681 A JP13633681 A JP 13633681A JP 13633681 A JP13633681 A JP 13633681A JP S5837496 A JPS5837496 A JP S5837496A
Authority
JP
Japan
Prior art keywords
electric field
boiling
heat
heat transfer
heat flux
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13633681A
Other languages
Japanese (ja)
Inventor
Akira Yabe
彰 矢部
Takao Takeya
竹谷 隆夫
Kentaro Kikuchi
健太郎 菊地
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP13633681A priority Critical patent/JPS5837496A/en
Publication of JPS5837496A publication Critical patent/JPS5837496A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • F28F13/16Arrangements for modifying heat-transfer, e.g. increasing, decreasing by applying an electrostatic field to the body of the heat-exchange medium

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)

Abstract

PURPOSE:To increase the heat transmit quantity in a boiling region, by providing many concave and convex surfaces in a heat transmit surface, and lifting the heat flux in a nucleate boiling region in the increasing direction by the effect of an electric field. CONSTITUTION:Many concave and convex parts are provided in the heat transmit surface 12. Then bubbles 14 are generated in the concave part 13. In order to increase the heat flux at the time of the nuclear boiling, it is better that said bubble should leave the heat transmit surface 12 quickly. When the high voltage electric field is imparted by an electrode 15, a force E1, which weakens surface tension T1 at a lower end G of the bubble 14, is acted. Therefore, the bubble 14 becomes easy to leave the heat transmit surface 12, and the heat transmit coefficient at the time of nuclear boiling is increased by that amount.

Description

【発明の詳細な説明】 本発明は電場によって核沸騰時の熱流束の増大を計った
沸騰熱伝達装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a boiling heat transfer device that uses an electric field to increase heat flux during nucleate boiling.

沸騰熱伝達における沸騰曲線は、第1図に示す如く核沸
騰状態1から頂点Pへ到シ、膜沸騰状態2となると急激
に熱流束Qが低下する、前記Pの付近を沸騰限界熱流束
と云っているが、この沸騰限界熱流束を増大させること
は、と9もなおさず沸騰熱伝達率の向上を意味し、従来
から種々の試みがなされている。
As shown in Fig. 1, the boiling curve in boiling heat transfer goes from nucleate boiling state 1 to peak P, and when it reaches film boiling state 2, the heat flux Q decreases rapidly. However, increasing the boiling limit heat flux means improving the boiling heat transfer coefficient, and various attempts have been made in the past.

その試みの一つに、電場をかけるものがある。One such attempt involves applying an electric field.

第2図を参照して、伝熱面3と熱交換媒体中におかれた
電極4との間に高電圧をかけ、伝熱面3付近の熱交換媒
体に電場をかける。
Referring to FIG. 2, a high voltage is applied between the heat transfer surface 3 and the electrode 4 placed in the heat exchange medium, and an electric field is applied to the heat exchange medium near the heat transfer surface 3.

このようにすると、第1図の沸騰曲線が破線の如くなっ
て沸騰限界熱流束が点PからP′へ移る。このため、図
の斜線の部分だけ熱伝達量が増えるもの七なる。
When this is done, the boiling curve in FIG. 1 becomes like the broken line, and the boiling limit heat flux shifts from point P to P'. Therefore, the amount of heat transfer increases only in the shaded area in the figure.

ところが、従来の電場による沸騰限界熱流束の増大装置
は、単に高電圧の電場を与えるのみであシ、その他の条
件の最適化について1d何等考えていなかった。その理
由の一つに、電場にられてなく、伝熱面の形状効果によ
っては核沸騰領域でも熱流束の増大があることは全く知
られていなかった。
However, the conventional boiling limit heat flux increasing device using an electric field simply applies a high-voltage electric field and does not give any consideration to optimization of other conditions. One of the reasons for this is that there is no electric field and it was completely unknown that heat flux increases even in the nucleate boiling region due to the shape effect of the heat transfer surface.

本発明の目的は、電場による沸騰限界熱流束の増大メカ
ニズムを理論的に解析し、これによって望ましい伝熱面
形状を与えることにょシ核沸騰領域での熱流束を増大さ
せた沸騰熱伝達装置を提供せんとするにある。
The purpose of the present invention is to theoretically analyze the mechanism of increasing the boiling limit heat flux due to an electric field, and thereby create a boiling heat transfer device that increases the heat flux in the nucleate boiling region by providing a desirable heat transfer surface shape. It is not intended to be provided.

