JPS5836923A - Manufacture of aggregate of corundum particle - Google Patents

Manufacture of aggregate of corundum particle

Info

Publication number
JPS5836923A
JPS5836923A JP56134243A JP13424381A JPS5836923A JP S5836923 A JPS5836923 A JP S5836923A JP 56134243 A JP56134243 A JP 56134243A JP 13424381 A JP13424381 A JP 13424381A JP S5836923 A JPS5836923 A JP S5836923A
Authority
JP
Japan
Prior art keywords
corundum
particles
particle size
aggregate
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP56134243A
Other languages
Japanese (ja)
Other versions
JPS6316331B2 (en
Inventor
Naoaki Oishi
大石 直明
Hikari Hasegawa
光 長谷川
Toshiaki Sakaida
敏昭 坂井田
Katsunobu Yamaguchi
山口 勝信
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP56134243A priority Critical patent/JPS5836923A/en
Publication of JPS5836923A publication Critical patent/JPS5836923A/en
Publication of JPS6316331B2 publication Critical patent/JPS6316331B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PURPOSE:To obtain an aggregate of polyhedral corundum particles having a narrow particle size distribution by mixing alumina hydrate as a starting material with fine corundum particles having a specified shape factor and by hydrothermally treating the mixture to deposit alumina on the surfaces of the particles. CONSTITUTION:Particles of alumina hydrate such as aluminum hydroxide as a starting material are mixed with fine corundum particles adjusted to 1.0-1.4 shape factor by classification as seed crystals. The mixture is hydrothermally treated to deposit alumina in the alumina hydrate as corundum on the surfaces of the fine corundum particles. To the hydrothermal synthetic reaction system may be added a boron compound such as sodium borate. By this method the desired aggregate of polyhedral corundum particles havong a narrow particle size distribution is obtd.

Description

【発明の詳細な説明】 本発明は球状多面体のコランダム粒集合物の製造方法に
関するものであシ、さらに詳しく述べるならば、粒度分
布が極めて均一なコランダム粒集合物の製造方法に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing a spherical polyhedral corundum particle aggregate, and more specifically, to a method for producing a corundum particle aggregate having an extremely uniform particle size distribution.

コランダム粒は研磨材、電気絶縁材、溶射材。Corundum grains are used as abrasive materials, electrical insulation materials, and thermal spraying materials.

焼結材及び各種充填材等に広く使用されているが、これ
らの用途よルも1体粒の粒径が著しく−っていること、
換言すると、極めて均一な粒度分布が、要求される用途
として、液晶底水)fネルのスペーサが一例として挙げ
られる。すなわち、コランダム粒を部材の間に嵌入して
数十建クロンのギヤ。
It is widely used in sintering materials and various fillers, but the particle size of each particle is significantly different depending on these applications.
In other words, an example of an application that requires extremely uniform particle size distribution is a spacer for liquid crystal bottom water. In other words, it is a gear that is several tens of meters long, with corundum grains inserted between the members.

!管形成し且つパネル部材の間隔を一定に保つことが要
求される。この場合、該間隔の精度は0,5(クロンの
オーダーであシ、通常のコランメム粒製造方法ではこの
要求に応えることが至難である。
! It is required to form a tube and maintain constant spacing of panel members. In this case, the accuracy of the spacing is on the order of 0.5 (chrons), and it is extremely difficult to meet this requirement with a normal method for producing columme grains.

例えば、主としてバイヤーアルミナ又は?−キサイトを
出発原料として得られ九電融コランダ!塊を微粉砕する
と、得られた微粉砕粒子は形状が球形ではないばか)で
なく、粒集合物の粒径又は粒度は着しく粗粒のもの試ら
数ミクロンの微粒のものまで分散することは、粉砕の性
質上避けられない、そこで、得られた粒集合物をふるい
によって分級することを試みても液晶表示/4ネルのス
ペーサーに要求される均一な粒度分布は得られない。
For example, mainly buyer alumina or? -Kyudenfu Colander obtained using xite as a starting material! When a lump is pulverized, the resulting pulverized particles are not spherical in shape, but the particle size or particle size of the particle aggregates is dispersed from coarse particles to fine particles of several microns. This is unavoidable due to the nature of pulverization, and even if an attempt is made to classify the obtained particle aggregate using a sieve, the uniform particle size distribution required for a liquid crystal display/four-channel spacer cannot be obtained.

