JPS5836041B2 - Powder metallurgy products containing molybdenum and tungsten and their manufacturing method - Google Patents

Powder metallurgy products containing molybdenum and tungsten and their manufacturing method

Info

Publication number
JPS5836041B2
JPS5836041B2 JP56002478A JP247881A JPS5836041B2 JP S5836041 B2 JPS5836041 B2 JP S5836041B2 JP 56002478 A JP56002478 A JP 56002478A JP 247881 A JP247881 A JP 247881A JP S5836041 B2 JPS5836041 B2 JP S5836041B2
Authority
JP
Japan
Prior art keywords
powder
alloy
tungsten
solid solution
powder metallurgy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56002478A
Other languages
Japanese (ja)
Other versions
JPS56152903A (en
Inventor
雅也 三宅
稔 中野
孝春 山本
昭夫 原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP56002478A priority Critical patent/JPS5836041B2/en
Publication of JPS56152903A publication Critical patent/JPS56152903A/en
Publication of JPS5836041B2 publication Critical patent/JPS5836041B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)
  • Manufacture Of Switches (AREA)
  • Contacts (AREA)

Description

【発明の詳細な説明】 本発明は、粉末冶金用原料として用いられるMo +W
の固溶体からなる微粉末に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides Mo + W used as a raw material for powder metallurgy.
This relates to a fine powder consisting of a solid solution of.

従来から知られているMo y Wの固溶体はタングス
テン、モリブデンー合金線(通常50φW50%Mo,
30%W−70%Mo)として使われている。
The conventionally known solid solution of Mo y W is tungsten, molybdenum alloy wire (usually 50φW50%Mo,
30%W-70%Mo).

これはタングステン線は高温で脆化する傾向があるが、
固溶体にすると柔軟になり、抵抗値の温度係数も電流を
抑える傾向をもつため、Mo + W線は好んで使用さ
れている。
This is because tungsten wire tends to become brittle at high temperatures.
Mo + W wire is preferred because it becomes flexible when made into a solid solution, and its temperature coefficient of resistance tends to suppress current.

渣た耐熱材料の用途として、タングステンベースの合金
はMoを種々の割合で固溶させたりして、その特性の改
善も出来る。
As a waste heat-resistant material, the properties of tungsten-based alloys can be improved by incorporating Mo in various proportions as a solid solution.

例えばW−Mo−千a , W−Mo −Nb − C
, W−Mo−Vなどの合金としたりすることが出来
る。
For example, W-Mo-100a, W-Mo-Nb-C
, W-Mo-V and the like.

すなわちWとMoは周期律表の同じ族に属し、その特性
も非常によく似かより、捷た全率固溶体であるから、M
OとWを固溶させた合金にすれば釦互いの欠点をカバー
し、新しい材料の開発も可能と思われる。
In other words, W and Mo belong to the same group in the periodic table, and their properties are very similar.Since W and Mo are solid solutions, M
It would be possible to develop a new material by making an alloy containing O and W as a solid solution, which would cover the shortcomings of both buttons.

更にMoはWの比重の約1/2であり、しかも最近のW
価格上昇の際にはMoの原料費はWに対して1/2にす
ぎない。
Furthermore, Mo has about 1/2 the specific gravity of W, and moreover, the recent W
When the price increases, the raw material cost of Mo is only 1/2 that of W.

従ってW製品の高価格時代にはMo +Wの合金を使用
すれば、安価な製品としてより需要が拡大できるはずで
ある。
Therefore, in the era of high prices for W products, if an alloy of Mo 2 + W is used, the demand for it as an inexpensive product should increase.

しかしながらMo ,Wの固溶体で構戒される合金はM
o +W線以外に余り開発されていない。
However, the alloy that is treated as a solid solution of Mo and W is M
o There is not much development other than the +W line.

その理由ぱW及びMoの融点が非常に高く、この固溶体
を作るには3000’C以上の温度で溶解しなければな
らない。
This is because the melting points of W and Mo are very high, and in order to form this solid solution, they must be melted at a temperature of 3000'C or higher.

わずかにこれに代る工業的方法として、1952年にS
m i thellsによって通電焼結法が開発されて
いる。
As a slightly alternative industrial method, S
An electric sintering method has been developed by M i hells.

棒状の製品は本方法で可能であるが、各種形状を持つW
製品、MO製品製品を作るためには適していない。
Although rod-shaped products are possible with this method, W
Not suitable for making products, MO products.