以下、詳細に説明する。This will be explained in detail below.

沸騰限界熱流束を決める要因については、現在までのと
ころ確固たる理論がない。本発明者らは気−液界面に発
生する2つの不安定にょっ不安定であシ、第3図の(a
)、(1))に示すものである。第3図の(a)に示す
ように沸騰量が増大して伝熱面5上を一時的に蒸気の層
6が覆ってしまうと、重い液体の層7の方が軽い蒸気の
層6の上方へ位置する。このため、気液界面8が図示の
如き波形となるが、ここで不安定が発生すると気液界面
8の波の谷Hが一層伝熱面5側へ近づき、逐には液体が
伝熱面5に接する。こうして、第3図の(b)に示すよ
うに蒸気は伝熱面5上に柱Jとなって上昇する。この第
3図の(b)に示す状態が沸騰限界熱流束となった状態
であるが、沸騰限界熱流束を増大させるには気液界面8
の不安定を発生し易くするとよい。
To date, there is no solid theory regarding the factors that determine the boiling limit heat flux. The present inventors have discovered that the two unstable phenomena occurring at the gas-liquid interface are quite unstable, and are shown in Figure 3 (a).
), (1)). As shown in FIG. 3(a), when the amount of boiling increases and a vapor layer 6 temporarily covers the heat transfer surface 5, the heavier liquid layer 7 is larger than the lighter vapor layer 6. located upwards. For this reason, the gas-liquid interface 8 has a waveform as shown in the figure, but if instability occurs here, the trough H of the wave at the gas-liquid interface 8 approaches the heat transfer surface 5 side, and the liquid gradually moves to the heat transfer surface. Close to 5. In this way, the steam rises as columns J on the heat transfer surface 5, as shown in FIG. 3(b). The state shown in FIG. 3(b) is the boiling limit heat flux, but in order to increase the boiling limit heat flux, the gas-liquid interface 8
It is better to make it easier for instability to occur.

電場をかけると、第4図(a)に示すように気液界面9
に不安定が発生し易くなシ、第3図の気液界面8と比べ
て波長の小さい気液界面9となる。このため、第4図(
b’)に示すように伝熱面10上に直径の小さい多数の
蒸気の柱J1が生じる。熱流束は蒸気の柱の直径が小さ
い程大きくなる。そして、蒸気の柱の直径は不安定の発
生し易さに依存し、不安定が発生し易い程直径−例とし
て、フレオン−113を用いテ電場0と電場2 (IK
V/cmの場合の直径について測定した結果を記すと、
電場Oの場合に直径25mmだったものが電場20 K
V/cmでは直径3mmとなった。この結果、沸騰限界
熱流束は大巾に増大するものとなる3 上述の平行方向の気液界面の不安定による効果はある程
度知られていたが、茨に述べる伝熱面と垂直方向の気液
界面の不安定、即ち垂直気泡噴流の不安定は全く研究さ
れていない因子である。これは、第5図(a)、(b)
、(c)に示すようができるかと云う問題である。
When an electric field is applied, the gas-liquid interface 9 appears as shown in Figure 4(a).
The gas-liquid interface 9 has a smaller wavelength than the gas-liquid interface 8 shown in FIG. 3. For this reason, Figure 4 (
As shown in b'), many vapor columns J1 with small diameters are generated on the heat transfer surface 10. The heat flux increases as the diameter of the steam column decreases. The diameter of the vapor column depends on the ease with which instability occurs; the more likely instability occurs, the diameter - For example, using Freon-113, the electric field 0 and the electric field 2 (IK
The results of measuring the diameter in V/cm are as follows:
When the electric field is O, the diameter is 25 mm, but the electric field is 20 K.
The diameter was 3 mm at V/cm. As a result, the boiling limit heat flux increases significantly.3 Although the effect of instability of the gas-liquid interface in the parallel direction described above has been known to some extent, Interfacial instability, ie instability of vertical bubble jets, is a completely unstudied factor. This is shown in Figure 5 (a) and (b).
, (c) is possible.

先ず、第5図の(a)に示す如く蒸気の柱Jlは伝熱面
10上に発生するが、気液界面11に不安定が発生する
と、第5図の(b)に示す如く短かい蒸気の柱J2と多
数の気泡J3に切断される。
First, a column of steam Jl is generated on the heat transfer surface 10 as shown in FIG. It is cut into a column of steam J2 and a large number of bubbles J3.

