JPS583538A - Storage battery charger - Google Patents

Storage battery charger

Info

Publication number
JPS583538A
JPS583538A JP9939381A JP9939381A JPS583538A JP S583538 A JPS583538 A JP S583538A JP 9939381 A JP9939381 A JP 9939381A JP 9939381 A JP9939381 A JP 9939381A JP S583538 A JPS583538 A JP S583538A
Authority
JP
Japan
Prior art keywords
voltage
charging
circuit
proportional
storage battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9939381A
Other languages
Japanese (ja)
Other versions
JPS6360622B2 (en
Inventor
重岡 文昭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP9939381A priority Critical patent/JPS583538A/en
Publication of JPS583538A publication Critical patent/JPS583538A/en
Publication of JPS6360622B2 publication Critical patent/JPS6360622B2/ja
Granted legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 この発明は、蓄電池の充電を過不足なく最適に行なう蓄
電池の充電装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a storage battery charging device that optimally charges a storage battery without over or under charging.

従来、この棟の装置として第1囚に示すものがあった。Previously, the equipment in this building was as shown in Prisoner 1.

この第1図において、1は交流商用を源、2は商用電源
1の電圧を降圧して制御整流素子3と、4とダイオード
5,6から構成される両波整・ 流回路へ加える変圧器、7は蓄電池で、その圧電圧端子
は、制御整流素子3と4のカンードへ接続されており、
また負電圧端子は、減流抵抗10を経て、ダイオード5
,6のアノードへ接続されている。8は抵抗器で、その
一端は蓄電池7の圧電圧端子へ接続されており、また他
端は抵抗器9と比例積分回路12へ接続されている。抵
抗器9の他端は、蓄電池7の負電圧端子に接続されてい
る。
In Fig. 1, 1 is an AC commercial power source, and 2 is a transformer that steps down the voltage of the commercial power supply 1 and applies it to a double-wave rectifier/current circuit consisting of controlled rectifying elements 3, 4, and diodes 5 and 6. , 7 is a storage battery, the piezovoltage terminals of which are connected to the candos of the control rectifying elements 3 and 4,
Further, the negative voltage terminal is connected to a diode 5 through a current reducing resistor 10.
, 6 are connected to the anodes of . Reference numeral 8 denotes a resistor, one end of which is connected to the piezovoltage terminal of the storage battery 7, and the other end connected to the resistor 9 and the proportional-integral circuit 12. The other end of the resistor 9 is connected to the negative voltage terminal of the storage battery 7.

12は比例積分回路で、その入力端は充電電圧設定器1
1と、抵抗器8と9、蓄電池1の負電圧端子に接続され
、その出力端は位相制御回路13からの入力端に接続さ
れ、位相制御回路13の出方端は、制御*m累子3と4
のゲート端子に接続されている。
12 is a proportional-integral circuit, the input terminal of which is the charging voltage setting device 1.
1, resistors 8 and 9, and the negative voltage terminal of the storage battery 1, and its output terminal is connected to the input terminal from the phase control circuit 13, and the output terminal of the phase control circuit 13 is connected to the control*m cumulative 3 and 4
connected to the gate terminal of

次に動作について説明する。商用電源1からの入力交流
電圧を変圧器2で所定の電圧に降圧して、制御整流素子
3,4およびダイオード5.6で構成された両波整流回
路に加え、整流し、直流電圧を発生させる。この両波整
流回路の出方電圧に訳って、蓄電池7は限流抵抗1oを
経て光電される。
Next, the operation will be explained. The input AC voltage from the commercial power supply 1 is stepped down to a predetermined voltage by the transformer 2, and then added to a double wave rectifier circuit composed of control rectifier elements 3, 4 and diodes 5 and 6, where it is rectified and a DC voltage is generated. let In response to the output voltage of this double wave rectifier circuit, the storage battery 7 is photoelectrically charged via the current limiting resistor 1o.