本発明者らはMo +Wの固溶体からなる合金が安価に
出来、硬質材料としての(Mo,W)C粉末が手軽に出
来れば、さらにこの分野の工業用途の拡大が出来ると信
じ、各種の研究を進めた。
The present inventors believe that if an alloy consisting of a solid solution of Mo + W can be produced at low cost and (Mo, W)C powder as a hard material can be produced easily, it will be possible to further expand industrial applications in this field, and have conducted various research. advanced.

その結果精錬段階でMoとWを混合すれば容易にMo
+ Wの合金粉末を作り得ることを見出した。
As a result, if Mo and W are mixed at the refining stage, Mo
We have discovered that it is possible to create an alloy powder of +W.

昔たこの方法によって得た粉末を型押焼結して使えばM
o y W合金からなる粉末冶金製品が容易に作り得る
こと、一方に、これを炭化すれば(Mo,W)C粉末が
生或され、該炭化物の使用により新しい硬質合金も開発
し得ることに気づいた。
If you use the powder obtained by the old Tako method by pressing and sintering
Powder metallurgy products made from o y W alloys can be easily produced, and on the other hand, by carbonizing this, (Mo, W)C powder is produced, and new hard alloys can be developed by using this carbide. Noticed.

すなわち、本発明の特徴はMoとWの固溶体からなる2
0μ以下の粒度を持つ合金粉末を粉末冶金用原料として
用いることにある。
That is, the feature of the present invention is that 2 consisting of a solid solution of Mo and W
The objective is to use alloy powder having a particle size of 0μ or less as a raw material for powder metallurgy.

従来のW粉末の製法においても、W中の不純物として少
量のMoは含1れている。
Even in the conventional method for producing W powder, a small amount of Mo is included as an impurity in W.

(200ppm位)しかしながらより高純度のW特性を
出すためには、この少量のMoはW粉末の粒度を変化さ
せたり、Wの電気特性を変えたりする悪影響があるので
、その精錬段階ではMoをいかに減少させるかの努力が
はらわれてきた。
(approximately 200 ppm) However, in order to obtain higher purity W characteristics, this small amount of Mo has the negative effect of changing the particle size of the W powder and changing the electrical properties of W, so Mo must be removed at the refining stage. Efforts have been made to find ways to reduce it.

従って鉱石中のMoの含有量も少ないものが選ばれ、M
Oを多く含有する鉱石の処理方法も数多く研究されてい
る。
Therefore, ores with low Mo content are selected, and M
Many studies have also been conducted on processing methods for ores containing a large amount of O.

しかしながら、逆にMoを多くW中に含普せるという考
え方は、い渣だ誰にも検討さ・れていない。
However, on the contrary, no one has considered the idea that a large amount of Mo can be incorporated into W.

本発明者らは従来の精錬技術と全く逆の考え方でMo
,Wの合金粉末の開発を進め、これに或功した。
The present inventors used a method completely opposite to the conventional refining technology to
, W progressed with the development of alloy powder, and achieved some success.

先に述べたように従来Mo e Wの合金はMo pW
を混合し型押後、通電焼結等の高温で固溶させていたの
で、この合金を粉末にするのが非常に難しいと考えられ
てきた。
As mentioned earlier, the conventional Mo e W alloy is Mo pW.
It has been thought that it is extremely difficult to turn this alloy into powder, as it has been mixed and stamped, and then made into a solid solution at high temperatures, such as by sintering under current.

しかしながら、本発明者らはWもしくはMoの精錬段階
もしくは酸化物のnで混合すれば、必ずしも高温での反
応を必要とせず、比較的低い温度でMo s Wの合金
粉末が得られることに気付いた。
However, the present inventors realized that if W or Mo is mixed at the refining stage or at the oxide n stage, a Mo s W alloy powder can be obtained at a relatively low temperature without necessarily requiring a reaction at a high temperature. Ta.

1た、この合金粉末の生成段階で還元条件を適当に選ん
で合金粉末の粒度を調整しておけば、粉末の粒度範囲は
0.5μから10μ近く1で作り得ることもわかった。
In addition, it has been found that if the reduction conditions are appropriately selected and the particle size of the alloy powder is adjusted during the production stage of the alloy powder, the particle size of the powder can be made from 0.5μ to nearly 10μ.

