JPS5835872A - Acid electrolyte type liquid fuel cell - Google Patents

Acid electrolyte type liquid fuel cell

Info

Publication number
JPS5835872A
JPS5835872A JP56134102A JP13410281A JPS5835872A JP S5835872 A JPS5835872 A JP S5835872A JP 56134102 A JP56134102 A JP 56134102A JP 13410281 A JP13410281 A JP 13410281A JP S5835872 A JPS5835872 A JP S5835872A
Authority
JP
Japan
Prior art keywords
electrode
platinum
air
catalyst
fuel cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP56134102A
Other languages
Japanese (ja)
Inventor
Tatsuo Horiba
達雄 堀場
Kazuo Iwamoto
岩本 一男
Hidejiro Kawana
川名 秀治郎
Kazunori Fujita
一紀 藤田
Koki Tamura
弘毅 田村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP56134102A priority Critical patent/JPS5835872A/en
Publication of JPS5835872A publication Critical patent/JPS5835872A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/92Metals of platinum group
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M2004/8678Inert electrodes with catalytic activity, e.g. for fuel cells characterised by the polarity
    • H01M2004/8684Negative electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0002Aqueous electrolytes
    • H01M2300/0005Acid electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PURPOSE:To obtain an acid electrolyte type liquid fuel cell with a high performance by using a multi-element catalyst of platinum-ruthenium or platinum-tin as a base and added with an auxiliary component for a fuel electrode of the acid eletrolyte type liquid fuel cell using methanol, formaldehyde, or formic acid as the fuel. CONSTITUTION:A fuel electrode 4 is composed of an electrode substrate and catalyst, and is opposite to an air electrode 6 separated by an electrolyte chamber 5, where a positive ion exchange film may be sometimes provided. The air electrode 6 is composed of an electrode substrate, catalyst, and water-proof film, and one side faces the air chamber 9. An air inlet 7 and air outlet 8 are provided on an air chamber 9 to feed and discharge the air. One to eight weight units of a polymeric compound binding agent such as polytetrafluoroethylene, polyethylene, or polyvinyl chloride is added to 30wt. units of catalyst powders, and they are kneaded into catalyst powders, which are coated at 30mg/cm<2> on a metal net made of gold, platinum, niobium, or tantalum in 20-80 meshes to obtain an electrode.

Description

【発明の詳細な説明】 本発明は電池にかかわシ、とりわけメタノール、ホルム
アルデヒド(ホルマリン)°、ギ酸などを燃料とする酸
性電解液型散体燃料電池用燃料極に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a fuel electrode for an acid electrolyte type powder fuel cell using fuel such as methanol, formaldehyde (formalin), formic acid, or the like.

従来、この種の酸性電解液型散体燃料電池用燃料極触媒
としては白金が広く用いられてきた。白金全使用すれば
一定限の性能は得られるが、分極が大きく十分な性能と
は言えない。これを改良するためにいろいろな試みがな
された。それらのうち、現在までに有効性が認められて
いるものには白金−ルテニウム、白金−スズ、白金−レ
ニウムなどの二元系触媒がある。白金−ルテニウム触媒
は、これらの中では最もよい性能を示す。しかしまだ不
十分で1、しかも白金、ルテニウムともに重金属である
ためコスト的に不利である。白金−スズ触媒は安価では
あるが性能がやや低いという問題がるり、白金−レニウ
ム触媒は性能の経時劣化が大きいという問題がある。
Conventionally, platinum has been widely used as a fuel electrode catalyst for this type of acidic electrolyte type dispersion fuel cell. If all platinum is used, a certain level of performance can be obtained, but the polarization is large and the performance cannot be said to be sufficient. Various attempts have been made to improve this. Among them, those that have been recognized to be effective include binary catalysts such as platinum-ruthenium, platinum-tin, and platinum-rhenium. The platinum-ruthenium catalyst shows the best performance among these. However, it is still insufficient.1 Moreover, since both platinum and ruthenium are heavy metals, it is disadvantageous in terms of cost. Although platinum-tin catalysts are inexpensive, they have a problem of somewhat low performance, and platinum-rhenium catalysts have a problem of large deterioration of performance over time.