蓄電池Tの両端に発生する電圧は抵抗器8と9で分圧さ
れて、比例積分回路12へ与えられる。比例積分回路1
2は、充電電圧設定器11と、抵抗器8と9で分圧され
た蓄電池1の充電電圧の偏差を比例積分して、その出方
電圧を位相制御回路13へ与える。位相制御回路13は
制御整流素子3と4へ、充電電圧と、充電電圧設定値と
の偏差が零となるような点弧信号を与え、蓄電池1の充
電電圧が所定の値となるように制御する。
The voltage generated across the storage battery T is divided by resistors 8 and 9 and applied to a proportional-integral circuit 12. Proportional integral circuit 1
2 performs proportional integration on the deviation of the charging voltage of the storage battery 1 divided by the charging voltage setter 11 and the resistors 8 and 9, and supplies the output voltage to the phase control circuit 13. The phase control circuit 13 gives an ignition signal to the control rectifiers 3 and 4 so that the deviation between the charging voltage and the charging voltage setting value becomes zero, and controls the charging voltage of the storage battery 1 to a predetermined value. do.

第2図は、蓄電池の充電状態図で、14は充電電圧、1
5は充電電流を示す。横軸は時間の経過電圧充電域を示
す。
Figure 2 is a charging state diagram of the storage battery, where 14 is the charging voltage, 1
5 indicates the charging current. The horizontal axis shows the voltage charging range over time.

従来の充電装置は、以上のように構成されているので、
充電初期においては、蓄電池の起電力が小さく、内部抵
抗も小さいため、第2図の15に示すようK、過大充電
電流が流れる。そのため、変圧器、整流素子の容量を太
き(とる必要があり、また蓄電池にも悪影響を与える恐
れがある。また過大充電電流を防止するために減流抵抗
を挿入すると、定電圧充電域では、充電電流が小さく、
充電が完了するまでに多(の4間がかかるなどの欠点が
あった。
Since the conventional charging device is configured as described above,
In the early stage of charging, the electromotive force of the storage battery is small and the internal resistance is also small, so that an excessive charging current of K flows as shown at 15 in FIG. Therefore, it is necessary to increase the capacity of the transformer and rectifying element, which may also have a negative effect on the storage battery.Also, if a current reducing resistor is inserted to prevent excessive charging current, in the constant voltage charging range , the charging current is small;
There were some drawbacks, such as the time it took for charging to be completed.

この発明は、上記のような従来のものの欠点を除去する
ためKなされたもので、充電電圧を第1の比例積分制御
回路と、この出方を制限するリミッタと、充電電流を検
出し、電圧に変換して増幅する増幅器と、第1の比例積
分制御回路の出方と、充電電流の変換との偏差を零にす
るように第2比例積分制御回路を備えることにより、充
電初期において、定電流充電を行ない、充電終期には、
定電圧充電を行なう蓄電池の充電装置を提供することを
目的としている。
This invention was made in order to eliminate the drawbacks of the conventional ones as described above, and includes a first proportional-integral control circuit for controlling the charging voltage, a limiter for limiting the way the charging voltage is output, and a charging current for detecting the voltage. By providing an amplifier that converts and amplifies the charging current, and a second proportional-integral control circuit to zero the deviation between the output of the first proportional-integral control circuit and the conversion of the charging current, a constant Performs current charging, and at the end of charging,
The object of the present invention is to provide a storage battery charging device that performs constant voltage charging.