これの具体的な方法の一例としては、次のような例があ
る。
A specific example of this method is as follows.

タングステンのアンモニウム塩と、モリブデンのアンモ
ニウム塩を溶液状態で混合して、WとMoのバラ塩を共
析させるか、HNO3やHCIにてWO3 もMoO3
も共沈させるかによって微細混合した酸化物粉末を得る
か、あるいは予め得た酸化物を機械的手段で徹底して混
合することによって得た粉末を還元してMoとWの各組
成からなる合金粉末を得る。
Either tungsten ammonium salt and molybdenum ammonium salt are mixed in a solution state to eutectoid the loose salts of W and Mo, or WO3 and MoO3 can be mixed with HNO3 or HCI.
A finely mixed oxide powder can be obtained by co-precipitation, or an alloy consisting of Mo and W can be obtained by thoroughly mixing the oxides obtained in advance by mechanical means and reducing the resulting powder. Get the powder.

もちろんMoとWの合金粉末の製造法として、金属粉の
混合粉末を高温で加熱・拡散により固溶体を得る方法も
考えられるが、粉砕するのが面倒である。
Of course, as a method for producing alloy powder of Mo and W, it is possible to obtain a solid solution by heating and diffusing a mixed powder of metal powder at high temperature, but pulverization is troublesome.

使用する粉末が細かければ、加熱温度が下げられるので
可能性もある。
If the powder used is finer, the heating temperature can be lowered, making it possible.

W中のMoの拡散では加熱温度で拡散可能な粒子の大き
さは次の表1の関係にある。
In the diffusion of Mo in W, the sizes of particles that can be diffused at the heating temperature have the relationships shown in Table 1 below.

即ち、1時間の加熱時間では0.5μ位の微細粉末なら
2000℃以下で十分固溶体になる。
That is, with a heating time of 1 hour, a fine powder of about 0.5 microns will sufficiently become a solid solution at 2000° C. or lower.

しかし1μ以上の粉末では2000℃以上の加熱温度が
必要であるので、合金粉末を作るには難かしい。
However, powders with a diameter of 1 μm or more require heating temperatures of 2000° C. or more, making it difficult to produce alloy powders.

しかしながら溶液の状態から混合したり酸化物の状態で
混合すれば、粒子径は非常に小さくなり低い温度で固溶
させることが出来る。
However, if they are mixed in a solution state or in an oxide state, the particle size becomes very small and it is possible to form a solid solution at a low temperature.

1た、本発明の方法によって得た合金粉末は炭素と反応
させ1400℃以上の温度で加熱すれば、完全な(Mo
,W)C粉末となり得る。
1. If the alloy powder obtained by the method of the present invention is reacted with carbon and heated at a temperature of 1400°C or higher, it can be completely
, W) C powder.

粗粒の(Mo ,W)C粉末を得る時は、(Mo ,W
)Oaの還元温度を上げ、更に炭化温度を高くすれば、
6μ程度の炭化物も得られる。
When obtaining coarse-grained (Mo , W)C powder, (Mo , W)
) If the reduction temperature of Oa is increased and the carbonization temperature is further increased,
Carbide of about 6μ can also be obtained.

本発明の方法において有利なのは必ずしもMoとWの組
み合わせのみならず、IV a t V a p VI
a族からなるTit Zrt Hft Vt Nb,
Ta+Crの1種もし〈は2種を組み合わせて酸化物状
態で混合して、Mo r Wの固溶体中に含壕せること
も可能である。
What is advantageous in the method of the invention is not only the combination of Mo and W, but also the combination of Mo and W.
Tit Zrt Hft Vt Nb consisting of a group,
It is also possible to mix one or two of Ta+Cr in an oxide state and entrap it in a solid solution of MorW.

以上の方法で得たMo ,W粉末はNi等バインダー金
属を若干混合して、型押焼結して粉末冶金用製品を供し
得る。
The Mo 2 and W powder obtained by the above method can be mixed with a small amount of a binder metal such as Ni, and then pressed and sintered to provide a product for powder metallurgy.

渣た、炭化物としてWCO代換品として(Mo ,W)
C−Co ,Ni合金にして、新しい硬質材料として使
用も出来る。
As a residue and carbide as a substitute for WCO (Mo, W)
It can also be made into a C-Co, Ni alloy and used as a new hard material.

本発明にかいては合金の出発原料がMoとWが固溶体で
あることを特徴とする。
The present invention is characterized in that the starting materials for the alloy are a solid solution of Mo and W.