さらに、スペーサーとしては粒度分布の均一性と粒度絶
対値が微小である仁との他に、形状が球状多面体である
ことが必要である。
Further, the spacer needs to have a uniform particle size distribution and a grain having a small absolute value of particle size, as well as a spherical polyhedral shape.

上記スペーサー以外に、アルiす又はコランダム粒が用
いられる用途として、焼成物製造時の敷粉がある。この
敷粉は、焼成物を製造する際に、被焼成物同志が付着し
ないようにあるいは焼成物と下地の基材が付着しないよ
うに、被焼成物の周シに敷いて使用する。このような役
割の他に、敷粉は焼成後に焼成物表面から−単に除去し
うろこと、及び焼成物の表面を疵つけないことが要求さ
れる。仁のような観点からすると、敷粉は粒径が適蟲で
あること、すなわち過度に微粒でなく、100ミクロン
ないし1ミリ程度の粒径、が望ましく、さらに粒が鋭角
端を有すると焼成物に突きささり焼成物の表面性状を損
うので球状多面体粒子が望ましい、特に、表面特性を重
視するガラス質物体の場合は粒形状が重視される。さら
にまた、被焼成物と敷粉の接触面の状況は、大径粒子の
みが有効に作用しておシ、小径粒子は何ら機能していな
いと考えられるから、敷粉粒子の粒度分布が狭いことは
極めて1L1にである。
In addition to the above-mentioned spacers, aluminum or corundum grains are used as a bedding powder when producing baked products. This bedding powder is used by spreading it around the periphery of the fired product to prevent the fired products from adhering to each other or from adhering to the base material. In addition to this role, the bedding powder is also required to be simply removed from the surface of the fired product after firing, without damaging scales or scratches on the surface of the fired product. From the viewpoint of grain size, it is desirable that the grain size of the bed flour is appropriate, that is, it is not excessively fine, and the grain size is about 100 microns to 1 mm.Furthermore, if the grains have sharp edges, it will not be possible to create a baked product. Spherical polyhedral particles are preferable because they impinge on the surface and impair the surface quality of the fired product. Particularly, in the case of glassy objects where surface properties are important, the particle shape is important. Furthermore, regarding the condition of the contact surface between the material to be fired and the lining powder, it is thought that only the large-diameter particles are acting effectively, and the small-diameter particles are not functioning at all, so the particle size distribution of the lining powder particles is narrow. This is extremely true for 1L1.

上述のような観点からすると、従来法による電融アルオ
ナlQ!整法、すなわちアルミナを電融し、インが、ト
として凝固させ、インゴットを粉砕しそしてふるい分け
する方法は、粒度分布にかなシの巾があるばかシでなく
、形状も雑多且つ不揃いであるため、スペーサー等には
全く不適であるということができる。すなわち、この調
整法による粒集合物を用いると液晶表示素子の2枚のツ
クネルの間が平行にならず、表示の色ムラ、二J)i等
の不都合が生じる。
From the above-mentioned point of view, electric fused Arunona lQ! by the conventional method. The method of electromelting alumina, solidifying the ingot, crushing the ingot, and sifting the ingot does not have a wide range in particle size distribution, and the shape is miscellaneous and irregular. , it can be said that it is completely unsuitable for spacers and the like. That is, when a particle aggregate obtained by this adjustment method is used, the two tunnels of the liquid crystal display element will not be parallel to each other, resulting in problems such as uneven display color and 2J)i.

