JPS5836828B2 - Battery manufacturing method - Google Patents

Battery manufacturing method

Info

Publication number
JPS5836828B2
JPS5836828B2 JP10790678A JP10790678A JPS5836828B2 JP S5836828 B2 JPS5836828 B2 JP S5836828B2 JP 10790678 A JP10790678 A JP 10790678A JP 10790678 A JP10790678 A JP 10790678A JP S5836828 B2 JPS5836828 B2 JP S5836828B2
Authority
JP
Japan
Prior art keywords
alkyl ester
battery
polymethacrylic acid
acid alkyl
gel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP10790678A
Other languages
Japanese (ja)
Other versions
JPS5535420A (en
Inventor
信夫 江田
彰克 守田
孝志 飯島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP10790678A priority Critical patent/JPS5836828B2/en
Publication of JPS5535420A publication Critical patent/JPS5535420A/en
Publication of JPS5836828B2 publication Critical patent/JPS5836828B2/en
Expired legal-status Critical Current

Links

Classifications

    • Y02E60/12

Landscapes

  • Primary Cells (AREA)

Description

【発明の詳細な説明】 本発明は、ポリメタクリル酸アルキルエステルでゲル化
した有機電解質を用いる電池の製造法に関するもので、
ゲル状電解質の製造工程を簡略化して性能の優れた電池
を提供するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a battery using an organic electrolyte gelled with polymethacrylic acid alkyl ester.
The purpose is to simplify the manufacturing process of gel electrolyte and provide a battery with excellent performance.

現状の小形電子機器の主要電源として銀電池もししは水
銀電池があるが、これらは本質的にクリープ性を有する
アルカリ電解液を用いていることに加え、電池の電位が
相乗効果を及ぼすので、長期間に亘り完全無漏液化を図
ることは極めて困難であり、その漏液は機器に重要な損
傷を与えるものである。
Silver or mercury batteries are the main power sources for current small electronic devices, but these use an alkaline electrolyte that inherently has creep properties, and the potential of the battery has a synergistic effect. It is extremely difficult to achieve complete leak-free operation over a long period of time, and leakage causes serious damage to equipment.

電子機器の小形省電力化につれ電池も小形、高エネルギ
ー密度のものが望まれている。
As electronic devices become smaller and more power efficient, batteries are also desired to be smaller and have higher energy density.

そこで、本発明者らは、リチウムで代表される軽金属を
負極活物質とする有機電解質電池の電解質をポリメタク
リル酸アルキルエステルでゲル化する方法を提案した。
Therefore, the present inventors proposed a method of gelling the electrolyte of an organic electrolyte battery using a light metal such as lithium as a negative electrode active material with a polymethacrylic acid alkyl ester.

この方法によれば、高温傑存時でも漏液を起こさない有
機電解質電池が得られる。
According to this method, an organic electrolyte battery that does not cause leakage even at high temperatures can be obtained.

ここに用いるポリメタクリル酸アルキルエステルとして
は、電解質として一般的に用いられている炭酸プロピレ
ン、γ−プチロラクトンなどとの相溶性、ゲル化のしや
すさから、ポリメタクリル酸メチル、ポリメタクリル酸
エチルがより適している。
As the polymethacrylic acid alkyl ester used here, polymethyl methacrylate and polyethyl methacrylate are used because of their compatibility with propylene carbonate, γ-butyrolactone, etc., which are commonly used as electrolytes, and their ease of gelation. more suitable.

この種のメタクリル酸系統のポリマーは分子構造に起因
して接着性が大きい。
This type of methacrylic acid-based polymer has high adhesive properties due to its molecular structure.

このことは電池製造、性能上で相反する長短所である。This has contradictory advantages and disadvantages in terms of battery manufacturing and performance.

すなわち、上記ポリマーよりなるゲル電解質は、これを
正負極間に介在した場合、両極板との接触、密着性が良
いので電池特性に有利な結果をもたらす。
That is, when the gel electrolyte made of the above-mentioned polymer is interposed between the positive and negative electrodes, it has good contact and adhesion with both electrode plates, so that it brings about advantageous results in battery characteristics.

しかし、このポリマーを用いてゲル状電解質を得るには
、支持塩を溶解した有機溶媒とポリマーとを80〜90
℃に加熱して熱ゾルを作り、これをシャーレなどに流し
込んで冷却する工程が必要であった。
However, in order to obtain a gel electrolyte using this polymer, the organic solvent in which the supporting salt is dissolved and the polymer must be mixed at a concentration of 80 to 90%.
It required a process of heating to ℃ to create a thermosol, pouring it into a petri dish, etc., and cooling it.