以下この発明の一実施例について説明する。第3図にお
いて、1は交流商用電源、2は交流商用電源を所定の電
圧へ降圧し、制御整流素子3,4、ダイオード5,6で
構成される両波整流回路の交流入力@に接続されている
。Tは蓄電池で、その正電圧端子は、制御整流素子3,
4のカソードに接続されており、その負電圧端子はシャ
ント16を経て、ダイオード5,6のアノードに接続さ
れている。抵抗8,9は、抵抗器で、その一端は各々蓄
電池の正電圧端子と負電圧端子に接続され、他端は、第
1の比例積分回路18へ接続されている。この第1の比
例積分回路18の入力側には、充電電圧設定器11と、
抵抗器8と9と、リミッタ19の出力111に接続され
ている。電圧リミッタ19の入力側は上記第1の比例積
分回路の出力側と、電流制限設定器20に接続されてい
る。増幅器11は上記シャント16の両端に接続されて
いて、その出力は第2の比例積分回路21へ接続されて
いる。この第2の比例積分回路21は、その入力側に上
記増幅器17、第1の積分回路18が接続され、その出
力は位相制御回路13に接続されている。位相制御回路
13の出力は、制御整流素子3と4のゲートへ接続され
ている1、次に動作について説明する。蓄電池7げ商用
電源1から降圧変圧器29両波整流回路を経て充電され
る。第4図は蓄電池7を光電する過程の電圧22、電流
23の特性曲#!を示すもので、横軸は時間を示す。2
4は充電電圧設定器11で設定された充電電圧値、2ら
は電流制限設定器20で設定された充電電流値を示す。
An embodiment of this invention will be described below. In Fig. 3, 1 is an AC commercial power source, 2 is an AC commercial power source that steps down the AC power to a predetermined voltage, and is connected to the AC input @ of a double-wave rectifier circuit consisting of control rectifying elements 3, 4, and diodes 5, 6. ing. T is a storage battery, the positive voltage terminal of which is connected to the control rectifier 3,
4, and its negative voltage terminal is connected to the anodes of diodes 5 and 6 via a shunt 16. The resistors 8 and 9 are resistors, one end of which is connected to the positive voltage terminal and the negative voltage terminal of the storage battery, respectively, and the other end connected to the first proportional-integral circuit 18. On the input side of the first proportional-integral circuit 18, a charging voltage setter 11 is provided.
It is connected to the resistors 8 and 9 and to the output 111 of the limiter 19. The input side of the voltage limiter 19 is connected to the output side of the first proportional-integral circuit and the current limit setting device 20. An amplifier 11 is connected across the shunt 16, and its output is connected to a second proportional-integral circuit 21. The second proportional-integral circuit 21 has its input side connected to the amplifier 17 and the first integrating circuit 18, and its output connected to the phase control circuit 13. The output of the phase control circuit 13 is connected to the gates of the controlled rectifying elements 3 and 4.The operation will now be described. The storage battery 7 is charged from the commercial power source 1 through a step-down transformer 29 and a double-wave rectifier circuit. Figure 4 shows the characteristic song #! of the voltage 22 and current 23 during the process of photoelectrically charging the storage battery 7! The horizontal axis shows time. 2
4 indicates the charging voltage value set by the charging voltage setting device 11, and 2 indicates the charging current value set by the current limit setting device 20.

第4図のA、8間は充電初期状態で蓄電池の内部インピ
ーダンスが小さく、内部起電力も低いため、蓄電池10
両端に現われる電圧は、充電電圧設定器11で設定され
た値より小さい。第1の比例積分回路18は、上記充電
設定電圧と、充電電圧の偏差を比例積分するがリミッタ
19によって一定値で制限される。第1の比例積分口1
lle18の出力電圧は、第2の比例積分回路に与えら
れ、これは第2の比例積分回路21の設定入力となる。
Between A and 8 in Figure 4, the internal impedance of the storage battery is small and the internal electromotive force is low in the initial state of charging, so the storage battery 10
The voltage appearing at both ends is smaller than the value set by the charging voltage setter 11. The first proportional-integral circuit 18 proportionally integrates the deviation between the charging set voltage and the charging voltage, but is limited to a constant value by a limiter 19. First proportional integral port 1
The output voltage of lle18 is given to the second proportional-integral circuit, which becomes a setting input of the second proportional-integral circuit 21.