上記スペーサー等を対象とするコランダム粒の製造方法
は、特開昭52−15498号公報に記載されておシ、
この方法の骨子とするところは、コランダムの水熱合成
法において、コランダ人種子結晶を添加し、新たなコラ
ンダム結晶核の生成を抑制しながら 原料アルミナ水和
物からコランダムを極子結晶上に析出させることによシ
、所望の微粒の粒径を有し且つ形状も球状多面体となる
コランダム粒の水熱合成法である。このコランダムは通
常の電融アルミナ粉砕品に比較すると緒特性が着しく改
良される。しかしながら、この公知方法での種子結晶は
通常の電融アルミナ粉砕品を使用しているので、その鋭
角端が生成コランダムにも残シ、理想的な球状多面体は
得られない。さらに、本発明者の研究によると、この公
知方法では粒度分布が狭いコランダム粒集合物が得られ
ず、例えば50ないし100建クロンの粒径で±5ミク
ロンの粒度分布が要求される最近の高精度スペーサーに
は十分でないという難点もある。また、このようなコラ
ンダム粒集合物から、所定の粒径mHQものを取)出し
てス(−サーに使用したとしても、粒度及び/又は形状
が異なるもの′が混在して2枚のツクネルが平行になら
ない。
A method for producing corundum grains for the above-mentioned spacers etc. is described in JP-A-52-15498.
The gist of this method is to add corundum seed crystals to the hydrothermal synthesis method of corundum, and to precipitate corundum from raw material alumina hydrate onto polar crystals while suppressing the generation of new corundum crystal nuclei. In particular, it is a hydrothermal synthesis method of corundum particles having a desired fine particle size and a spherical polyhedral shape. This corundum has significantly improved mechanical properties compared to ordinary pulverized electrofused alumina products. However, since the seed crystal in this known method uses a normal electrofused alumina pulverized product, its sharp edges remain in the produced corundum, making it impossible to obtain an ideal spherical polyhedron. Furthermore, according to the research of the present inventor, corundum particle aggregates with a narrow particle size distribution cannot be obtained with this known method, and the recent high There is also the drawback that precision spacers are not sufficient. Furthermore, even if particles with a predetermined particle size (mHQ) are extracted from such a corundum particle aggregate and used for a scrubber, two pieces of corundum with different particle sizes and/or shapes may coexist. not parallel.

本発明の目的は、上述のような難点を解消し、高度に球
状を呈する多面体粒子からなシ、粒度又は粒径分布の巾
が狭いために、粒集合物から任意の部分を取り出しても
所望の粒度又は粒径分布が得られるようなコランダム粒
集合物の製造方法を提供することを目的とする。
It is an object of the present invention to solve the above-mentioned difficulties and to make it possible to remove polyhedral particles that are highly spherical and have a narrow particle size or particle size distribution, so that it is possible to remove any desired portion from a particle aggregate. It is an object of the present invention to provide a method for producing a corundum particle aggregate that can obtain a particle size or particle size distribution of .

、本発明の一つの特徴は、アルミナ水和物を水熱処理し
てコランダム粒を製造する方法において、原料アルミナ
水和物中に形状因子が1.0ないし1.4のコランダム
微粒が存在した状態において該コランダム微粒の表面に
原料アル建す水和物中のアルiすをコランダムとして析
出させることによシ、該コランダムを球状微粒であp且
つ粒径分布の巾が狭いコランダム粒の集合物を製造する
ことにある。
One feature of the present invention is that in the method of producing corundum particles by hydrothermally treating alumina hydrate, a state in which fine corundum particles having a shape factor of 1.0 to 1.4 are present in the raw material alumina hydrate. By precipitating aluminum in the hydrate containing the raw material aluminum as corundum on the surface of the corundum fine particles, the corundum is made into an aggregate of corundum particles that are spherical fine particles and have a narrow particle size distribution. The purpose is to manufacture.

ことでいう形状因子とは、平板上に安定生状態で分散さ
せた粒子をJISR6002のSt*鏡拡大法で定める
各校の径と、これに直交する短径の比を平均値で表わし
たものである。本発明において形状因子を1.4以下と
限定した理由は、これを越えるとコランダム粒子が球形
よシ;大きく歪むとともに、仮に粒径がそろっていたと
しても、水熱合成の過程で、結晶成長方向の選択性によ
シ、粒度(粒径)のばらつきが大きくなるからである。
The shape factor is the average value of the ratio of the diameter of each particle determined by the JISR 6002 St* mirror magnification method and the short diameter perpendicular to this, for particles dispersed in a stable state on a flat plate. It is. The reason why the shape factor is limited to 1.4 or less in the present invention is that when this value is exceeded, the corundum particles become spherical; This is because the directional selectivity increases the variation in particle size (particle size).