そしてこのゲルの薄片を所定の形状に切り出して正、負
極間に組み込む製造過程においては、ゲルはポリマー単
体とは異なり、粘弾性の因子が入ってくるので、特に製
造用治工具、例えばゲルを入れたシャーレ、切り出し治
具、あるいはピンモットなどの挾持治具にくっつきやす
く、電池材料として所定の形状に保ちつつ取り扱うこと
が非常に困難である。
In the manufacturing process where a thin piece of gel is cut into a predetermined shape and inserted between the positive and negative electrodes, gel is different from a single polymer, and viscoelastic factors come into play. It tends to stick to the petri dish in which it is placed, the cutting jig, or the holding jig such as a pin motte, making it extremely difficult to handle it as a battery material while keeping it in a predetermined shape.

このためゲル電解質層の形状が一定せず、電気特性がば
らついたり、悪くなったりする欠点がある。
For this reason, the shape of the gel electrolyte layer is not constant, resulting in variations in electrical characteristics or deterioration.

本発明は、ポリメタクリル酸アルキルエステル、このポ
リマーと単独でゲルを作りうる有機溶媒、例えば炭酸プ
ロピレン、γ−プチロラクトン、前記ポリマーを溶解し
前記有機溶媒と相溶性を有する低沸点溶媒および支持塩
を混合した糊状の液をつくり、これを加熱や減圧操作な
どにより前記低沸点溶媒を蒸発除去し、低沸点溶媒と置
換する形で炭酸プロピレンやγ−プチロラクトンをベー
スとした従来と同様のゲル状電解質を得ることを特徴と
する。
The present invention uses a polymethacrylic acid alkyl ester, an organic solvent that can form a gel alone with this polymer, such as propylene carbonate, γ-butyrolactone, a low boiling point solvent that dissolves the polymer and is compatible with the organic solvent, and a supporting salt. A paste-like liquid is created by mixing the mixture, and the low-boiling point solvent is evaporated and removed by heating or depressurization, and then replaced with the low-boiling point solvent to form a gel-like liquid based on propylene carbonate or γ-butyrolactone. Characterized by obtaining electrolytes.

本発明によれば、前記糊状の液を例えば正極上に塗布し
、加熱や減圧操作により低沸点溶媒を除去すれば、従来
と同様のゲル状電解質が得られる。
According to the present invention, a gel electrolyte similar to the conventional one can be obtained by applying the pasty liquid onto, for example, the positive electrode and removing the low boiling point solvent by heating or reducing pressure.

しかも従来のように煩雑さもなく、容易に定常的にゲル
状電解質を製造できる。
Furthermore, the gel electrolyte can be produced easily and regularly without any complications unlike the conventional method.

以下本発明の実施例を説明する。Examples of the present invention will be described below.

第1図はフツ化炭素−リチウム電池を示す。FIG. 1 shows a carbon fluoride-lithium battery.

図において、1はステンレス鋼製のケース、2は同材質
の封口板、3は封目板の内面に溶着したグリッドであり
、このグリッドの表面に負極のリチウムシ一ト4を圧着
している。
In the figure, 1 is a case made of stainless steel, 2 is a sealing plate made of the same material, and 3 is a grid welded to the inner surface of the sealing plate, and a negative electrode lithium sheet 4 is pressure-bonded to the surface of this grid.

5は正極で、フフ化炭素100重量部、アセチレンブラ
ンク10重量部、SBR樹脂結着剤8重量部および分子
量70万〜75万、粒径0.05〜0.15Mのポリメ
タクリル酸メチルのビーズ15重量部の混合物0.28
1をディスク状に或型し、乾燥雰囲気にて、1モル/l
のホウフツ化リチウムを溶解した炭酸プロピレン電解液
160μlを注液後、80℃に1時間加熱してゲルを生
成せしめたもので、ケース1の内面に溶着したチタン製
グリッド6上に載置してある。
5 is a positive electrode, which contains 100 parts by weight of carbon fluoride, 10 parts by weight of acetylene blank, 8 parts by weight of SBR resin binder, and beads of polymethyl methacrylate with a molecular weight of 700,000 to 750,000 and a particle size of 0.05 to 0.15M. 15 parts by weight mixture 0.28
1 into a disk shape, and in a dry atmosphere, 1 mol/l
After injecting 160 μl of a propylene carbonate electrolyte in which lithium borofluoride was dissolved, the gel was heated to 80°C for 1 hour to form a gel. be.