本発明の目的は上記従来技術の欠点を改良し、高性能酸
性或解液型液体燃料電池用燃料極を提供するにある。
SUMMARY OF THE INVENTION An object of the present invention is to improve the above-mentioned drawbacks of the prior art and to provide a fuel electrode for a high-performance acidic liquid fuel cell.

本発明の要点は白金−ルテニウム、おるいは白金−スズ
をベースとして、これに一種またはそれ以上の副次成分
を加えた多元触媒をメタノール。
The key point of the present invention is to use a multi-component catalyst based on platinum-ruthenium, or platinum-tin, with one or more subcomponents added to methanol.

ホルムアルデヒド、ギ酸などを燃料とする酸性電p!l
液型液体燃料電池用燃料極に用いることにある。
Acidic electricity p! that uses formaldehyde, formic acid, etc. as fuel! l
It is used for fuel electrodes for liquid-type liquid fuel cells.

以下、本発明を図面にもとづいて更に具体的に説明する
。第1図は該性電解液型液体燃料電池の断面略図である
。図において1が燃料入口、2が生成ガス出口、3が燃
料室、4が燃料極である。
Hereinafter, the present invention will be explained in more detail based on the drawings. FIG. 1 is a schematic cross-sectional view of the electrolyte liquid fuel cell. In the figure, 1 is a fuel inlet, 2 is a generated gas outlet, 3 is a fuel chamber, and 4 is a fuel electrode.

燃料極4は電極基体および触媒より成り、本発明は主と
してこの燃料極4に係わる。この燃料極4は電解液室5
全隔てて空気極6と向かい会っており、電解液室5には
陽イオン又換膜が設置されることもある。空気極6は、
電極基体、触媒および防水膜などより成る。6の片面は
空気室9に面している。望気室9へは空気入ロア、およ
び空気出口8が設置されておシ、空気が供給、排出され
る。
The fuel electrode 4 consists of an electrode base and a catalyst, and the present invention mainly relates to this fuel electrode 4. This fuel electrode 4 has an electrolyte chamber 5
It faces the air electrode 6 across the entire space, and a cation or exchange membrane may be installed in the electrolyte chamber 5. The air electrode 6 is
It consists of an electrode base, a catalyst, a waterproof membrane, etc. One side of 6 faces the air chamber 9. An air intake lower and an air outlet 8 are installed in the air chamber 9 to supply and exhaust air.

次に実施例について説明する。Next, an example will be described.

実施例1 活性炭、アセチレンブラック、カーボンブラック、黒鉛
粉末などの炭素粉末90重量部に対し、5〜3.5重量
部の白金、5〜3.5重量部のルテニウム、及び2.5
〜1厘量部のスズ全台むように白金、ルテニウム、およ
びスズの化合物の溶液を加え、十分に攪拌した後5o〜
100cで乾燥する。
Example 1 5 to 3.5 parts by weight of platinum, 5 to 3.5 parts by weight of ruthenium, and 2.5 parts by weight to 90 parts by weight of carbon powder such as activated carbon, acetylene black, carbon black, and graphite powder.
Add a solution of platinum, ruthenium, and tin compounds so as to cover 1 part of tin, stir thoroughly, and then add 5o~
Dry at 100c.

白金の化合物としては、H2Ptcta ・6H20゜
(P t(NH3)4 ) (OH)2 、(NHa 
)g CP tC2a ]。
Examples of platinum compounds include H2Ptcta ・6H20゜(Pt(NH3)4) (OH)2, (NHa
) g CP tC2a ].

Crt(NH・s)a〕cza−H2o、cpt(NO
2)2(NH3)2)。
Crt(NH・s)a]cza-H2o,cpt(NO
2)2(NH3)2).