このような、コランダム微粒を用いて水熱処理を行なう
際に、この微粒の表面にコランダムの析出を生じさせる
ことが必要である。すなわち、上記微粒が結晶核として
作用し、これ以外の新たな結晶核が原料アルミナ水和瞼
中に発生しないように水熱処理を行なわなければならな
い、このような水熱処理条件は出願人の先願特開昭52
−15498号に記載されておシ、本発明においてもこ
の条件を採用することができる。ただし、本願が先願と
大きく異なる点は、先願は種子結晶である微粒コランダ
ムの粒度分布の巾の大小によって、製品コランダムの粒
度分布の巾を制御しよう劣いう考えであるのに対し、本
発明は形状因子によ〕製品コランダム粒の粒度分布を制
御しようとするとζろにある。
When performing hydrothermal treatment using such fine corundum particles, it is necessary to cause precipitation of corundum on the surface of the fine particles. In other words, the hydrothermal treatment must be performed so that the fine particles act as crystal nuclei and no new crystal nuclei are generated in the raw alumina hydrated eyelids.Such hydrothermal treatment conditions were set forth in the applicant's earlier application. Unexamined Japanese Patent Publication 1972
15498, and this condition can also be adopted in the present invention. However, the main difference between the present application and the earlier application is that the earlier application has an inferior idea of controlling the width of the particle size distribution of the product corundum by the size of the width of the particle size distribution of the fine corundum, which is the seed crystal. The invention lies in the difficulty of controlling the particle size distribution of product corundum grains by shape factors.

なお、上記形状因子が1.0ないし1.4のコランダム
粒は出願人の先願に係る%開昭52−15498号によ
ると確実に得られる。しかしながら、他の方法で得たも
のであっても本発明において使用可能である。このよう
な形状因子を有するコランダム粒に関し発明者が研究し
たところによると、コランダム結晶のC軸が短径部分に
相当していることが分かった。さら′に、本発明者は短
径側の成長、すなわちC軸方向への優先成長を行なうこ
とにより、より球形に近く且つ粒径分布の巾も狭いコラ
ンダム粒集合物を製造するという着想の下に、鋭意研究
を行ない、以下述べる発明を完成した。
Incidentally, corundum grains having the above-mentioned shape factor of 1.0 to 1.4 can be reliably obtained according to the applicant's earlier application No. 15498/1983. However, those obtained by other methods can also be used in the present invention. According to the inventor's research on corundum grains having such a shape factor, it was found that the C axis of the corundum crystal corresponds to the minor axis portion. Furthermore, the present inventor has the idea of producing corundum grain aggregates that are more spherical and have a narrower particle size distribution by growing on the short axis side, that is, preferentially growing in the C-axis direction. After conducting intensive research, he completed the invention described below.

本発明の第2の4I微は、原料アルイナ水和物中に形状
因子が1.0ないしコランダム微粒が存在し且つホウ素
化合物が水熱合成反応系に存在した状態において、該コ
ランダム微粒の表面に原料アル゛ミナ水和物中のアルミ
ナをフランダムとして析出させることにより、該プラン
ダムを球状微粒であり且つ粒径分布の巾が狭いコランダ
ム粒の集合物を製造することにある。
The second 4I microparticle of the present invention is produced when the shape factor is 1.0 or the corundum microparticles are present in the raw material alina hydrate, and the boron compound is present in the hydrothermal synthesis reaction system, on the surface of the corundum microparticles. The object of the present invention is to precipitate alumina in a raw material alumina hydrate as a flundum, thereby producing an aggregate of corundum particles that are fine spherical particles and have a narrow particle size distribution.

