JPS5836467B2 - non-aqueous electrolyte battery - Google Patents

non-aqueous electrolyte battery

Info

Publication number
JPS5836467B2
JPS5836467B2 JP8639973A JP8639973A JPS5836467B2 JP S5836467 B2 JPS5836467 B2 JP S5836467B2 JP 8639973 A JP8639973 A JP 8639973A JP 8639973 A JP8639973 A JP 8639973A JP S5836467 B2 JPS5836467 B2 JP S5836467B2
Authority
JP
Japan
Prior art keywords
battery
active material
positive electrode
electrode active
electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP8639973A
Other languages
Japanese (ja)
Other versions
JPS5033419A (en
Inventor
敬 土田
健一 篠田
浩平 山本
広彦 太田
康裕 石黒
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FDK Corp
Original Assignee
FDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FDK Corp filed Critical FDK Corp
Priority to JP8639973A priority Critical patent/JPS5836467B2/en
Publication of JPS5033419A publication Critical patent/JPS5033419A/ja
Publication of JPS5836467B2 publication Critical patent/JPS5836467B2/en
Expired legal-status Critical Current

Links

Classifications

    • Y02E60/12

Landscapes

  • Battery Electrode And Active Subsutance (AREA)
  • Primary Cells (AREA)

Description

【発明の詳細な説明】 本発明は、リチウム,ナトリウムなどのアルカリ金属の
負極活物質、酸化モリブデン,フッ化第二銅などの正極
活物質、およびこれらを直接溶解しない非水電解液から
戊る電池(こ関するものである。
[Detailed Description of the Invention] The present invention provides negative electrode active materials of alkali metals such as lithium and sodium, positive electrode active materials such as molybdenum oxide and cupric fluoride, and the use of non-aqueous electrolytes that do not directly dissolve them. Batteries (related to this)

近年、高電圧,高エネルギー密度で且つ軽量な電池に対
する社会的要求が高まりつつあるがこの要求を満たすも
のとしてリチウム,ナトリウムなどのアルカリ金属を負
極活物質とし、非水電解液を用いる電池がすて(こ提案
されている。
In recent years, social demands for high-voltage, high-energy-density, and lightweight batteries have been increasing.Batteries that use alkali metals such as lithium and sodium as negative electrode active materials and non-aqueous electrolytes to meet these demands are becoming increasingly popular. te(this has been proposed).

アルカリ金属は電気陰性度が太きいために、適当な正極
と組合わせることにより、高電圧,高エネルギー密度を
得ることができる。
Since alkali metals have high electronegativity, high voltage and high energy density can be obtained by combining them with a suitable positive electrode.

しかしながらアルカリ金属はプロトン供給性の溶媒すな
わち水酸類,アルコール類など{こ対して一般(こ反応
性Gこ富み、特Cこ水と激しく反応する。
However, alkali metals react violently with proton-supplying solvents, such as hydroxy acids and alcohols (generally, they are rich in reactive gases, and in particular, react violently with water).

従って従来の水溶液の電解液を用いることはできず、分
子内くこ酸性水素原子を持たない非水溶媒を電解液とし
て使わなければならないことは周知のところである。
Therefore, it is well known that a conventional aqueous electrolyte cannot be used, and that a non-aqueous solvent that does not contain acidic hydrogen atoms in the molecule must be used as the electrolyte.

分子内{こ酸性水素原子を持たない非水溶媒は、有機系
kこおいて種々のものが考えられるが、一般には電導度
が小さく、単独で電解液として使用することは困難であ
るから溶質として無機または有機塩類から選んだ化合物
と溶解させて電導度を与えなければならない。
There are various non-aqueous solvents that do not have acidic hydrogen atoms in the molecule, including organic ones, but they generally have low conductivity and are difficult to use alone as an electrolyte, so they are used as solutes. It must be dissolved with a compound selected from inorganic or organic salts to impart electrical conductivity.

従って、非水溶媒の選択に当っての必要条件は、溶質と
する塩類Oこ対して溶解力が大きく、且つ常温を含む広
い温度範囲で液体として存在することである。
Therefore, the necessary conditions for selecting a nonaqueous solvent are that it has a large dissolving power relative to the salt O used as a solute, and that it exists as a liquid over a wide temperature range including room temperature.