H2(P t (OH)a ] などが適当であり、ル
テニウムの化合物としては、几UCZ、・3H20゜〔
几’ (NHs)a〕c4 、Ru2(804)3−K
 s (RL12 NCta (H2O) 2 )など
が適当であシ、スズの化合物としては、f3nc14 
、 Na25n (OH)a rsn(soa)+・2
H20などが適当である。乾燥した粉末は水素気流中2
00〜300cで1〜3時間還元処理する。
H2(P t (OH) a ] etc. are suitable, and examples of ruthenium compounds include 几UCZ, ・3H20゜[
几' (NHs)a]c4, Ru2(804)3-K
S (RL12 NCta (H2O) 2 ) etc. are suitable, and as a tin compound, f3nc14
, Na25n (OH)a rsn(soa)+・2
H20 etc. are suitable. The dried powder was placed in a hydrogen stream 2
Reduction treatment is performed at 00 to 300c for 1 to 3 hours.

、そのようにして得られた触媒粉末30重量部に対して
ポリテトラフルオロエチレン、ポリエチレン、ポリ塩化
ビニルなどの高分子化置物結着剤を1〜8重量部加え混
練し、それを触媒粉末として30mg/cm”となるよ
うに20〜8oメツシユの金、白金あるいはニオブ、タ
ンタルなどの金網に塗布し、電極とした。得られた電極
を3mot/lの硫ボと1mot/lのメタノールを含
む60Cのアノライト中に浸し、−流密度一電位特性を
測定した。結果を第2図のAに示す。また図2には比較
のため従来技術により作製した白金−ルテニウム触媒電
極と白金−スズ触媒電極の性能全それぞれB、Cに示す
。図より明らかなように、本発明は、従来技術のいずれ
よりも優れた性能を示した。これは白金に対するルテニ
ウムの相乗効果であると考えられ、その性能向上の詳細
なメカニズムは不明であるが、その効果は顕著である。
To 30 parts by weight of the catalyst powder thus obtained, 1 to 8 parts by weight of a polymerized figurine binder such as polytetrafluoroethylene, polyethylene, polyvinyl chloride, etc. was added and kneaded, and this was used as a catalyst powder. It was coated on a wire mesh of 20 to 8o mesh of gold, platinum, niobium, tantalum, etc. to give a concentration of 30mg/cm" and used as an electrode.The obtained electrode contained 3 mot/l of sulfuric acid and 1 mot/l of methanol. Immersed in 60C anolyte, -flow density-potential characteristics were measured.The results are shown in Figure 2A.For comparison, Figure 2 also shows a platinum-ruthenium catalyst electrode and a platinum-tin catalyst electrode fabricated by the conventional technique. The performance of the electrodes is shown in B and C, respectively.As is clear from the figures, the present invention showed better performance than any of the conventional techniques.This is thought to be due to the synergistic effect of ruthenium with platinum; Although the detailed mechanism of performance improvement is unknown, the effect is significant.

実施例2 上記実施例1においてスズの代わりにチタンを用いて同
、泳の処理をする。チタンの化合物としてはTlcz、
、 Ticts、 Ti(so、)、、などが適当であ
る。そのようにして得られた電極は第2図のAとほぼ同
等の性能を示す。
Example 2 In the same manner as in Example 1, titanium is used instead of tin, and the same process is performed. As a titanium compound, Tlcz,
, Tics, Ti(so,), etc. are suitable. The electrode thus obtained exhibits approximately the same performance as A in FIG.

上記実施例1および2はいずれも、白金−ルテニウムを
ベースとする三元系触媒の例でめるが、副次成分として
はこれら実施例に示したスズ、チタンの他に、ゲルマニ
ウム、ヒ素、モリブデン。
Both Examples 1 and 2 above are examples of ternary catalysts based on platinum-ruthenium, but in addition to the tin and titanium shown in these examples, the secondary components include germanium, arsenic, molybdenum.

ロジウム、パラジウム、銀、アンチ七ン、タングステン
、オスミウム、イリジウム、金、鉛、ビスマスよりなる
グループの金属の一つまたはそれ以上を用いることも可
能である。
It is also possible to use one or more of the metals from the group consisting of rhodium, palladium, silver, antiseptic, tungsten, osmium, iridium, gold, lead, bismuth.