MoとWが固溶体についてはX線回折で調べられる。A solid solution of Mo and W can be investigated by X-ray diffraction.

X線条件はCuKaにて4 0 kVの8 0 mA
s N 1フィルタースリットds=2°、受光スリッ
トcc3=0.15冊、スキャタースリット2°、測定
角度20131〜132°、スキャンニングスピード1
°1分、チャートスピード4cm=1分、タイムコンス
タントは2秒が望1しい。
X-ray conditions were 40 kV and 80 mA at CuKa.
s N 1 filter slit ds = 2°, light receiving slit cc3 = 0.15 books, scatter slit 2°, measurement angle 20131~132°, scanning speed 1
°1 minute, chart speed 4cm = 1 minute, time constant 2 seconds is desirable.

この測定条件で(3,2.1 )面のピーク波形が均一
固溶体であることが判断できる。
Under these measurement conditions, it can be determined that the peak waveform of the (3, 2.1) plane is a homogeneous solid solution.

本発明において粉末粒度は20μ以下であることが望筐
れる。
In the present invention, the powder particle size is preferably 20 microns or less.

20μ以上であると粉末の反応性、粉末の戒型性が悪く
なり、粉末冶金用原料としては不適当である。
If it is 20μ or more, the reactivity of the powder and the shapeability of the powder will deteriorate, making it unsuitable as a raw material for powder metallurgy.

本発明において、モリブデン中に含筐れるタングステン
の量は5原子量φから95原子量多の範囲が望1しい。
In the present invention, the amount of tungsten contained in molybdenum is preferably in the range of 5 atomic weight φ to 95 atomic weight.

5原子量φ以下であるとMoの特性が強く、固溶体とし
ての効果が出ない。
If the atomic weight is less than 5 atomic weight φ, the properties of Mo will be strong and the effect as a solid solution will not be obtained.

渣た、これを炭化した時5%以下であると(Mo,W)
Cとしては安定せず、(Mo , W )2C +C
として分解も起こるので好ましくない。
When the residue is carbonized, it is less than 5% (Mo, W)
It is not stable as C, and (Mo, W)2C +C
This is not preferable because it also causes decomposition.

lた、Mo中にWが95原子量係以上、言い換えるとW
中にMoが5原子量係以下であることは、その粉末特性
はWの特性に近〈、固溶体の特性を出し得ない。
In addition, W in Mo has an atomic weight of 95 or more, in other words, W
The fact that the Mo content in the powder is less than 5 atomic weights means that its powder properties are close to those of W and cannot exhibit the properties of a solid solution.

固溶体としての特性をよく表わすものとして電気抵抗の
変化がある。
Changes in electrical resistance are a good indicator of the properties of a solid solution.

第1図はモリブデンとWの固溶体の電気抵抗、温度係数
の変化を示した。
Figure 1 shows the changes in electrical resistance and temperature coefficient of a solid solution of molybdenum and W.

本発明の粉末冶金用原料も5原子量係から95原子量係
の範囲で安定した特性を出し得ることが明らかとなった
It has become clear that the raw material for powder metallurgy of the present invention can also exhibit stable characteristics in the range of 5 atomic weights to 95 atomic weights.

最後にMoとWの固溶体からなる合金粉末を使つた粉末
冶金用製品としては、筐ずはMo ,W合金線、MO,
Wからなるボート、ノズル、ダイス、接点用材料、ある
いはロケットに用いられる高温ノズルがある。
Finally, powder metallurgy products using alloy powder made of a solid solution of Mo and W include Mo, W alloy wire, MO,
There are boats, nozzles, dies, contact materials made of W, and high-temperature nozzles used in rockets.

これらは表面に耐酸化性コーティングして寿命を延ばす
方法もある。
There is also a way to extend the life of these products by applying an oxidation-resistant coating to their surfaces.

一方Cu yAg等と共に電気接点用材料として用いる
場合は、Mo等の揮発もあって常にきれいな表面を持つ
等のメリットも出せる。
On the other hand, when used as an electrical contact material together with Cu, Ag, etc., it has the advantage of always having a clean surface due to the volatilization of Mo and the like.

筐た、硬質材料として用いる場合は炭素と反応させ炭化
物としてC o s N isFe,Cr等の結合金属
と共に焼結すればよい。
When used as a housing or hard material, it may be reacted with carbon and sintered as a carbide with a binding metal such as CosNisFe or Cr.