上記の条件を満足する非水溶媒としては、プロピレンカ
ーボネート、γ−プチロラクトン、テトラヒドロフラン
、1,2−ジメトキシエタン、アセトニトリル、ジメチ
ルスルホ牛シドなどがある。
Examples of nonaqueous solvents that satisfy the above conditions include propylene carbonate, γ-butyrolactone, tetrahydrofuran, 1,2-dimethoxyethane, acetonitrile, and dimethylsulfobylside.

一方、これらの溶媒Oこ対する溶質としては、一般的O
こはアルカリ金属塩などが適当で過塩素酸リチウム、過
塩素酸ナトリウム、リチウムテトラクロルアルミネート
、チオシアン酸カリウム、過塩素酸マグネシウムなどが
ある。
On the other hand, as a solute for these solvents O, general O
Suitable alkali metal salts include lithium perchlorate, sodium perchlorate, lithium tetrachloraluminate, potassium thiocyanate, and magnesium perchlorate.

また正極活物質は次の条件を満たすものが望ましい。Further, it is desirable that the positive electrode active material satisfies the following conditions.

1)低い等価質量を有する。2)高い電極電位を有する
1) Has a low equivalent mass. 2) It has a high electrode potential.

3)電気化学的Qこ電解液中で安定である。3) Electrochemical Q: Stable in electrolyte.

4)電気化学的Oこ活性である。5)電解液(こ不溶で
ある。
4) It is electrochemically active. 5) Electrolyte (this is insoluble).

6)電導度が太きい。7)分極が小さい。以上の条件か
ら正極活物質として適当なものOこは、酸化モリブデン
、フツ化第二銅、フフ化カドミウム、フツ化ニッケル、
フツ化第二コバルト、塩化第一銅、塩化銀、硫化第二銅
などがある。
6) High conductivity. 7) Small polarization. Based on the above conditions, suitable positive electrode active materials include molybdenum oxide, cupric fluoride, cadmium fluoride, nickel fluoride,
Examples include cobalt fluoride, cuprous chloride, silver chloride, and cupric sulfide.

さて、前記のようOこアルカリ金属は水との反応性が特
に高いことが知られている。
Now, as mentioned above, it is known that alkali metals have particularly high reactivity with water.

従って電池内ζこ水分が存在するとアルカリ金属との反
応(こよって水酸化物、酸化物および水素ガスを生成し
、容量および保存性能低下の原因となるばかりでなく、
水素ガスにより電池内圧が上昇し、電池が破壊する危険
がある。
Therefore, if moisture is present in the battery, it will not only react with alkali metals (thus producing hydroxides, oxides and hydrogen gas, but also cause a decrease in capacity and storage performance).
There is a risk that the hydrogen gas will increase the internal pressure of the battery and destroy the battery.

また、アルカリ金属は空気中の酸素とも反応しやすく、
酸化物を生或することが知られており、そのための電池
性能の低下も著しい。
Also, alkali metals easily react with oxygen in the air.
It is known that oxides are produced, which significantly reduces battery performance.

上記の欠点(こ対処するために前記の非水溶媒、溶質お
よび正極活物質を用いて非水電解液電池を組立てる際4
こ、電池の電解液内あるいは正極活物質内に残存したり
電池組立て後電池の外部から混入する微量水分の除去、
および電池内{こ残存したり電池外部から混入する微量
酸素を除去しなければならない。
To address the above drawbacks (4) when assembling a nonaqueous electrolyte battery using the above nonaqueous solvent, solute, and positive electrode active material
This removes trace amounts of moisture that remain in the battery electrolyte or positive electrode active material, or that enters from outside the battery after battery assembly.
Also, trace amounts of oxygen remaining inside the battery or entering from outside the battery must be removed.

上述したようOこ、容量や保存性能等の電池性能Oこ非
常な悪影響をおよぼす微量水分や酸素を除去するOこは
、従来多くの研究が行なわれ、非水溶媒中の水分Oこ関
しては各種の蒸留法、リチウム、ナトリウムなどのアル
カリ金属を添加する力法、モレ牛ユラーシーブあるいは
他の乾燥剤を用いる方法等、また溶質や正極活物質その
他の電池構或材料中の水分Gこ関しては真空加熱(こよ
る脱水法等であり、電池組立て雰囲気中の水分や酸素の
除去Qこ関しては乾燥不活性ガスを用いる方法等である
As mentioned above, many studies have been conducted to remove trace amounts of moisture and oxygen, which have a very negative effect on battery performance such as capacity and storage performance. There are various methods of distillation, methods of adding alkali metals such as lithium and sodium, methods of using mole sieves or other desiccants, and methods of reducing moisture in solutes, cathode active materials, and other battery construction materials. A method for removing water and oxygen from the battery assembly atmosphere is a method using a dry inert gas.