また上記実施例1および2はいずれも、白金−ルテニウ
ムをベースとする三元系触媒の例であるが、この他に白
金−スズをベースとし、チタン。
Further, Examples 1 and 2 above are both examples of ternary catalysts based on platinum-ruthenium, but in addition to these examples, catalysts based on platinum-tin and titanium are used.

ゲルマニウム、ヒ素、モリフテン、ルテニウム。Germanium, arsenic, molyftene, ruthenium.

ロジウム、パラジウム、銀、アンチモン、タンクステン
、オスミウム、イリジウム、釜、鉛、ビスマスなどより
なる金属のうちの一棟またはそれ以上を副次成分とする
触媒を用いることも可能である。
It is also possible to use catalysts having as a secondary component one or more of the metals rhodium, palladium, silver, antimony, tanksten, osmium, iridium, cauldron, lead, bismuth, etc.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は酸性電解液型液体燃料電池の断面略図である。 第2図は本発明になる酸性電解液型メタノール−空気燃
料電池用メタノール極の電流密度−電位特性を従来技術
によるものと比較して示したグラフである。
FIG. 1 is a schematic cross-sectional view of an acidic electrolyte liquid fuel cell. FIG. 2 is a graph showing the current density-potential characteristics of the methanol electrode for an acidic electrolyte type methanol-air fuel cell according to the present invention in comparison with that of the prior art.

Claims (1)

【特許請求の範囲】 1、低分子量含酸素炭化水素系液体物質を電気化学的に
酸化する燃料極の電極触媒として、白金−スズまたは白
金−ルテニウムをベースとし、一種またはそれ以上の副
次成分を含む多元系触媒を用いることを特徴とする酸性
電解液型液体燃料電池。 2、特許請求の範囲第1項において副次成分が、チタン
、ゲルマニウム、ヒ累、モリブデン、ルテニウム、ロジ
ウム、パラジウム、銀、スズ、アンチモン、タングイー
テン、オスミウム、イリジウム。 金、鉛、ビスマスよりなる重金属のグループの中の少な
くとも一つである酸性電解液型液体燃料電池。
[Scope of Claims] 1. As an electrode catalyst for a fuel electrode that electrochemically oxidizes a low molecular weight oxygenated hydrocarbon liquid substance, it is based on platinum-tin or platinum-ruthenium and contains one or more subcomponents. An acidic electrolyte liquid fuel cell characterized by using a multicomponent catalyst containing. 2. In claim 1, the subsidiary components include titanium, germanium, arsenic, molybdenum, ruthenium, rhodium, palladium, silver, tin, antimony, tungsten, osmium, and iridium. A liquid fuel cell with an acidic electrolyte containing at least one of the heavy metal group consisting of gold, lead, and bismuth.
JP56134102A 1981-08-28 1981-08-28 Acid electrolyte type liquid fuel cell Pending JPS5835872A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56134102A JPS5835872A (en) 1981-08-28 1981-08-28 Acid electrolyte type liquid fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56134102A JPS5835872A (en) 1981-08-28 1981-08-28 Acid electrolyte type liquid fuel cell

Publications (1)

Publication Number Publication Date
JPS5835872A true JPS5835872A (en) 1983-03-02

Family

ID=15120490

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56134102A Pending JPS5835872A (en) 1981-08-28 1981-08-28 Acid electrolyte type liquid fuel cell

Country Status (1)

Country Link
JP (1) JPS5835872A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0251865A (en) * 1988-08-16 1990-02-21 Matsushita Electric Ind Co Ltd Manufacture of fuel electrode catalyser for liquid fuel cell
JPH10270055A (en) * 1997-03-25 1998-10-09 Mitsubishi Electric Corp Electrochemical catalyst, and electrochemical reactor, electrochemical element, phosphoric fuel cell, and methanol-direct fuel cell using it
WO2002098561A1 (en) * 2001-06-01 2002-12-12 Sony Corporation Conductive catalyst particle and its manufacturing method, gas-diffusing catalyst electrode, and electrochemical device
JP2005519755A (en) * 2001-09-21 2005-07-07 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Anode electrode catalyst for coating substrate used in fuel cell
JP2007111582A (en) * 2005-10-18 2007-05-10 Toshiba Corp Catalyst, electrode for fuel electrode of fuel cell and fuel cell