これらのうち代表的な実施例について以下に述べる。Representative examples among these will be described below.

実施例 I Mo粉末を54g、W粉末を46gを28俤アンモニア
水に溶解した。
Example I 54 g of Mo powder and 46 g of W powder were dissolved in 28 g of aqueous ammonia.

このアンモニウム塩を塩酸で徐々に中和すると針状の結
晶が析出した。
When this ammonium salt was gradually neutralized with hydrochloric acid, needle-shaped crystals were precipitated.

この共沈したWO3とMoO3の混合はオングストロー
ムオーダーでよく混ざっていた。
The coprecipitated WO3 and MoO3 were well mixed on the order of angstroms.

この酸化物を空気中でsoo’cで焼結した。This oxide was soo'c sintered in air.

この混合粉末をNiボートに装入し、ボートに蓋をかぶ
せてH気流中1000℃で還元したところ2μの原料粉
末となった。
This mixed powder was charged into a Ni boat, the boat was covered with a lid, and reduced at 1000° C. in a H gas flow, resulting in a raw material powder of 2μ.

この方法によって得た2μのMo 0. 7 W 0.
3粉末を厚み5mの薄板に型押或型し、1800℃で
1時間焼結した。
2μ of Mo0. obtained by this method. 7 W 0.
3 powder was stamped into a thin plate with a thickness of 5 m and sintered at 1800°C for 1 hour.

さらに焼結後圧延して厚み2mmの薄板とした後、ボー
トの形状に成型した。
Further, after sintering and rolling, it was made into a thin plate with a thickness of 2 mm, which was then molded into the shape of a boat.

このボートは粉末冶金用製品を焼結炉中で使用した。This boat used powder metallurgy products in a sintering furnace.

Moのボートにくらべて本発明のボートは耐酸化性、変
形抵抗が高く寿命は3倍ほどあった。
Compared to Mo boats, the boats of the present invention had higher oxidation resistance and deformation resistance, and had about three times the lifespan.

実施例 2 実施例1の原料粉末にNiを1俤加え、ボールミルで2
0時間混合した後、所定の形状に型押しし、1400℃
で焼結した。
Example 2 One pound of Ni was added to the raw material powder of Example 1, and it was milled with a ball mill for two times.
After mixing for 0 hours, it was embossed into a predetermined shape and heated to 1400°C.
Sintered with

同時に粒度1μのW粉末469、Mo粉末を54,?と
Ni粉末を19を同じような方法で混合し、焼結体を作
った。
At the same time, 469 W powder and 54 Mo powder with a particle size of 1μ were added. A sintered body was prepared by mixing Ni powder and 19 in a similar manner.

それぞれの合金特性は次の表2の如くであった。The properties of each alloy were as shown in Table 2 below.

本発明の合金は焼結性が良く、W,MO粉末を混ぜた合
金に比べて靭性は高い。
The alloy of the present invention has good sinterability and higher toughness than alloys containing W and MO powders.

本発明の合金をピアーシングダイスとして合金鋼管の製
造に用いたところ、タングステンの高い鋼性率とMoの
酸化被膜が潤滑剤として働らき、耐摩耗性が非常によい
特性を示した。
When the alloy of the present invention was used as a piercing die in the production of alloy steel pipes, the high steelability of tungsten and the oxide film of Mo acted as a lubricant, and it exhibited very good wear resistance.

1た本合金はアルミニウムの合金、黄銅、青銅のダイカ
ストの際のコアーおよびダイインサートとして使用した
が、いずれもW単体、Mo単体の合金よりも良い特性を
示すことが明らかとなった。
This alloy was used as a core and die insert for die casting of aluminum alloys, brass, and bronze, and it was found that all of them exhibited better properties than alloys of W alone or Mo alone.

※※実施例 3 実施例1の方法によって2μのMo ,W粉末を得た。 ※※Example 3 A 2 μm Mo 2 , W powder was obtained by the method of Example 1.

このMo s Wの合金粉末に炭素粉末を9.0重量多
加え、ボールミルで36時間混合した。
9.0 weight of carbon powder was added to this MosW alloy powder and mixed in a ball mill for 36 hours.

該混合粉末を水素気流中1700゜Cで1時間反応させ
た。
The mixed powder was reacted at 1700° C. for 1 hour in a hydrogen stream.