第2の比例積分回路21は、第1の比例積分回路18か
らの入力電圧と、シャント16の両端に発生する充電電
流に比例する電圧を増幅する増幅器17からの電圧の偏
差を比例積分し、この偏差が零になるような信号電圧を
、位相制御回路13に与え、制御整流素子3.4の点弧
角を制御する。
The second proportional-integral circuit 21 proportionally integrates the deviation between the input voltage from the first proportional-integral circuit 18 and the voltage from the amplifier 17 that amplifies the voltage proportional to the charging current generated across the shunt 16. A signal voltage that makes this deviation zero is applied to the phase control circuit 13 to control the firing angle of the control rectifying element 3.4.

すなわち、第1の比例積分回路18の出力信号は。That is, the output signal of the first proportional-integral circuit 18 is:

充電電流の設定値となり、リミッタ19の制御値によっ
て充電電流は制限される。次KBcr14Ilにおいて
は蓄電池7の充電が進み、内部インピーダンスが太き(
なると同時に起電力が高くなるため、充電電流が大きい
と、充電電圧は、設定値より太き(なるが、第1の比例
積分回路18によって、充電電圧と設定値の偏差は比例
積分されて、第2の比例積分回路21へ与えられる出力
信号は小さくなり充電電流は小さくなり、蓄電池の両端
に現われる充電電圧が充電電圧設定器11で与えられる
電圧値になるような充電電流を流すように制御される。
This becomes the set value of the charging current, and the charging current is limited by the control value of the limiter 19. In the next KBcr14Il, charging of the storage battery 7 progresses, and the internal impedance increases (
At the same time, the electromotive force increases, so if the charging current is large, the charging voltage becomes thicker than the set value (However, the deviation between the charging voltage and the set value is proportionally integrated by the first proportional-integral circuit 18, The output signal given to the second proportional-integral circuit 21 becomes smaller, the charging current becomes smaller, and the charging current is controlled so that the charging voltage appearing at both ends of the storage battery becomes the voltage value given by the charging voltage setting device 11. be done.

以上のように、この発明によれば、光電電圧と、充電電
圧設定値の偏差を比例積分する第1の比例積分回路と、
その出力値を制限するリミッタと。
As described above, according to the present invention, the first proportional-integral circuit proportionally integrates the deviation between the photoelectric voltage and the charging voltage setting value;
with a limiter that limits its output value.

第1の比例積分回路の出力を充電電流の設定値とし、充
電11aとの偏差を比例積分する第2の比例積分向j1
3に−備えて、充電電流を制御するようにしたので、充
電初期には、定電流、充電終期においては、定電圧充電
を行なうことができるので、蓄電池に過大充電電流を流
すことな(、また、充電装置の容量を小さくできる等の
利点がある0
A second proportional integral direction j1 that uses the output of the first proportional integral circuit as the set value of the charging current and proportionally integrates the deviation from the charging current 11a.
In preparation for 3, the charging current is controlled, so it is possible to perform constant current charging at the beginning of charging and constant voltage charging at the end of charging, so that excessive charging current does not flow into the storage battery (, In addition, it has the advantage of being able to reduce the capacity of the charging device.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の充電装置を示す電気回路図、第2図は従
来の充電装置の充電特性図、第3図はこの発明の一実施
例による充電装置の電気回路図。 第4図はこの発明の一実施例における充電装置の゛充電
特性図。 1・・・商用電IX、2・・自愛圧器、3,4・・・制
御整流素子、5.6・・・ダイオード、7・・・蓄電池
、8.9・・・抵抗器、10・・・減流抵抗器、11・
・・充電電圧設定器、12・・・比例積分回路、13・
・・位相制御回路、14・・・充電電圧、15・・・充
電電流、16・・・シャント抵抗、17・・・増幅器、
18・・・第1の比例積分回路、19・・・リミッタ、
20・・・電流制限設定器、21・・・第2の比例積分
回路、22・・・充電電圧、23φ・・充電電流、24
・・・充電電圧設定値、25・・・光電゛電流制限値。 なお、図中、同一符号は同一、又は相当部分を示す。 代 理 人  葛 野 信 −(ほか1名ノ第1図 第2図
FIG. 1 is an electric circuit diagram showing a conventional charging device, FIG. 2 is a charging characteristic diagram of the conventional charging device, and FIG. 3 is an electric circuit diagram of a charging device according to an embodiment of the present invention. FIG. 4 is a charging characteristic diagram of a charging device according to an embodiment of the present invention. DESCRIPTION OF SYMBOLS 1...Commercial electric IX, 2...Self pressure regulator, 3, 4...Control rectifier, 5.6...Diode, 7...Storage battery, 8.9...Resistor, 10...・Reducing current resistor, 11・
...Charging voltage setting device, 12...Proportional-integral circuit, 13.
... Phase control circuit, 14... Charging voltage, 15... Charging current, 16... Shunt resistance, 17... Amplifier,
18... First proportional-integral circuit, 19... Limiter,
20...Current limit setter, 21...Second proportional-integral circuit, 22...Charging voltage, 23φ...Charging current, 24
...Charging voltage setting value, 25...Photoelectric current limit value. In addition, in the figures, the same reference numerals indicate the same or equivalent parts. Agent Shin Kuzuno - (and 1 other person Figure 1, Figure 2)