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0251865A (en) * 1988-08-16 1990-02-21 Matsushita Electric Ind Co Ltd Manufacture of fuel electrode catalyser for liquid fuel cell
JPH10270055A (en) * 1997-03-25 1998-10-09 Mitsubishi Electric Corp Electrochemical catalyst, and electrochemical reactor, electrochemical element, phosphoric fuel cell, and methanol-direct fuel cell using it
WO2002098561A1 (en) * 2001-06-01 2002-12-12 Sony Corporation Conductive catalyst particle and its manufacturing method, gas-diffusing catalyst electrode, and electrochemical device
US7988834B2 (en) 2001-06-01 2011-08-02 Sony Corporation Conductive catalyst particles and process for production thereof, gas-diffusing catalytic electrode, and electrochemical device
JP2005519755A (en) * 2001-09-21 2005-07-07 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Anode electrode catalyst for coating substrate used in fuel cell
JP2007111582A (en) * 2005-10-18 2007-05-10 Toshiba Corp Catalyst, electrode for fuel electrode of fuel cell and fuel cell
JP4575268B2 (en) * 2005-10-18 2010-11-04 株式会社東芝 Catalyst, electrode for fuel cell fuel electrode, and fuel cell

Similar Documents

Publication Publication Date Title
Hampson et al. The methanol-air fuel cell: a selective review of methanol oxidation mechanisms at platinum electrodes in acid electrolytes
US5523177A (en) Membrane-electrode assembly for a direct methanol fuel cell
Venkataraman et al. Development of new CO tolerant ternary anode catalysts for proton exchange membrane fuel cells
US4316944A (en) Noble metal-chromium alloy catalysts and electrochemical cell
CN1165092C (en) Preparation method for nano platinum/carbon electric catalyst for polymer electrolyte membrane fuel cell cathode
Neto et al. Electro-oxidation of ethylene glycol on PtRu/C and PtSn/C electrocatalysts prepared by alcohol-reduction process
US20020034676A1 (en) Method of fabricating catalyzed porous carbon electrode for fuel cell
US6183894B1 (en) Electrocatalyst for alcohol oxidation in fuel cells
US10103388B2 (en) Method for producing fine catalyst particle and fuel cell comprising fine catalyst particle produced by the production method
JPH10228912A (en) Improved catalyst
CN101495232A (en) Membrane comprising an electrocatalyst containing palladium and ruthenium
JP2003086188A (en) Fuel cell
Bockris et al. Electrochemical Reductions of Hg (II), Ruthenium‐Nitrosyl Complex, Chromate, and Nitrate in a Strong Alkaline Solution
Sieben et al. Supported Pt and Pt–Ru catalysts prepared by potentiostatic electrodeposition for methanol electrooxidation
Ali et al. Effect of chloride impurities on the performance and durability of polybenzimidazole-based high temperature proton exchange membrane fuel cells
EP1836740A2 (en) Electrode catalyst for fuel cell and fuel cell
JPS5835872A (en) Acid electrolyte type liquid fuel cell
JPH11126616A (en) Co-tolerant platinum-zinc electrode for fuel cell
JP2006127979A (en) Fuel cell and electrode catalyst therefor
Yavari et al. SrFeO3-δ assisting with Pd nanoparticles on the performance of alcohols catalytic oxidation
CN101026237A (en) Oxygen reduction electrode and fuel cell including the same
US20100304268A1 (en) Ternary alloy catalysts for fuel cells
US3892592A (en) Method of manufacturing electrodes for fuel cells
Olu et al. Anode electrocatalysts for direct borohydride and direct ammonia borane fuel cells
US3635763A (en) Fuel cell electrode