JPS5837148A - Amorphous alloy - Google Patents

Amorphous alloy

Info

Publication number
JPS5837148A
JPS5837148A JP56133748A JP13374881A JPS5837148A JP S5837148 A JPS5837148 A JP S5837148A JP 56133748 A JP56133748 A JP 56133748A JP 13374881 A JP13374881 A JP 13374881A JP S5837148 A JPS5837148 A JP S5837148A
Authority
JP
Japan
Prior art keywords
magnetic flux
flux density
temp
saturation magnetic
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP56133748A
Other languages
Japanese (ja)
Inventor
Taku Meguro
卓 目黒
Yasunobu Ogata
安伸 緒方
Ryozo Sawada
沢田 良三
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP56133748A priority Critical patent/JPS5837148A/en
Publication of JPS5837148A publication Critical patent/JPS5837148A/en
Pending legal-status Critical Current

Links

Landscapes

  • Soft Magnetic Materials (AREA)

Abstract

PURPOSE:To enhance the permeability of an amorphous (Co,Ni,Fe)-(Ti,Zr,Hf,Y)- metalloid alloy with high saturation magnetic flux density while maintaining the density by subjecting the alloy to short-time heat treatment at a temp. above the crystallization temp. measured by a conventional method. CONSTITUTION:An amorphous alloy expressed by the formula (where T is one or more among Ti, Zr, Hf and Y, M is >=1 kind of element selected from metalloids and nonmetals, A is >=1 kind of metal selected from transition metals, alkali metals, alkaline earth metals and rare earth metals other than T, 0<=a <=0.10, 0<=b<=0.10, 3<=y<=15, 0<=z<=10, 0<=w<=15 and x+y+z+w=100) is treated under heating in a furnace kept at a temp. above the crystallization temp. Tx measured by a conventional method for such an extremely short as to make the crystal content <10vol%. Thus, the effective permeability at 1kHz can be increased to >=5,000 while maintaining the high saturation magnetic flux density, concretely >=8kG saturation magnetic flux density.

Description

【発明の詳細な説明】 本発明は非晶質合金材料にかかわり、時に高飽和磁束密
度、高透龜率である非晶質強磁性合金に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to amorphous alloy materials, and in particular to amorphous ferromagnetic alloys with high saturation magnetic flux density and high permeability.

通常、合金は固体状態で結晶構造を有するが、液体状態
から急冷するなど%殊な条件下では%固体状態でも液体
に類似した結晶構造をもたない原子構造が得られる。こ
のような合金は非晶質合金とよばれ、その成分組成によ
っては機械的特性や耐食性、磁気特性が非常に優れたも
のがあることが近年間らかになっている。中でもCoを
基本にするものでは、飽和磁歪定数大5が零に近い組成
が存在しており、特に磁気ヘッド用途として応用への検
討が盛んに行われている。
Normally, alloys have a crystalline structure in a solid state, but under special conditions such as rapid cooling from a liquid state, an atomic structure that does not have a crystalline structure similar to that of a liquid can be obtained even in a solid state. Such alloys are called amorphous alloys, and it has become clear in recent years that some of them have very excellent mechanical properties, corrosion resistance, and magnetic properties depending on their composition. Among them, among those based on Co, there are compositions in which the saturation magnetostriction constant 5 is close to zero, and applications are being actively investigated, particularly for magnetic head applications.

従来からよく知られ【いるように、非晶質合金の*z9
−温[Tc、結晶化温度Tx、及び磁束密度は非晶質形
成元素(この場合、Ti、Zr、Hf、Y )の含有量
によりて変化する。Ti、Zr、Hf、Yの含有量を低
減すれば磁束密度は上昇する。同時KTcも上昇する。
As has long been well known, *z9 of amorphous alloys
-Temperature [Tc, crystallization temperature Tx, and magnetic flux density vary depending on the content of amorphous forming elements (in this case, Ti, Zr, Hf, and Y). If the contents of Ti, Zr, Hf, and Y are reduced, the magnetic flux density will increase. At the same time, KTc also increases.