この方法において、ホウ素化合物はコランダム結晶のC
軸方向への成長を促進し、先に述べた方法に比較して球
状炭が高いコランダム粒の集合物を得る点に大きな特色
がある。ホウ素化合物としては、ホウ酸ソーダ+等を用
いることが可能である。ホウ素化合物の童はホウ素濃度
に換算して0.002moJ/lないし0.02mol
/lがアルjす水和物溶層に存在することが好ましい。
In this method, the boron compound is C of corundum crystals.
The major feature of this method is that it promotes growth in the axial direction and obtains an aggregate of corundum grains with higher spherical charcoal than the previously mentioned methods. As the boron compound, it is possible to use sodium borate + or the like. Boron compounds have a boron concentration of 0.002 moJ/l to 0.02 mol.
/l is preferably present in the hydrate solution layer.

ホウ素化合゛物絵加以外の水熱合成処理条件、例えば温
度、圧力、種子の量は特開昭52−15498号とほぼ
同様のものも採用することが好ましい、かくすることに
よp上記形状因子の種子上にのみコランダムが成長する
ために、得られたコランダム粒集合物の球形度及び粒度
分布が極めて良好となる。このような成長条件としては
、 温[:400〜500℃ 圧カニ250〜500気圧 が好ましい。
It is preferable to use the hydrothermal synthesis treatment conditions other than the addition of boron compounds, such as temperature, pressure, and amount of seeds, which are almost the same as those in JP-A-52-15498. Since the corundum grows only on the seeds of the corundum, the sphericity and particle size distribution of the corundum grain aggregate obtained are very good. As such growth conditions, the temperature is preferably 400 to 500°C and the pressure is preferably 250 to 500 atm.

本発明による球形度け、形状因子1.0〜1.2のもの
が80チ、残9は形状因子1.4以下のものである。
According to the present invention, 80 pieces have a spherical degree with a shape factor of 1.0 to 1.2, and the remaining 9 pieces have a shape factor of 1.4 or less.

以下、本発qo実施例を説明する・ 冥層側1 バイヤーノロセスから得られる平均粒径が13ミクロン
の水酸化アルオニウムに対して、500ないし7xoj
クロンに分級した形状因子が1.2゜1.4及び1.6
のコランダム柚子結晶をそれぞれ30グラム添加した。
Hereinafter, a qo example of the present invention will be described. Underlayer side 1 For alonium hydroxide with an average particle size of 13 microns obtained from Bayer norothes, 500 to 7xoj
Shape factor classified into chrons is 1.2゜1.4 and 1.6
30 grams each of corundum yuzu crystals were added.

これらをよく混合し、混合物を内径20■φ、内答積1
50傷 のステンレス製内部ケースに0.8Iの水とと
もに充填し、その上部を2■φの穴があいたステンレス
aiiで被嶺し、この内部ケースを内容$250♂の改
良ブリッジマン式オートクレーブの等湿部に所定量の水
とともに挿入し、シールした後、平均2℃/分で昇温し
、450℃、500 kg/lx”の条件下で5時間水
熱処理を行なi、生成物を得た。この生成物を水分級で
種子成長粒子(種子粒子上に成長して粒子となりたもの
)と自然発生粒子(アルミナ水和物溶液のアルきすの核
発生によりその核上に成長した粒子)とに分離した。
Mix these well and prepare the mixture with an inner diameter of 20 φ and an inner volume of 1
Fill a stainless steel internal case with 50 scratches with 0.8I water, cover the top with stainless steel AII with a 2 φ hole, and place this internal case in a modified Bridgman type autoclave with contents of $250♂. After inserting it into a wet area with a predetermined amount of water and sealing, the temperature was raised at an average rate of 2°C/min, and hydrothermal treatment was performed for 5 hours at 450°C and 500 kg/lx'' to obtain a product. This product was divided into moisture grade seed-grown particles (particles that grew on seed particles) and naturally occurring particles (particles that grew on the nucleus due to the nucleation of alkylene in the alumina hydrate solution). It was separated into two parts.