得られた炭化物の特性を調べたところ、表3に示す如く
結合炭素が理論値近く十分に入り、すべてWCタイプの
モノカーバイドになっていた。
When the characteristics of the obtained carbide were investigated, as shown in Table 3, the amount of bonded carbon was sufficiently close to the theoretical value, and all of the carbides were WC type monocarbide.

同時に従来法と比較するために、1μのWC粉末を43
.7g、2μのMO2C 粉末を53.9と炭素3.3
g、更にCo粉末を0.5gを配合し、ボールミルで3
6時間混合した。
At the same time, in order to compare with the conventional method, 1μ WC powder was
.. 7g, 2μ MO2C powder with 53.9 and carbon 3.3
g, further blended 0.5 g of Co powder, and milled with a ball mill for 3.
Mixed for 6 hours.

この混合粉末を水素* 気流中1700°Cと1900’Cで反応させたが表4
に示す如く、理論値どトリの炭化物は得られなかった。
This mixed powder was reacted at 1700°C and 1900'C in a hydrogen gas stream.
As shown in Figure 3, no carbide was obtained that met the theoretical value.

?お、この炭化物をX線回折にて調べたがMOCが検出
された。
? When this carbide was examined by X-ray diffraction, MOC was detected.

本発明の方法による炭化物、従来法の炭化物にCo粉末
を10重量多加え、有機溶媒中で湿式ボールミル混合を
行った。
10 more weights of Co powder were added to the carbide produced by the method of the present invention and the carbide produced by the conventional method, and mixed in a wet ball mill in an organic solvent.

この混合粉末に型押後、真空炉中、COガス30Tor
rの減圧雰囲気で1400℃にて焼結した。
After stamping this mixed powder, it was heated in a vacuum furnace with CO gas at 30 Torr.
Sintering was carried out at 1400° C. in a reduced pressure atmosphere of r.

得られた合金の特性は表5の如くであった。The properties of the obtained alloy were as shown in Table 5.

本発明の方法による合金は正常組織であり、十分靭性(
抗折力)があったが、従来法Aは遊離炭素が多く残り、
焼結性が悪かった。
The alloy produced by the method of the present invention has a normal structure and sufficient toughness (
However, in conventional method A, a large amount of free carbon remained,
Sinterability was poor.

従来法Bは正常に焼けていたが、靭性が不十分であった
Conventional method B baked normally, but had insufficient toughness.

これを組織観察したところMo2C の凝集体が検出さ
れた。
When the structure was observed, Mo2C aggregates were detected.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はタングステンとモリブデンの固溶体の電気抵抗
、温度係数の変化を示す。
Figure 1 shows the changes in electrical resistance and temperature coefficient of a solid solution of tungsten and molybdenum.

Claims (1)

【特許請求の範囲】 1 モリブデンとタングステンが固溶体であり、モリブ
デン中に含1れるタングステンの量が5原子量係から9
5原子量係の合金粉末であり、該合金粉末の粒度が20
μ以下であることを特徴とする粉末冶金用原料粉末、1
たは、これに他の添加物を加えて焼結してなることを特
徴とする粉末冶金製品。 2 モリブデンとタングステンを酸化物の状態で混合す
るか、1たはアンモニウム塩の溶融状態で混合、共沈さ
せることにより微細混合物を作或し、該混合物を還元す
ることを特徴とするタングステンが5原子量o!)〜9
5原子量係で粒度20μ以下のW−Mo合金の粉末冶金
用原料粉末豊たは、これに他の添加物を加えて焼結する
ことを特徴とする粉末冶金製品の製造法。 3 モリブテンとタングステンが固溶体であり、モリブ
デン中に含1れるタングステンの量が5原子量係から9
5原子量係の合金粉末であり、該合金粉末の粒度が20
μ以下のW−Mo合金粉末を炭素と反応して炭化したこ
とを特徴とする粉末冶金用原料粉末、1たは、これに他
の添加物を加えて焼結してなることを特徴とする粉末冶
金製品。
[Claims] 1. Molybdenum and tungsten are a solid solution, and the amount of tungsten contained in molybdenum ranges from 5 atomic weights to 9 atomic weights.
It is an alloy powder with an atomic weight of 5, and the particle size of the alloy powder is 20.
Raw material powder for powder metallurgy characterized by having a particle size of less than μ, 1
Or powder metallurgy products, which are made by adding other additives and sintering them. 2. Tungsten is characterized in that a fine mixture is prepared by mixing molybdenum and tungsten in an oxide state, or by mixing and co-precipitation in a molten state of an ammonium salt, and reducing the mixture. Atomic mass o! )~9
1. A method for producing a powder metallurgy product, which comprises adding a raw material powder for powder metallurgy of a W-Mo alloy having an atomic weight of 5 and a grain size of 20 μm or less, or adding other additives thereto and sintering the powder. 3 Molybdenum and tungsten are a solid solution, and the amount of tungsten contained in molybdenum ranges from 5 atomic weight to 9 atomic weight.
It is an alloy powder with an atomic weight of 5, and the particle size of the alloy powder is 20.
A raw material powder for powder metallurgy, characterized in that W-Mo alloy powder with a particle diameter of less than μ is carbonized by reacting with carbon, or sintered with other additives added thereto. Powder metallurgy products.
JP56002478A 1981-01-10 1981-01-10 Powder metallurgy products containing molybdenum and tungsten and their manufacturing method Expired JPS5836041B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56002478A JPS5836041B2 (en) 1981-01-10 1981-01-10 Powder metallurgy products containing molybdenum and tungsten and their manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56002478A JPS5836041B2 (en) 1981-01-10 1981-01-10 Powder metallurgy products containing molybdenum and tungsten and their manufacturing method