気泡J2となると、蒸気の上昇速度が遅くなり、沸騰限
界熱流束が小さくなるので、気液界面llを安定させて
不安定の発生を阻止することが望ましい、電場をかける
と、気液界面110安定度が増大し、蒸気の柱J1が切
れ難くなるものとなシ、第5図の(C)に示す如く比較
的長い蒸気の柱J、が残留し、気泡J、も縦長のものと
なる。
When the bubbles J2 are formed, the rising speed of the vapor becomes slow and the boiling limit heat flux becomes small. Therefore, it is desirable to stabilize the gas-liquid interface 11 to prevent instability from occurring. As the stability increases and the vapor column J1 becomes difficult to break, a relatively long vapor column J remains as shown in FIG. 5(C), and the bubbles J also become vertically elongated. .

このため、柱J、内の蒸気の上昇速度が大きくなシ、沸
騰限界熱流束が増大するものとなる。
For this reason, the rising speed of the steam in the column J becomes large, and the boiling limit heat flux increases.

上述の電場による不安定抑制効果について以下のような
理論解析を試みた結果、実験的にも検証することができ
、最適化の因子を選定するは、 ■ 軸対称蒸気噴流界面を、二次元界面で近L 度癲に比べて充分小さい。
As a result of attempting the following theoretical analysis of the instability suppressing effect due to the electric field mentioned above, it was possible to verify it experimentally, and the optimization factors were selected as follows. It is sufficiently small compared to the near L degree.

■ 界面波を次式で近似する。■ Approximate the interfacial wave using the following equation.

r7= B @ M4 (Z −c j; )(η:y
方向変位量、B:定数、ル:波数、c:伝播速度) ■ 微小界面波とする。ηA〜0 ■ 不安定の生じる臨界波長を、 λ・=πH7肩ロ;汀 とする。
r7= B @ M4 (Z −c j; )(η:y
directional displacement amount, B: constant, L: wave number, c: propagation velocity) ■ It is assumed to be a minute interfacial wave. ηA~0 ■ Let the critical wavelength at which instability occurs be λ・=πH7 Shoulder;

(、?二重力加速度、ρ1:液体の密度、ρぺ蒸気の密
度、γ:表面張力) (これは、蒸気の柱の直径がλCであり、直径ような、
相対速度のある二相界面に生じる界面静圧の増加p1(
あるいは、流路が狭くなることによる静圧の減少)であ
る。一方、界面の不安定を抑制しようとする力は、表面
張力Tと、電界の増加による増大する誘電作用Eである
。電場の効果は、図(b)中の拡大図で説明すると、界
面の変形により電気力線Mがつまるので電界強さが大き
くなシ、それに伴ないマックスウェル応力も大きくなる
。この場合、電気力線Mけ徐々につまシミ荷の緩和時間
経過すると、はぼ変動がなくなシ、もっとも電界が大き
くなる。
(, ? double force acceleration, ρ1: density of liquid, ρpe density of vapor, γ: surface tension) (This means that the diameter of the column of vapor is λC, and the diameter is
Increase in interfacial static pressure occurring at a two-phase interface with relative velocity p1 (
or a decrease in static pressure due to a narrowing of the flow path). On the other hand, the forces that try to suppress the instability of the interface are the surface tension T and the dielectric effect E, which increases due to an increase in the electric field. The effect of the electric field can be explained using the enlarged view in FIG. 2(b). The deformation of the interface causes the lines of electric force M to become clogged, so the electric field strength increases, and the Maxwell stress increases accordingly. In this case, as the relaxation time of the electric force line M gradually elapses, the fluctuation disappears and the electric field becomes the largest.

以下、各項の大きさを求めてゆく。Below, we will find the size of each term.

まず、表面張力による圧力ΔPγは、 a2η ΔPγ=−γaよ、  によシ求められ、ΔPγ: +
1aB42−J (Z −cf)で与えられる。
First, the pressure ΔPγ due to surface tension is found by a2η ΔPγ=-γa, and ΔPγ: +
1aB42-J (Z-cf).

ΔF? : −py4 (c −UP)” Ba赤J 
(Z −1,わ(Ul:液体の速度、 U、:気体の速
度)よって、液体と気体の流体としての静圧の差ΔPs
はΔPs= (ΔP1−ΔPア)で求まる。
ΔF? : -py4 (c -UP)” Ba Red J
(Z −1, w (Ul: velocity of liquid, U: velocity of gas) Therefore, the difference in static pressure between liquid and gas as fluids ΔPs
is determined by ΔPs=(ΔP1−ΔPa).