しかし、一方でTxが低下していく為K Tc>Txと
なり、高透磁率化するために必要なTc< Ta<Tx
なるTaでの保持とひき続く急冷処理が国難となるとさ
れている。
However, on the other hand, as Tx decreases, K Tc > Tx, which is necessary for achieving high magnetic permeability, Tc < Ta < Tx
It is believed that the retention of Ta at such a temperature and the subsequent rapid cooling treatment will become a national problem.

TC>TX  となる組成で高透磁率を得るためK、回
転する磁場中で熱処理する方法(Ta<Tc )カー提
案されているが、方法が繁雑であり量産的でない。
In order to obtain high magnetic permeability with a composition such that TC>TX, a method of heat treatment in a rotating magnetic field (Ta<Tc) has been proposed, but the method is complicated and cannot be mass-produced.

このような理由によって現状での磁歪零CO基高透磁率
材の磁束密度には上限があり、それはBsで9.5KG
程度とされているO 本発明は、このような従来材料の欠点を克服し高い飽和
磁束密度を有しつつ、かつ高透磁率であるCO基非晶質
合金を提供することを目的とする。
For these reasons, there is currently an upper limit to the magnetic flux density of zero magnetostrictive CO-based high permeability materials, which is 9.5KG for Bs.
The object of the present invention is to overcome the drawbacks of such conventional materials and provide a CO-based amorphous alloy that has high saturation magnetic flux density and high magnetic permeability.

上記目的を達成するために、本発明は高飽和磁束密度を
有する( Co@Nt 、pe )  (Ti、Zr、
Hf #Y)系に通常の方法で測定したTx以上の温度
で極く短時間の熱処理を施したことを特徴とするもので
ある。
In order to achieve the above object, the present invention has a high saturation magnetic flux density (Co@Nt, pe) (Ti, Zr,
This is characterized in that the Hf #Y) system is subjected to extremely short heat treatment at a temperature higher than Tx measured by a conventional method.

本発明者らは、組成式(Co、 a−bNiaFeb 
)xTyMzAw(式中TはTi5Zr、Hf、Yより
選ばれた少なくとも一つであり、Mは半金属、非金属よ
り選ばれた少なくとも一つであり、AはT以外の遷移金
属、アルカリ金属、アルカリ土類金属、及び希土類金属
より選ばれた少なくとも一つであり、x + y + 
z+貰=1oo)で示される非晶質合金、特に上記式に
おいて、0≦a≦α101O≦b≦α10,5≦y≦1
5.O≦2≦10.0≦W≦15を満足する非IfiI
5ii、合金をTx以上に保持された炉中で結晶の体積
率が10%未満となる範囲で極く短時間熱処理すること
によって、高い飽和磁束密度、具体的には8,000Q
以上の値を有しつつ、I KHz Kおける実効透磁率
がs、ooo以上となるような材料を見い出し、本発明
を成したものでおる。
The present inventors have determined that the compositional formula (Co, a-bNiaFeb
) At least one selected from alkaline earth metals and rare earth metals, x + y +
z+yellow=1oo), especially in the above formula, 0≦a≦α101O≦b≦α10, 5≦y≦1
5. Non-IfiI satisfying O≦2≦10.0≦W≦15
5ii. By heat-treating the alloy for a very short time in a furnace maintained at Tx or higher in a range where the volume fraction of crystals is less than 10%, a high saturation magnetic flux density, specifically 8,000Q
The present invention has been accomplished by finding a material that has the above values and has an effective magnetic permeability of s,ooo or more at I KHz K.