しかしながら、上記の力法で水分を除去した非水溶媒、
溶質、正極活物質およひその他の電池構戊材料を用い、
乾燥したアルゴン等の不活性ガス雰囲気中で電池を組立
てても、電池保存後の電池特性が劣る点を勘案すると、
末だ微量水分の混入を完全6こ防ぎきれていない。
However, non-aqueous solvents from which water has been removed using the force method described above,
Using solute, cathode active material and other battery structural materials,
Considering that even if the battery is assembled in a dry inert gas atmosphere such as argon, the battery characteristics after storage will be inferior.
However, it is not possible to completely prevent trace amounts of moisture from entering.

そこで本発明者等はかかる微量水分の混入が何(こ基因
するかGこついてこれ迄検討してきた。
Therefore, the present inventors have been investigating the cause of the incorporation of such a small amount of water.

その結果、上述の金属の酸化物、硫化物、ハロゲン化物
といった正極活物質は、比較的容易(こ除去できる付着
水の他に、その除去が極めて困難な結合水を有しており
、この結合水が電池保存及ひ放電中Oこ除々に電解液中
Gこ遊離し、陰極活物質と反応することが、容量劣化や
保存性の劣化を招く因子となっているのではないかと思
えた。
As a result, positive electrode active materials such as the metal oxides, sulfides, and halides described above have attached water, which can be removed relatively easily, as well as bound water, which is extremely difficult to remove. It seemed that water gradually liberated from the electrolytic solution during battery storage and discharge, and reacted with the cathode active material, which was a factor leading to deterioration in capacity and storage stability.

これら結合水は、例えば正極活物質としての特性が変化
しない混度領域、通常400゜C以下で、真空加熱時間
を長くしても、ある限界値(物質により異なるが0.
1 %〜数係)以下Oこはなし得す、この水分はどうし
ても電池内Gこ持ちこまれたのである。
These bound waters, for example, remain in the mixed region where the properties as a positive electrode active material do not change, usually below 400°C, and even if the vacuum heating time is extended, the temperature reaches a certain limit (0.000000000000000 although it varies depending on the material).
(1% to several factors) or less, this water was inevitably carried into the battery.

上述した理由6こより結合水が電池内(こ持ちこまれる
ことから避けられないとしても、その結合水が陰極活物
質との反応6こあずからないよう(こしさえすれば、電
池容量、保存性能を阻害しないはずである。
Due to the above-mentioned reason 6, even if it is unavoidable that bound water is brought into the battery, it is possible to prevent the bound water from reacting with the cathode active material (by straining it, the battery capacity and storage performance will be improved). It shouldn't interfere.

本発明の目的は、従って、電解液中(こ遊離した正極活
物質の結合水が陰極活物質と反応しないような非水電解
液電池を提供すること(こめる。
Therefore, an object of the present invention is to provide a non-aqueous electrolyte battery in which the bound water of the released cathode active material does not react with the cathode active material in the electrolyte.

すなわち本発明は、化学式M x/ n C ( Al
02 )x ( S 1 02 ) y )・ZH20
で表わされる吸着剤(商品名はモレキュラーシーブ、以
下モレキュラーシーブと称す)を電解液、正極活物質、
あるいはセパレーター中の少なくともいずれか一つに含
み、正極活物質の結合水が電解液中に遊離したとき、該
遊離結合水が陰極活物質と反応する以前Gこ該モレキュ
ラーシーブOこ吸着して反応(こあずからしめないよう
(こした非水電解液電池である。
That is, the present invention has the chemical formula M x/n C (Al
02) x (S 1 02) y)・ZH20
The adsorbent represented by
Alternatively, it is contained in at least one of the separators, and when the bound water of the positive electrode active material is liberated in the electrolyte, before the free bound water reacts with the negative electrode active material, the G and O molecules are adsorbed and reacted. (This is a non-aqueous electrolyte battery.

なお、前記化学式のMはN a”, K”, C a2
+いずれかのメタルカチオンであり、nはMの原子価、
x,y,zはそれぞれM,AlO2,SiO2,H20
の組戊比を表わす数値である。
In addition, M in the above chemical formula is N a", K", C a2
+ any metal cation, n is the valence of M,
x, y, z are M, AlO2, SiO2, H20 respectively
This is a numerical value representing the composition ratio of .