平均粒径、0.5ミクロンに粉砕(sup@rgrou
nd)されたα−アルミナ粉末(昭和軽金属層、製品名
、At−1608G)100部に対して、焼結助剤とし
て酸化マグネシウム0.1部、バインダーとしてポリビ
ニルブチラール745部、可塑剤としてジブチルフタレ
ート10部、分散剤としてソルビタントリオレエート1
部、溶剤としてメチルエチルケトン20部、メタノール
12部、及びブタノール10部を加えて、メールミルで
100時間混錬して泥しようとして、泥しよう物をチー
ブキャスト法により表向平滑なポリエステルフィルム上
にシート状に成形した。このシート状成形物を室内に放
置、乾燥した後、2cII4X2mの試験片とし、大気
中1000℃で2時間の条件で予備焼成し、有機成分を
除外しえ。
Grind to an average particle size of 0.5 microns (sup@rgrou
nd) to 100 parts of α-alumina powder (Showa Light Metal Layer, product name, At-1608G), 0.1 part of magnesium oxide as a sintering aid, 745 parts of polyvinyl butyral as a binder, and dibutyl phthalate as a plasticizer. 10 parts, 1 part sorbitan trioleate as a dispersant
20 parts of methyl ethyl ketone, 12 parts of methanol, and 10 parts of butanol as solvents were mixed in a mail mill for 100 hours to form a slurry. It was formed into a shape. This sheet-shaped molded product was left indoors to dry, and then made into a 2cII4×2m test piece, which was pre-baked in the atmosphere at 1000°C for 2 hours to remove organic components.

この21角のシートの間に先に作った微粒コランダムを
敷粉として用い、lOレシート微粒コランダムを交互に
積み重ね、101Mのシート積層体を作りた。この積層
体を水素中において、1600℃で1時間、炉内時間4
時間で焼成し九・焼成後1このアルミナ基板の表面平滑
性、疵の有無を形状因子1.2.1.4及び1.6の種
子を用いた微粒コランダム微粒について測定した。
Between these 21 square sheets, the previously prepared fine corundum was used as a bedding powder, and the IO receipt fine corundum was alternately stacked to make a 101M sheet laminate. This laminate was placed in hydrogen at 1600°C for 1 hour, and for 4 hours in the furnace.
After firing for 9 hours and 1 hour after firing, the surface smoothness of the alumina substrate and the presence or absence of defects were measured for fine corundum particles using seeds with shape factors of 1.2.1.4 and 1.6.

500枚の測定試験片について測定を行なった結果をj
I11表に示す。
The results of measuring 500 test pieces are j
It is shown in Table I11.

第11! 実施?112 実施例1と以下の点で異なる条件を設定して水熱合成処
理を行なった。
11th! implementation? 112 Hydrothermal synthesis treatment was performed under different conditions from Example 1 in the following points.

種子結晶は形状因子が1.6であり、4〜6ミクロンO
範囲に分級し九平均粒径が5iクロンのものであった。
The seed crystal has a shape factor of 1.6 and 4-6 micron O
It was classified into a range and had a nine-average particle size of 5i crohn.

ステンレス製内部ケースには、これらの混合物の他にホ
ウ酸ソーダも充填した。水溶液のホウ酸濃度としては、
0.001 、0.002 、0.02及び0.2モル
/lについて実施した。
In addition to these mixtures, the stainless steel inner case was also filled with sodium borate. The concentration of boric acid in the aqueous solution is
Experiments were carried out at concentrations of 0.001, 0.002, 0.02 and 0.2 mol/l.

生成物は解砕後、水篩法で9〜11ミクロンの範囲で分
級しち。
After crushing the product, it is classified in the range of 9 to 11 microns using a water sieve method.

上記方法によシ得られたコランダム微粒を用いて、次に
記すように液晶表示素子のt4ネル関のス(−サとし、
セルギャップを測定し喪。
Using the corundum fine particles obtained by the above method, as described below, the t4 channel of a liquid crystal display element is used.
Measuring cell gap and mourning.

エポキシ樹脂100#rに対して、超微粉充填剤として
10ミリミクロンのシリカ粉101rを加えて、3本ロ
ールで10分間混錬した。この混合物100Nrに対し
て上記コランダム微粒49r 、アミン系硬化剤401
rを加え、lO分間混合した。
Silica powder 101r of 10 millimicrons was added as an ultrafine powder filler to epoxy resin 100#r and kneaded for 10 minutes using three rolls. For 100Nr of this mixture, 49r of the above corundum fine particles, 401r of amine hardening agent
Add r and mix for 10 minutes.