このように限定された組成の非晶質合金は、Bsを8,
0OOG以上とすることができるが、TcとTxとの関
係がTc≧Txとなっても差支えない。但しここでのへ
とは通常の方法即ち、 5′C/分程度の昇温速度で昇
温したときの結晶化開始温度を意味しており、これより
も高い温度で保持すると一般的には結晶1化が進行し、
磁性が劣化する。
The amorphous alloy with such a limited composition has Bs of 8,
Although it can be 0OOG or more, there is no problem even if the relationship between Tc and Tx is Tc≧Tx. However, here it refers to the temperature at which crystallization starts when the temperature is raised by the normal method, that is, at a temperature increase rate of about 5'C/min. Crystallization progresses,
Magnetism deteriorates.

しかし、通常の方法で測定したTx以上の温度で、・′
However, at a temperature higher than Tx measured by the usual method,
.

結晶の体積率が10%未満となるよう極く短時間熱処理
することにより1例えばI KHz Kおける実効透磁
率がs、ooo以上とすることが出来、通常のTc(T
a(TxとなるTaでの熱処理と同様の結果を得ること
が可能である。われわれは既に特願昭56−62026
において、この熱処理方法を提案している。
By heat-treating for a very short time so that the volume fraction of the crystal is less than 10%, the effective magnetic permeability at 1 KHz K, for example, can be increased to s, ooo or more, and the normal Tc (T
It is possible to obtain the same result as the heat treatment with Ta (which becomes Tx).
proposed this heat treatment method.

以下本発明の実施例に基づいて説明する。The present invention will be explained below based on embodiments.

実施例1 第1表に本発明の合金の最適処理後のI KHz Kお
ける実効透磁率の値を示す。
Example 1 Table 1 shows the effective permeability values at I KHz K of the alloys of the present invention after optimum treatment.

第  1  表 第1表から明らかなよ5KTx以上の温度で最大数千〜
1万の透磁率が得られた。
Table 1 It is clear from Table 1 that at temperatures above 5KTx, the maximum temperature is several thousand ~
A magnetic permeability of 10,000 was obtained.

以上のように本発明はTc≧TxとなるようなABMの
組成で高い透磁率の材料を供給するもので、工事f’l
・の表示 昭和56f1′、〒旨′1″願第133748  シJ
発明の名称 非晶質合金 補11:をする者 11許出11(i 人 rb   Iす[東1;C都千代I11区丸の内2丁1
11爵2シJ−名 村  ・sog)ll I”れ金属
株式公社代Iシ賃河野 Ilb、 J( 代   理   人 1、・:  tす[重工;〔都丁−代Il1区)Lの内
2 rn 1番2)J端正命令の日付   昭和57年
1月26日(発送日)補j1:、のχ、j象 願書および明細書の全文
As described above, the present invention supplies a material with high magnetic permeability with an ABM composition such that Tc≧Tx, and
・Display of Showa 56f1', 〒ji'1'' Application No. 133748 ShiJ
Name of the invention Amorphous alloy Supplementary 11: Permission 11 (i person rb Isu [East 1; C Chiyo I 11-ku Marunouchi 2-chome 1
11th Duke 2 J-Name Village・sog)ll I”re Metal Stock Corporation Representative Ishi Kono Ilb, J (Representative 1,...: tsu [Heavy Industries; [Tocho-dai Il1 Ward) L] 2 rn No. 1 2) Date of J neatness order January 26, 1982 (shipment date) Supplementary j1: χ, j Elephant application and full text of specification

Claims (1)