シリカゲル、活性アルミナ、酸化カルシウム、無水ボウ
硝といった乾燥剤では数百PPM以下の微量水分Qこ対
しては水分除去能力が劣るけれども、モレキュラーシー
ブは数PPMGこまで低下させることができ、しかもそ
の吸着速度は水分と陰極活物質とが反応する速度よりも
迅速であるから、電池保存中及ひ放電中(こ正極活物質
の結合水が除々Gこ電解液中6こ遊離しても直ちにモレ
キュラーシーブで吸着し、決して陰極活物質との反応6
こあず力・らしめないよう(こすることが至って簡単(
こ達威される。
Desiccants such as silica gel, activated alumina, calcium oxide, and anhydrous sulfur salt have poor ability to remove trace amounts of moisture (Q) of several hundred ppm or less, but molecular sieves can reduce the amount of moisture to as low as several ppmg, and can also adsorb it. Since the rate of reaction between water and the cathode active material is faster than the reaction rate between water and the cathode active material, even if the bound water of the cathode active material is gradually released from the electrolyte during storage and discharge of the battery, the molecular sieve is immediately removed. Adsorbed in and never reacted with cathode active material 6
Avoid rubbing and rubbing (very easy to rub)
This will be praised.

また、モレキュラーシーブは、電池内部ζこおいて、分
解しない、あるいは陽極活物質などと電気化学的な反応
をしないという自質自体の化学的な安定性が長期Gこわ
たって犬である。
In addition, molecular sieves have long-term chemical stability that does not decompose or electrochemically react with anode active materials inside the battery.

例えば、金属ナトリウムは、水分除去能力{こおいては
、モレキュラーシーブと同等と考えられるが、その微粉
末を電池内部特Oこ陽極活物質内部に添加した場合、陽
極活物質との間で局部電池を形或し、さらQここの局部
電池は短絡状態6こあるため(こ放電し結果的にll活
物質を劣化させてしまう。
For example, metallic sodium has a water removal ability (in this case, it is considered to be equivalent to molecular sieve), but when its fine powder is added to the interior of a battery, especially inside the anode active material, it may locally However, since the local battery is short-circuited, the battery will discharge and the active material will deteriorate as a result.

金属ナトリウムの微粉末を電解液あるいはセパレーター
中0こ添加した場合においても、その一部は陽極表面6
こ移行し同様の結果をもたらす。
Even when fine powder of metallic sodium is added to the electrolyte or separator, a portion of it will remain on the anode surface.
This transition yields similar results.

これQこ対してモレキュラーシーブは、長期Gこわたり
化学的{こ安定な物質であり、電池Gこ悪影響を及ぼさ
ない。
On the other hand, molecular sieve is a chemically stable substance that does not deteriorate over a long period of time, and does not have any negative effect on the battery.

以下(こ述べる実施例の電池は、常稿で2年経過した後
分解調査したがモレキュラーシーブ{こ劣化は見られな
かった。
The battery of the example described below was disassembled and investigated after two years had elapsed, but no deterioration was observed with the molecular sieve.

このような見地からすると、モレキュラーシーブは、電
池内部に添加する水分,酸素の吸着剤としては理想的な
ものである。
From this standpoint, molecular sieves are ideal as adsorbents for moisture and oxygen added to the inside of batteries.

添付図面は本発明の一実施例を説明するものである。The accompanying drawings illustrate one embodiment of the invention.

第1図はボタン型電池の断面図を示すもので、底部キャ
ップ5および金属カバー3は型打ちしたニッケルプレー
トスチールである。
FIG. 1 shows a cross-sectional view of a button cell, the bottom cap 5 and metal cover 3 being stamped nickel plated steel.

また1はリチウムを30メッシュのニッケルネット2の
上にプレスして作製した負極、6は正極活物質としての
酸化モリブデン(75重量多)、導電剤としてのグラフ
ァイト(22.5重量俤)およひモレキュラーシーブ(
2.5重量係)から成る混合物をプレスして作製した正
極、7は厚さ0.05mmのポリプロピレン不織布の両
面(こIM過塩素酸リチウムプロピレンカーボネート溶
液(50重量係)、および300メッシュ以下のモレキ
ュラーシーブ(50重量多)より戊るペーストを0.
5 mmの厚さ(こ塗布したシートを間にして両面より
0.05mmのホリプロピレン不織布を重ね合わせたセ
パレーター、4はポリプロピレンより戊る封ロバツキン
グである。
In addition, 1 is a negative electrode prepared by pressing lithium onto a 30 mesh nickel net 2, 6 is a positive electrode active material of molybdenum oxide (75% by weight), and a conductive agent of graphite (22.5% by weight). Thin molecular sieve (
7 is a positive electrode prepared by pressing a mixture consisting of a 0.05 mm thick polypropylene nonwoven fabric (IM lithium perchlorate propylene carbonate solution (50 weight ratio), and a positive electrode of 300 mesh or less). Add 0.0% paste from molecular sieve (50% by weight).
A separator with a thickness of 5 mm (0.05 mm of polypropylene nonwoven fabric was overlapped from both sides with the coated sheet in between), and 4 was a sealing backing made of polypropylene.