7はゲル電解質で、ポリメタクリル酸メチル5重量部、
炭素プロピレン25重量部、ホウフツ化リチウム2.4
重量部およびメチルエチルケトン4重量部をよく混合し
てペースト状とし、上記正極上に塗布後、45℃で30
WHrに減圧し、メチルエチルケトンを蒸発させて形成
したものである。
7 is a gel electrolyte, 5 parts by weight of polymethyl methacrylate;
25 parts by weight of carbon propylene, 2.4 parts by weight of lithium borofluoride
parts by weight and 4 parts by weight of methyl ethyl ketone were thoroughly mixed to form a paste, and after coating on the above positive electrode, it was heated at 45°C for 30 minutes.
It was formed by evaporating methyl ethyl ketone under reduced pressure to WHr.

こうして、ケース1内にゲル電解質を含む正極および電
解質層を形成した後、陰極を結合した封口板2を組み合
わせ、かしめ封ロして密閉する。
After forming the positive electrode and the electrolyte layer containing the gel electrolyte in the case 1 in this way, the sealing plate 2 to which the negative electrode is bonded is assembled and sealed by caulking.

なお8は電解質層と負極との間に介在させたポリプロピ
レン製セパレータ、9はポリプロピレン製ガスケットで
ある。
Note that 8 is a polypropylene separator interposed between the electrolyte layer and the negative electrode, and 9 is a polypropylene gasket.

実施例では、電解質を構成する有機溶媒として、炭酸プ
ロピレンを用いたが、これはγ−プチロラクトンととも
に沸点が200℃を超える高沸点の安定溶剤であり、4
5℃における蒸気圧も1wII.H1以下で、減圧操作
による蒸発量は無視できる程度のものである。
In the examples, propylene carbonate was used as the organic solvent constituting the electrolyte, which together with γ-butyrolactone is a stable solvent with a high boiling point exceeding 200°C.
The vapor pressure at 5°C is also 1wII. At H1 or less, the amount of evaporation caused by the pressure reduction operation is negligible.

低沸点溶媒として実施例ではメチルエチルケトンを用い
たが、ポリメタクリル酸アルキルエステルを溶解し、炭
酸プロピレンやγ−プチロラクトンと相溶する低沸点溶
媒として、アセトン、テトラヒドロフラン、1,3−ジ
オキソラン、■,2ジメトキシエタンなどが用いられる
Methyl ethyl ketone was used in the examples as a low boiling point solvent, but acetone, tetrahydrofuran, 1,3-dioxolane, Dimethoxyethane and the like are used.

上記実施例の電池Aと、従来の電池Bとについて、20
℃における電気特性の比較を次表に、また20℃におけ
る5 K,Qでの放電特性を第2図に示す。
Regarding the battery A of the above example and the conventional battery B, 20
The following table shows a comparison of the electrical properties at 20°C, and the discharge characteristics at 5 K and Q at 20°C are shown in Figure 2.

なお電池Bは、1モル/lのホウフツ化リチウムを溶解
した炭酸プロピレンに濃度24重量%となるようにポリ
メタクリル酸メチルを加え、80〜90℃に加熱して熱
ゾルを作り、これを冷却した後所定の大きさに切り取っ
たゲル電解質層を用い、正極には上記熱ゾルを減圧下で
含浸してゲル電解質を含有させた。
Battery B is made by adding polymethyl methacrylate to a concentration of 24% by weight to propylene carbonate in which 1 mol/l of lithium borofluoride is dissolved, heating it to 80 to 90°C to create a thermosol, and cooling this. After that, the gel electrolyte layer was cut into a predetermined size, and the positive electrode was impregnated with the above thermosol under reduced pressure to contain the gel electrolyte.

以上のように、本発明によれば、従来に比べて簡単でし
かも安定に、電気特性および放電特性の優れた電池を得
ることができる。
As described above, according to the present invention, a battery with excellent electrical characteristics and discharge characteristics can be obtained more easily and stably than in the past.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例に用いた電池の縦断面図、第2
図は電池の放電特性を示す。 4・・・・・・負極、5・・・・・・正極、7・・・・
・・ゲル電解質層。
Fig. 1 is a vertical cross-sectional view of a battery used in an example of the present invention;
The figure shows the discharge characteristics of the battery. 4...Negative electrode, 5...Positive electrode, 7...
...Gel electrolyte layer.