【特許請求の範囲】 t 組成式(Co1−a−bNiaFeb )xTyM
zλWで示され、TはTi、Zr、Hf、Yより選ばれ
た少くとも一つであり1Mは半金属、非金属より選ばれ
た少くとも一つであり、AはT以外の遷桜金属、アルカ
リ金輌アルカリ土類金属、及び希土類金属より選ばれた
少なくとも一つであり、 0≦a≦0.10.0≦b≦0.10.!t≦y≦15
゜O≦2≦10,0≦W≦15 、 x+y+z+w=
f 00を満足し、通常の方法で測定した結晶化温度T
x以上の11度で、結晶の体積率が10チ未満となるよ
う極く短時間熱処理することにより、IKHzKおける
実効透磁率が5,000以上となり、かつ飽和磁束密度
が8KG以上であることを特徴とする非晶質合金。
[Claims] t Composition formula (Co1-a-bNiaFeb)xTyM
zλW, T is at least one selected from Ti, Zr, Hf, and Y, 1M is at least one selected from semimetals and nonmetals, and A is a transition metal other than T. , alkali metal, alkaline earth metal, and rare earth metal, and 0≦a≦0.10.0≦b≦0.10. ! t≦y≦15
゜O≦2≦10, 0≦W≦15, x+y+z+w=
Crystallization temperature T that satisfies f 00 and is measured by a conventional method
By heat-treating for a very short time so that the volume fraction of the crystal becomes less than 10 cm at 11 degrees above x, the effective magnetic permeability at IKHzK becomes 5,000 or more, and the saturation magnetic flux density becomes 8 KG or more. Characteristic amorphous alloy.
JP56133748A 1981-08-26 1981-08-26 Amorphous alloy Pending JPS5837148A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56133748A JPS5837148A (en) 1981-08-26 1981-08-26 Amorphous alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56133748A JPS5837148A (en) 1981-08-26 1981-08-26 Amorphous alloy

Publications (1)

Publication Number Publication Date
JPS5837148A true JPS5837148A (en) 1983-03-04

Family

ID=15112003

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56133748A Pending JPS5837148A (en) 1981-08-26 1981-08-26 Amorphous alloy

Country Status (1)

Country Link
JP (1) JPS5837148A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58177432A (en) * 1982-04-13 1983-10-18 Matsushita Electric Ind Co Ltd Amorphous magnetic alloy
JPH0389752U (en) * 1989-12-29 1991-09-12

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56105454A (en) * 1980-01-23 1981-08-21 Matsushita Electric Ind Co Ltd Amorphous alloy

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56105454A (en) * 1980-01-23 1981-08-21 Matsushita Electric Ind Co Ltd Amorphous alloy

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58177432A (en) * 1982-04-13 1983-10-18 Matsushita Electric Ind Co Ltd Amorphous magnetic alloy
JPH0359978B2 (en) * 1982-04-13 1991-09-12 Matsushita Electric Ind Co Ltd
JPH0389752U (en) * 1989-12-29 1991-09-12

Similar Documents

Publication Publication Date Title
US4152144A (en) Metallic glasses having a combination of high permeability, low magnetostriction, low ac core loss and high thermal stability
US4437907A (en) Amorphous alloy for use as a core
JP2015127436A5 (en)
WO2018025931A1 (en) Method for producing soft magnetic material
EP0072893B1 (en) Metallic glasses having a combination of high permeability, low coercivity, low ac core loss, low exciting power and high thermal stability
JP2552274B2 (en) Glassy alloy with perminer characteristics
JPS586778B2 (en) Anisotropic permanent magnet alloy and its manufacturing method
JPS6362579B2 (en)
JPS5837148A (en) Amorphous alloy
EP0088244A1 (en) Cobalt rich manganese containing near-zero magnetostrictive metallic glasses having high saturation induction
US4525222A (en) Method of heat-treating amorphous material
JPH01290744A (en) Fe-base soft-magnetic alloy
JPH06220592A (en) Amorphous alloy with low iron loss and high magnetic flux density
JPS5825449A (en) Amorphous magnetic alloy for magnetic head
JP2019206746A (en) Soft magnetic material and production method of the same
JPH0351785B2 (en)
JPS5837147A (en) Amorphous alloy
JP2674137B2 (en) High permeability magnetic material
Szklarz et al. The effects of ferromagnetism on intergranular segregation in iron
JPS5833804A (en) Magnetic material
US4134756A (en) Permanent magnet alloys
JPS5842751A (en) Amorphous iron alloy having small iron loss and undergoing very slight change in magnetic characteristic due to aging
JPH02129339A (en) Magnetostrictive material
JPS58153757A (en) Gallium-containing amorphous magnetic alloy
JP2818718B2 (en) Permanent magnet powder