また電解液には、IM過塩素酸リチウム、プロピレンカ
ーボネート溶液(こ300メッシュ以下ノモレキュラー
シーブ(5重量多)を添加したものを用い、電池の組立
てはアルゴンガス雰囲気中で行なった。
The electrolyte used was an IM lithium perchlorate and propylene carbonate solution (to which a nomolecular sieve of 300 mesh or less (5 weight) was added), and the battery was assembled in an argon gas atmosphere.

以上のよう(こして作製した電池aの理論容量は5 0
0 m A hであり、放電特性は第2図aに示す。
As mentioned above (the theoretical capacity of battery a made by straining is 50
0 mA h, and the discharge characteristics are shown in Figure 2a.

一力、電解液、正極活物質、およびセパレーター中にモ
レキュラーシーブを含まない。
First, the electrolyte, cathode active material, and separator do not contain molecular sieves.

すなわち電解液としてIM過塩素酸リチウム、プロピレ
ンカーボネート溶液、正極活物質として酸化モリブデン
(75重量係)、導電剤としてグラファイト(25重量
多)から戊る正極、および厚さ0.05mmのポリプロ
ピレン不織布3枚を重ね合わせたセパレーターを用いた
従来の電池bの放電特性は第2図b(こ示す。
That is, a positive electrode made of IM lithium perchlorate and propylene carbonate solution as an electrolytic solution, molybdenum oxide (75% by weight) as a positive electrode active material, graphite (25% by weight) as a conductive agent, and a polypropylene nonwoven fabric 3 with a thickness of 0.05 mm. The discharge characteristics of a conventional battery (b) using a stack of separators are shown in Figure 2 (b).

また第3図は電池a,bをそれぞれ45℃で保存した場
合の放電容量の保存特性比較図である。
Further, FIG. 3 is a comparison diagram of storage characteristics of discharge capacity when batteries a and b are stored at 45° C., respectively.

なお放電は20℃アの500Ωの定抵抗連続放電で終止
電圧は1,8■である。
The discharge was a constant resistance continuous discharge of 500 Ω at 20° C., and the final voltage was 1.8 μm.

上述の結果、本発明の電解液、正極活物質およひセパレ
ーター中にモレキュラーシーブを含む電池a(こおいて
は従来の電池よりもその利用率に関しては約15係の向
上が認められ、保存性能も従来の電池よりもすぐれてい
ることが明らかとなった。
As a result of the above, the battery a containing the electrolyte of the present invention, the positive electrode active material, and the molecular sieve in the separator (in this case, the utilization rate was improved by about 15 times compared to the conventional battery), and the storage It was also revealed that the performance was superior to that of conventional batteries.

また他種の電解液、正極活物質を用いを場合でも同様な
効果が認められ、電解液、正極活物質あるいはセパレー
ターのいずれかーっ又は二っQこモレキュラーシーブを
含む場合にも、従来の電池よりも容易、保存性能共(こ
優れているという結果が得られた。
Similar effects are also observed when using other types of electrolytes and cathode active materials, and even when the electrolyte, cathode active material, or separator contains one or two molecular sieves, conventional batteries The results showed that it was easier and had better storage performance.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明電池の一実施例を示す縦断面略図、第2
図は本発明電池と従来の電池の放電曲線図、第3図は本
発明電池と従来の電池の放電容量の保存特性図である。 6・・・・・・正極、7・・・・・・セパレーター。
FIG. 1 is a schematic vertical cross-sectional view showing one embodiment of the battery of the present invention, and FIG.
The figure is a discharge curve diagram of a battery of the present invention and a conventional battery, and FIG. 3 is a storage characteristic diagram of discharge capacity of a battery of the present invention and a conventional battery. 6...Positive electrode, 7...Separator.