Claims (1)

【特許請求の範囲】 1 軽金属を活物質とする負極と、正極と、ポリメタク
リル酸アルキルエステルでゲル化した有機電解質とを有
する電池の製造法であって、ポリメタクリル酸アルキル
エステル、ポリメタクリル酸アルキルエステルと単独で
ゲルを作りうる有機溶媒、ポリメタクリル酸アルキルエ
ステルを溶解しかつ前記有機溶媒と相溶する低沸点溶媒
および支持塩を含む糊状液から前記低沸点溶媒を除去し
てゲル状電解質を得る工程を有することを特徴とする電
池の製造法。 2 ポリメタクリル酸アルキルエステルが、ポリメタク
リル酸メチルもしくはポリメタクリル酸エチルである特
許請求の範囲第1項記載の電池の製造法。
[Scope of Claims] 1. A method for producing a battery having a negative electrode using a light metal as an active material, a positive electrode, and an organic electrolyte gelled with polymethacrylic acid alkyl ester, polymethacrylic acid alkyl ester, polymethacrylic acid alkyl ester, etc. A gel is formed by removing the low boiling point solvent from a pasty liquid containing an organic solvent that can form a gel alone with the alkyl ester, a low boiling point solvent that dissolves the polymethacrylic acid alkyl ester, and a supporting salt that is compatible with the organic solvent. A method for manufacturing a battery, comprising a step of obtaining an electrolyte. 2. The method for manufacturing a battery according to claim 1, wherein the polymethacrylic acid alkyl ester is polymethyl methacrylate or polyethyl methacrylate.
JP10790678A 1978-09-01 1978-09-01 Battery manufacturing method Expired JPS5836828B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10790678A JPS5836828B2 (en) 1978-09-01 1978-09-01 Battery manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10790678A JPS5836828B2 (en) 1978-09-01 1978-09-01 Battery manufacturing method

Publications (2)

Publication Number Publication Date
JPS5535420A JPS5535420A (en) 1980-03-12
JPS5836828B2 true JPS5836828B2 (en) 1983-08-11

Family

ID=14471053

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10790678A Expired JPS5836828B2 (en) 1978-09-01 1978-09-01 Battery manufacturing method

Country Status (1)

Country Link
JP (1) JPS5836828B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3049894B2 (en) * 1991-11-27 2000-06-05 日本ゼオン株式会社 Acrylic ester copolymer plastisol composition
US5240790A (en) * 1993-03-10 1993-08-31 Alliant Techsystems Inc. Lithium-based polymer electrolyte electrochemical cell
US5589295A (en) * 1995-12-06 1996-12-31 Derzon; Dora K. Thin film polymeric gel electrolytes
JP4412808B2 (en) 2000-05-12 2010-02-10 パナソニック株式会社 Lithium polymer secondary battery
JP4412840B2 (en) 2000-10-11 2010-02-10 パナソニック株式会社 Lithium polymer battery and manufacturing method thereof

Also Published As

Publication number Publication date
JPS5535420A (en) 1980-03-12

Similar Documents

Publication Publication Date Title
JP6469879B2 (en) Gel polymer electrolyte, method for producing the same, and electrochemical device including gel polymer electrolyte
CN108630985A (en) A kind of high ionic conductivity solid electrolyte and preparation method thereof and its application in all-solid lithium-ion battery
GB2329513A (en) A method of preparing an electrode for lithium based secondary cell
JPS63114064A (en) Nonaqueous secondary battery
JPS5836828B2 (en) Battery manufacturing method
JP2018113220A (en) Method for manufacturing lithium ion secondary battery
JP6457272B2 (en) Method for reducing uneven charging of secondary battery and method for manufacturing secondary battery
CN110048121A (en) A kind of negative electrode material containing azo organic lithium salt, cathode pole piece, lithium battery and preparation method thereof
JP2002373701A (en) Method of manufacturing for nonaqueous electrolyte secondary battery
CN110137436B (en) Method for improving lithium iron phosphate discharge platform
JPS5856467B2 (en) Battery manufacturing method
JP2000182600A (en) Lithium battery
JP4474717B2 (en) Non-aqueous secondary battery and manufacturing method thereof
JPH03225750A (en) Positive electrode sheet for lithium battery
JP3912678B2 (en) Organic electrolyte battery
CN104112855A (en) Preparation method of lithium titanate material with ester modified surface
JPS5836827B2 (en) Battery manufacturing method
WO2019000861A1 (en) Lithium-ion battery positive electrode and preparation method therefor and method for preparing lithium-ion battery
JPH0378745B2 (en)
US6290878B1 (en) Solid polymer electrolyte based on polyacrylonitrile
JPH04169075A (en) Nonaqueous electrolyte battery
JPS5983354A (en) Manufacture of organic electrolyte battery
JP2000080176A (en) Polymer film for polymer lithium ion battery and its production
JP4484205B2 (en) Organic electrolyte battery
JP2023173595A (en) Manufacturing method of lithium ion secondary battery