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP13186077A Division JPS5465104A (en) 1977-07-27 1977-11-02 Raw material powder containing molybdenum and tungsten for powder metallurgy and product of powder metallurgy

Publications (2)

Publication Number Publication Date
JPS56152903A JPS56152903A (en) 1981-11-26
JPS5836041B2 true JPS5836041B2 (en) 1983-08-06

Family

ID=11530444

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56002478A Expired JPS5836041B2 (en) 1981-01-10 1981-01-10 Powder metallurgy products containing molybdenum and tungsten and their manufacturing method

Country Status (1)

Country Link
JP (1) JPS5836041B2 (en)

Also Published As

Publication number Publication date
JPS56152903A (en) 1981-11-26

Similar Documents

Publication Publication Date Title
JP2843900B2 (en) Method for producing oxide-particle-dispersed metal-based composite material
EP1042520B1 (en) Use of prealloyed metal powders based on tungsten and/or molybdenum and/or nickel for producing sintered parts
CN111304512B (en) Medium-high entropy alloy material, preparation method and application thereof
WO2010041146A2 (en) Nanocomposite thermoelectric conversion material, thermoelectric conversion element including the same, and method of producing nanocomposite thermoelectric conversion material
EP0882806A1 (en) Hard molybdenum alloy, wear resistant alloy and method for manufacturing the same
TW200838631A (en) Iron/copper composite powder for powder metallurgy and process for producing the same
KR100423456B1 (en) Pre-alloyed powder and its use in the manufacture of diamond tools
JPH01208401A (en) Roduction of secondary powder particle having sealed particle surface and nano crystallizable structure, secondary powder and molded body having texture of nano crystallizable structure
US4012230A (en) Tungsten-nickel-cobalt alloy and method of producing same
JPH0826338B2 (en) Self-lubricating material and manufacturing method thereof
El-Eskandarany et al. Synthesis of full-density nanocrystalline tungsten carbide by reduction of tungstic oxide at room temperature
JP2539712B2 (en) Nitride powder
JPS62502813A (en) New alloys with high electrical and mechanical properties, processes for their production and their use in particular in electrical, electronic and related fields
JPS5836041B2 (en) Powder metallurgy products containing molybdenum and tungsten and their manufacturing method
JP2957424B2 (en) Corrosion resistant tungsten based sintered alloy
JP4165921B2 (en) Phosphorus iron powder
JPH11505884A (en) Cobalt metal agglomerates, their production and use
JPH11505883A (en) Cobalt metal agglomerates, their production and use
JPS59119713A (en) Storage battery and method of producing same
JP4140928B2 (en) Wear resistant hard sintered alloy
Talijan et al. Processing and properties of silver-metal oxide electrical contact materials
JPH083601A (en) Aluminum-aluminum nitride composite material and its production
JP3300460B2 (en) Method for producing ultrafine monodispersed gold particles
JPH0776405B2 (en) Solid lubricious composite material and method for producing the same
KR820000587B1 (en) Method of making alloy and carbide powders of molybdenum and tungsten