Claims (1)

【特許請求の範囲】 1 リチウム,ナトリウムなどのアルカリ金属の負極活
物質,酸化モリブデン,フフ化第2銅などの正極活物質
、およびこれらを直接溶解しない非水電解液から或る電
池において、化学式Mx/n( (AA?02) x
( S t 02 ) ’l )・ZH20で表わされ
る吸着剤を、電解液、正極活物質あるいはセパレーター
中の少なくともいずれか一つGこ含むことを特徴とする
非水電解液電池。 但し上記化学式のMはNa+,K+,Ca2+いずれか
のメタルカチオンであり、nはMの原子価、Xly,Z
はそれぞれM,AIO2,SiO2,H20の組戊比を
表わす数値とする。
[Scope of Claims] 1. In a certain battery, a chemical formula can be obtained from a negative electrode active material of an alkali metal such as lithium or sodium, a positive electrode active material such as molybdenum oxide or cupric fluoride, and a non-aqueous electrolyte that does not directly dissolve these. Mx/n( (AA?02) x
A non-aqueous electrolyte battery characterized in that it contains an adsorbent represented by (S t 02 )'l)・ZH20 in at least one of an electrolyte, a positive electrode active material, or a separator. However, M in the above chemical formula is a metal cation such as Na+, K+, or Ca2+, n is the valence of M, and Xly, Z
are numerical values representing the composition ratios of M, AIO2, SiO2, and H20, respectively.
JP8639973A 1973-08-02 1973-08-02 non-aqueous electrolyte battery Expired JPS5836467B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8639973A JPS5836467B2 (en) 1973-08-02 1973-08-02 non-aqueous electrolyte battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8639973A JPS5836467B2 (en) 1973-08-02 1973-08-02 non-aqueous electrolyte battery

Publications (2)

Publication Number Publication Date
JPS5033419A JPS5033419A (en) 1975-03-31
JPS5836467B2 true JPS5836467B2 (en) 1983-08-09

Family

ID=13885782

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8639973A Expired JPS5836467B2 (en) 1973-08-02 1973-08-02 non-aqueous electrolyte battery

Country Status (1)

Country Link
JP (1) JPS5836467B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5147226A (en) * 1974-10-18 1976-04-22 Hitachi Maxell HISUIDENKAIEKIDENCHI
DE3136578A1 (en) * 1981-09-15 1983-03-31 Varta Batterie Ag, 3000 Hannover GALVANIC ELEMENT WITH INTEGRATED GETTER
JPS58123662A (en) * 1982-01-18 1983-07-22 Yuasa Battery Co Ltd Organic electrolyte battery

Also Published As

Publication number Publication date
JPS5033419A (en) 1975-03-31

Similar Documents

Publication Publication Date Title
JP6699876B2 (en) Lithium-sulfur battery electrolyte and lithium-sulfur battery containing the same
JP6595710B2 (en) Electrolyte for lithium-sulfur battery and lithium-sulfur battery including the same
US20140050947A1 (en) Hybrid Electrochemical Energy Storage Devices
US5658689A (en) Rechargeable lithium battery having a specific electrolyte
JPWO2003091198A1 (en) Ionic liquid and dehydration method, electric double layer capacitor and secondary battery
JP2008535154A5 (en)
US3413154A (en) Organic electrolyte cells
JP2019507482A (en) Electrolyte for lithium-sulfur battery and lithium-sulfur battery including the same
WO2019201431A1 (en) Additives and methods to add additives in a rechargeable non-aqueous lithium-air battery
US4816358A (en) Electrochemical cell
JP5304961B1 (en) Negative electrode plate for magnesium ion secondary battery, magnesium ion secondary battery, and battery pack
JP2004207055A (en) Lithium battery and manufacturing method
JPS63236276A (en) Electrolytic liquid for lithium-sulfur dioxide electrochemical battery
JP4177317B2 (en) Organic electrolyte and lithium battery using the same
JP3396990B2 (en) Organic electrolyte secondary battery
JPS5836467B2 (en) non-aqueous electrolyte battery
JP5937941B2 (en) Sodium secondary battery
JPH02148665A (en) Electrolyte for lithium secondary battery
JP2006193460A (en) Quaternary ammonium salt, electrolyte and electrochemical device
US4288508A (en) Chalcogenide electrochemical cell
JP3451601B2 (en) Lithium battery
JPH0371738B2 (en)
JPH0574455A (en) Organic electrolyte battery
JP2754864B2 (en) Manufacturing method of zinc alkaline battery
JPH0418671B2 (en)