さらに、界面に働く電気的な力ΔPoは、界面の変形に
よる(+(εJ−ε・)E21の大きさの変化から求ま
る。(ε:誘電率、x:電界強さ)マックスウェル応力
の値は、電流の連続式より求める。つまシdJAPJ=
= alφ−0(J:電流密度、φ:電位、σ:電気伝
導度)が液体の中で成り立つので、 0−EoBkOσ−IA(Z−cス) の境界条件で解くと、電位φの解として、+47 φ=−B。Z  E(、Be 、   cei 4 (
Z−c、f)  が求まる。
Furthermore, the electric force ΔPo acting on the interface can be found from the change in the magnitude of (+(εJ-ε・)E21 due to the deformation of the interface. (ε: dielectric constant, x: electric field strength) Maxwell stress value is obtained from the current continuity equation.TsumashidJAPJ=
= alφ-0 (J: current density, φ: electric potential, σ: electrical conductivity) holds true in the liquid, so solving with the boundary condition of 0-EoBkOσ-IA (Z-c) gives the solution for the electric potential φ. As, +47φ=-B. Z E(, Be, cei 4 (
Z-c, f) is found.

よって、これより E” = 雄+ 4−s=−g (1−2B、Al1 
(Z−CQ )となシ、マックスウェル応力の変化分は
ΔPe=Δ(+(εj !JP”)==−(az −6
のIg−134Jt(Z−ci )と求まる。
Therefore, from this E" = male + 4-s = -g (1-2B, Al1
(Z-CQ), the change in Maxwell stress is ΔPe=Δ(+(εj !JP”)==-(az −6
Ig-134Jt(Z-ci) is found.

よって、これよシ、気−液界面における圧力のバランス
を求めると ΔPg≧ΔPo+ΔP、の時、界面の変動は、よシ増幅
されるので不安定が発生することになる。よってΔP日
=ΔPo+ΔPγ が不安定発生の臨界条件を与える。
Therefore, when determining the pressure balance at the gas-liquid interface, when ΔPg≧ΔPo+ΔP, fluctuations at the interface are greatly amplified, resulting in instability. Therefore, ΔP day=ΔPo+ΔPγ provides a critical condition for the occurrence of instability.

(Pza(c−Uz)”+ρyA(c−Uy)2)Bm
 A (z−c、c)=+(ε□−ε、 )E:B4A
iJrLA(Z−ct)+1f342〜J (Z−Cス
)両辺からBA廉A(z−c、i)f消去し、波の伝播
速度Cの値を求めると、k=」Lも使って、λ となる、不安定が発生する時、波の伝播速度はであり、
Uj〜0より、蒸気速度Uアはで与えられる。
(Pza(c-Uz)"+ρyA(c-Uy)2)Bm
A (z-c, c)=+(ε□-ε, )E:B4A
iJrLA(Z-ct)+1f342~J (Z-Csu) By eliminating BArenA(z-c, i)f from both sides and finding the value of the wave propagation speed C, we also use k=''L, When instability occurs, the propagation speed of the wave is λ, and
From Uj~0, the steam velocity Ua is given by:

これによシ、電場をかけない時の限界熱流束(yc)E
=oに比べて、電場をかけた時の限界熱流束(#Q) 
Eは、 大きくなることがわかる。これを図示したもの以上の理
論解析の結果、電場による効果は、電界の増加による誘
電作用力の増大と表面張力とが少なくとも関係している
ことが解った。
Accordingly, the critical heat flux (yc) when no electric field is applied is E
= Critical heat flux when applying an electric field (#Q) compared to o
It can be seen that E becomes larger. As a result of theoretical analysis beyond what was shown in the diagram, it was found that the effect of the electric field is at least related to an increase in dielectric force due to an increase in the electric field and to surface tension.

これを核沸騰状態に適用して好ましい伝熱面形状を得ん
とするには次のような構造とすればよい。
In order to obtain a preferable heat transfer surface shape by applying this to a nucleate boiling state, the following structure may be used.