この混合物を325メッシ、のスクリーンで、平板のガ
ラスに印刷し、20分間レベルリングを行ない、70℃
で10分間ガス抜きを行なった。その後別のガラス板を
重ね合わせ接着し、1501r/c1fL2強の重しを
のせた状態で100℃、30分間グレキ、アーし、その
後150℃で90分関キ。
This mixture was printed on a flat glass plate using a 325 mesh screen, leveled for 20 minutes, and then heated to 70°C.
The gas was degassed for 10 minutes. After that, another glass plate was stacked and bonded, and with a weight of a little over 1501r/c1fL2 placed on it, it was shaken and aired at 100°C for 30 minutes, and then heated at 150°C for 90 minutes.

アーした。I heard it.

カくシて得られたパネルの2枚のガラス板の間隔を光干
渉法で測定した。測定セル数は100個であり、この表
でσは標準偏差を示す。
The distance between the two glass plates of the resulting panel was measured using optical interferometry. The number of measurement cells was 100, and in this table, σ indicates the standard deviation.

第2表 ホウ素イオンfa度      セルゼヤッ!(モル/
V)   平均(キクロン) 3σ(キクロン)0.0
01       11      1.050.00
2       11      0.800.02 
       11      0.850.04  
      12      1.8実施例3 形状因子が1.2 、1.4 、1.6の種子結晶を用
い、ホウ素イオン員度が0.01モル/lの条件で実施
例1と同様にコランダムを作成し、セルギヤ、デの測定
を行なり九結果を第3表に示す。
Table 2 Boron ion fa degree Selzeya! (mol/
V) Average (Kykron) 3σ (Kyklon) 0.0
01 11 1.050.00
2 11 0.800.02
11 0.850.04
12 1.8 Example 3 Corundum was created in the same manner as in Example 1 using seed crystals with shape factors of 1.2, 1.4, and 1.6, and under the condition that the boron ion membership was 0.01 mol/l. Then, the cell gear and de were measured and the results are shown in Table 3.

第3表 種子結晶の      セルギヤツノ 形状因“   平。(イ、。y)  3a(i/。7)
1.2         11       0.55
1.4      11     0.601.6  
    11     0.80特許出願人 昭和電工株式会社 特許出願代理人 弁理士 實 木   朗 弁理士西舘和之 弁理士村井卓雄 弁理士 山 口 昭 之
Table 3: Seed crystal shape factors: flat. (i, .y) 3a (i/.7)
1.2 11 0.55
1.4 11 0.601.6
11 0.80 Patent applicant Showa Denko K.K. Patent agent Akira Saneki Patent attorney Kazuyuki Nishidate Patent attorney Takuo Murai Patent attorney Akira Yamaguchi

Claims (1)

【特許請求の範囲】 1、 アルオナ水和物を水熱処理して;ランダム粒を製
造する方法において、 原料フルンナ水和物中に形状因子が1.0ないし14の
フランダム微粒が存在し九状麹において、駄コランメム
徽粒の表11に原料アルイナ水和物中のアルiすをコラ
ンIムとして析出させることによル、鋏コランダムを球
状微粒であp且つ粒径分布の巾が狭いコランダム粒の集
合物を製造することを1#黴とする方法。 2、アル建す水和物を水熱処理してコランダム粒を製造
する方法において、 原料アル々す水和物中に形状因子が、1.0ないし1.
6のフランダム微粒が存在し且つホウ素化合物が氷島合
成反応系に存在しえ状]1[において、骸コランメム微
粒の表面に原料アルイナ水和愉中のアルiすをコランI
ムとして析出させる仁とにより、該コランIムを球状微
粒であ夛且つ粒径゛分布の巾が狭いコランダム粒の集合
物を製造することを特徴とするコランダム粒集合物の製
造方法。
[Claims] 1. A method for producing random grains by hydrothermally treating aluona hydrate; In koji, the aluminum in the raw material alina hydrate is precipitated as a colum, as shown in Table 11 of the koji grains. A method of producing 1# mold by producing an aggregate of grains. 2. In a method for producing corundum grains by hydrothermally treating an aluminum hydrate, the raw material aluminum hydrate has a shape factor of 1.0 to 1.
6, and a boron compound is present in the ice island synthesis reaction system] In 1, the aluminum of the raw material Alina hydration medium is added to the surface of the Mukuro Coranmem fine particles.
1. A method for producing a corundum grain aggregate, characterized in that the corundum particles are precipitated as particles to produce an aggregate of corundum particles in which the corundum particles are many spherical fine particles and have a narrow particle size distribution.
JP56134243A 1981-08-28 1981-08-28 Manufacture of aggregate of corundum particle Granted JPS5836923A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56134243A JPS5836923A (en) 1981-08-28 1981-08-28 Manufacture of aggregate of corundum particle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56134243A JPS5836923A (en) 1981-08-28 1981-08-28 Manufacture of aggregate of corundum particle