第9図を参照して、伝熱面12上に多数の凹凸を設ける
。すると、凹所13内に気泡14が発生する。核沸騰時
の熱流束を増大させるにはこの気泡14が早く伝熱面1
2から離れた方がよい。電極15によって高電圧の電場
を与えると、気泡14の下端Gにおける表面張力T、を
弱める方向の力E1が作用する。このため、気泡14が
伝熱面12から離れ易くなシ、その分、核沸騰時の熱伝
達率が増大する。
Referring to FIG. 9, a large number of projections and depressions are provided on the heat transfer surface 12. Then, bubbles 14 are generated within the recess 13. In order to increase the heat flux during nucleate boiling, these bubbles 14 quickly move to the heat transfer surface 1.
It is better to stay away from 2. When a high voltage electric field is applied by the electrode 15, a force E1 acts in a direction that weakens the surface tension T at the lower end G of the bubble 14. Therefore, the bubbles 14 are not easily separated from the heat transfer surface 12, and the heat transfer coefficient during nucleate boiling increases accordingly.

以上説明したように、本発明によると、次のような効果
を生ずる。
As explained above, according to the present invention, the following effects are produced.

平滑面の伝熱面によると、第1図に示すように核沸騰状
態での熱流束はかわらず、沸騰限界熱流束が点Pから点
P′へ移るだけであるが、凹凸伝熱面によると、第10
図の電場をかけるこらなる伝熱面では電場の効果によシ
核沸騰域でも熱流束が増大方向ヘリフトし、核沸騰域で
第10図の斜線部分の熱流量分だけ熱伝達吋が増大する
。この作用は、電場による効果が表面張力と関係するこ
とに着目して伝熱面を凹凸面とした結果得られたもので
あり、理論解析の結果がこの着想に寄与したものである
According to the smooth heat transfer surface, the heat flux in the nucleate boiling state does not change as shown in Figure 1, and the boiling limit heat flux only shifts from point P to point P'; however, due to the uneven heat transfer surface, and the 10th
On the heat transfer surface where the electric field shown in the figure is applied, the heat flux lifts in the direction of increase even in the nucleate boiling region due to the effect of the electric field, and in the nucleate boiling region, the heat transfer increases by the amount of heat flow in the shaded area in Figure 10. . This effect was obtained by making the heat transfer surface uneven, focusing on the fact that the effect of the electric field is related to surface tension, and the results of theoretical analysis contributed to this idea.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は平滑な伝熱面に電場をかけた場合とかけない場
合の沸騰曲線を示す図、第2図は公知の電場による沸騰
熱伝達装置の要部を示す概(b)、(c)は伝熱面と垂
直方向の不安定を説明する図、第6図の(a)、(b)
は理論解析の参照図、第7図は理論解析によって得られ
たフレオン113の熱流束の最大唾を示す特性曲線、第
8図はフレオン113の実測値、第9図は本発明の一実
施例を説明する略図、第10図は本発明の詳細な説明す
る線図である。 第 7  1ノ1 T 第  2 1ツ1 第 3 (a) 、、、  4 (a) τ゛ ””                <bノさ 図 (b)
Figure 1 is a diagram showing boiling curves when an electric field is applied and not applied to a smooth heat transfer surface, and Figure 2 is a diagram showing the main parts of a known boiling heat transfer device using an electric field (b) and (c). ) are diagrams explaining instability in the direction perpendicular to the heat transfer surface, (a) and (b) in Figure 6.
is a reference diagram of the theoretical analysis, Fig. 7 is a characteristic curve showing the maximum heat flux of Freon 113 obtained by theoretical analysis, Fig. 8 is an actual measurement value of Freon 113, and Fig. 9 is an example of the present invention. FIG. 10 is a schematic diagram illustrating the present invention in detail. No. 7 1 No. 1 T No. 2 No. 1 No. 3 (a) ,,, 4 (a) τ゛”” <b Nosa diagram (b)

Claims (1)

【特許請求の範囲】[Claims] 電場をかけることによって沸騰熱伝達を促進させる装置
において、伝熱面に多数の凹凸を設けて核沸騰時の熱流
束を増大させることを特徴とする沸騰熱伝達装置。
A boiling heat transfer device for promoting boiling heat transfer by applying an electric field, characterized in that a heat transfer surface is provided with a large number of unevenness to increase heat flux during nucleate boiling.
JP13633681A 1981-08-31 1981-08-31 Transmitting device of boiling heat Pending JPS5837496A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13633681A JPS5837496A (en) 1981-08-31 1981-08-31 Transmitting device of boiling heat

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13633681A JPS5837496A (en) 1981-08-31 1981-08-31 Transmitting device of boiling heat

Publications (1)

Publication Number Publication Date
JPS5837496A true JPS5837496A (en) 1983-03-04

Family

ID=15172827

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13633681A Pending JPS5837496A (en) 1981-08-31 1981-08-31 Transmitting device of boiling heat

Country Status (1)

Country Link
JP (1) JPS5837496A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61225590A (en) * 1985-03-29 1986-10-07 Agency Of Ind Science & Technol Heat transferring rate regulator utilizing electric field on high-performance boiling surface
JPS6241594A (en) * 1985-08-16 1987-02-23 Tokyo Electric Power Co Inc:The Evaporator
JPS6352034A (en) * 1986-08-21 1988-03-05 Nippon Telegr & Teleph Corp <Ntt> Method and device for measuring single mode optical fiber
US5072780A (en) * 1988-11-18 1991-12-17 Agency Of Industrial Science & Technology, Ministry Of International Trade & Industry Method and apparatus for augmentation of convection heat transfer in liquid
JPH0461011U (en) * 1990-10-05 1992-05-26
US5769155A (en) * 1996-06-28 1998-06-23 University Of Maryland Electrohydrodynamic enhancement of heat transfer

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61225590A (en) * 1985-03-29 1986-10-07 Agency Of Ind Science & Technol Heat transferring rate regulator utilizing electric field on high-performance boiling surface
JPS6241594A (en) * 1985-08-16 1987-02-23 Tokyo Electric Power Co Inc:The Evaporator
JPS6352034A (en) * 1986-08-21 1988-03-05 Nippon Telegr & Teleph Corp <Ntt> Method and device for measuring single mode optical fiber
US5072780A (en) * 1988-11-18 1991-12-17 Agency Of Industrial Science & Technology, Ministry Of International Trade & Industry Method and apparatus for augmentation of convection heat transfer in liquid
JPH0461011U (en) * 1990-10-05 1992-05-26
US5769155A (en) * 1996-06-28 1998-06-23 University Of Maryland Electrohydrodynamic enhancement of heat transfer

Similar Documents

Publication Publication Date Title
Lax Temperature rise induced by a laser beam
Ho et al. Convective heat transfer performance of airfoil heat sinks fabricated by selective laser melting
Popov et al. Heat transfer during the boiling of liquid on microstructured surfaces. Part 1: Heat transfer during the boiling of water
Gabour et al. Wall roughness effects on stagnation-point heat transfer beneath an impinging liquid jet
Berghmans Electrostatic fields and the maximum heat flux
JP2017525155A (en) Ultrasonic bath and method for uniform glass substrate etching
JPS5837496A (en) Transmitting device of boiling heat
Wang et al. A novel fractal model for spontaneous imbibition in damaged tree-like branching networks
McCluskey et al. The electrohydrodynamic plume between a line source of ions and a flat plate-theory and experiment
US5072780A (en) Method and apparatus for augmentation of convection heat transfer in liquid
JPS5837495A (en) Boiling heat transmit method
Sparrow et al. Experimental and numerical investigation of natural convection in convergent vertical channels
Zaitsev et al. Rupture of a subcooled liquid film falling down a heated grooved surface
Foroozani et al. Turbulent convection and large scale circulation in a cube with rough horizontal surfaces
Pandey et al. Effect of surface wettability and electric field on transition of film boiling to nucleate boiling
Boziuk et al. Enhanced boiling heat transfer on micromachined surfaces using acoustic actuation
Yan et al. Natural convection heat transfer in vertical open channel flows with discrete heating
El-Maghlany et al. Premium jet cooling with two ribs over flat plate utilizing nanofluid mixed convection
Grigoriev et al. The influence of some heating surface properties on the critical heat flux in cryogenic liquids boiling
Luo et al. Experimental investigations on the influence of polymerization degree in polymer-assisted pool boiling enhancement
KR102272631B1 (en) thermoelectric module
Collins et al. Heat conduction through support pillars in evacuated windows
Saghir et al. Effects of interaction between Rayleigh and Marangoni convection in superposed fluid and porous layers
Nikolaenko et al. Mobility and localization of charge carriers in a quasi-one-dimensional electron system over liquid helium
Aich et al. Buoyancy induced heat transfer and fluid flow inside a prismatic cavity