Publications (2)

Publication Number Publication Date
JPS5836923A true JPS5836923A (en) 1983-03-04
JPS6316331B2 JPS6316331B2 (en) 1988-04-08

Family

ID=15123744

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56134243A Granted JPS5836923A (en) 1981-08-28 1981-08-28 Manufacture of aggregate of corundum particle

Country Status (1)

Country Link
JP (1) JPS5836923A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH035316A (en) * 1989-02-01 1991-01-11 Rhone Poulenc Chim Production of activated alumina aggregate, aggregate obtained by said method and apparatus for executing said method
JPH05294613A (en) * 1991-11-28 1993-11-09 Showa Denko Kk Spherical corundum particle
FR2739864A1 (en) * 1995-10-16 1997-04-18 Pechiney Electrometallurgie ALUMINA-BASED ABRASIVE GRAINS AND PROCESS FOR THE PREPARATION THEREOF

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH035316A (en) * 1989-02-01 1991-01-11 Rhone Poulenc Chim Production of activated alumina aggregate, aggregate obtained by said method and apparatus for executing said method
JPH05294613A (en) * 1991-11-28 1993-11-09 Showa Denko Kk Spherical corundum particle
FR2739864A1 (en) * 1995-10-16 1997-04-18 Pechiney Electrometallurgie ALUMINA-BASED ABRASIVE GRAINS AND PROCESS FOR THE PREPARATION THEREOF
WO1997014759A1 (en) * 1995-10-16 1997-04-24 Pem Abrasifs Refractaires Alumina-based abrasive grains and method for preparing same
EP0856037B1 (en) * 1995-10-16 1999-05-06 Pem Abrasifs-Refractaires Alumina-based abrasive grains and method for preparing same

Also Published As

Publication number Publication date
JPS6316331B2 (en) 1988-04-08

Similar Documents

Publication Publication Date Title
CA1250130A (en) Aluminum oxide powders and products
US4623364A (en) Abrasive material and method for preparing the same
US5514631A (en) Alumina sol-gel fiber
CN101654269B (en) Method for producing boehmite particles and method for producing alumina particles
EP0384603B1 (en) Process for the production of magnesium oxide
JPH06157134A (en) Preparation of ceramic article
GB2035281A (en) Macrocrystalline aluminium oxide and the preparation thereof
CN107417071B (en) Method for producing opaque quartz glass containing pores
KR20070013213A (en) FINE alpha;-ALUMINA PARTICLE
CN111868011B (en) Aluminum nitride plate
JP5233007B2 (en) Paint for transparent conductive material and method for producing transparent conductive film
EP0324513A1 (en) Ceramic shaped article and methods of making same
JP2021038125A (en) Alumina particle material and its manufacturing method
JPS5836923A (en) Manufacture of aggregate of corundum particle
JP3279128B2 (en) Silicon nitride powder
JPS6081023A (en) Barium titanate powder
JPS60231462A (en) Abrasive material and manufacture
JP7474221B2 (en) Manufacturing method of spherical silica powder
JP2654276B2 (en) Method for producing fine plate-like alumina particles
JPH03218924A (en) Oxide powder and production thereof
JP3342536B2 (en) MgO.SiO2 porcelain powder and method for producing the same
JPH06316413A (en) Production of lamellar alumina particle
JPH08290928A (en) Production of transparent quartz glass plate
JPH0967119A (en) Rare earth element oxide
WO2022210379A1 (en) Aluminum nitride granular powder and resin composition