Claims (1)

【特許請求の範囲】[Claims] 交流の入力電圧を降圧して、所定の電圧を得る変圧器と
、この変圧器の出力側の電圧を整流する制御整流素子と
整流素子で構成された両波整流回路と、整流(ロ)路の
出力電圧を設定する設定器と、上記整流回路の出力電圧
と上記設定器の設定電圧との偏差を増幅積分する第1の
比例積分回路と、上記整流回路の出力電aを電圧に変換
する基準抵抗器と、この基準抵抗器の両端に発生する電
圧を増幅する増幅器と、上記第1の比例積分回路の出力
電圧を制御するリミッタ回路と、このリミッタ回路の制
御値を設定する設定器と、上記リミッタ回路と上記増幅
回路の出力電圧の偏差を増幅する第2の比例積分回路と
、この第2の比例積分回路の出力電圧を受けて、上記の
制御整流素子の位相遅れ角を制御すυ位相制御回路とを
備え、蓄電池の初期充電時には定電流で蓄電池を充電し
、充電終期には、定電圧で蓄電池を充電することを特徴
とする蓄電池充電装置。
A transformer that steps down the AC input voltage to obtain a predetermined voltage, a double-wave rectifier circuit consisting of a control rectifier and a rectifier that rectify the voltage on the output side of this transformer, and a rectifier (b) path. a first proportional-integral circuit that amplifies and integrates the deviation between the output voltage of the rectifying circuit and the set voltage of the setting device; and a first proportional-integral circuit that converts the output voltage a of the rectifying circuit into a voltage. a reference resistor, an amplifier that amplifies the voltage generated across the reference resistor, a limiter circuit that controls the output voltage of the first proportional-integral circuit, and a setting device that sets the control value of the limiter circuit. , a second proportional-integral circuit that amplifies the deviation between the output voltages of the limiter circuit and the amplifier circuit; and a second proportional-integral circuit that receives the output voltage of the second proportional-integral circuit and controls the phase delay angle of the control rectifier. A storage battery charging device comprising a υ phase control circuit, charging the storage battery with a constant current during initial charging of the storage battery, and charging the storage battery with a constant voltage at the end of charging.
JP9939381A 1981-06-24 1981-06-24 Storage battery charger Granted JPS583538A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9939381A JPS583538A (en) 1981-06-24 1981-06-24 Storage battery charger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9939381A JPS583538A (en) 1981-06-24 1981-06-24 Storage battery charger

Publications (2)

Publication Number Publication Date
JPS583538A true JPS583538A (en) 1983-01-10
JPS6360622B2 JPS6360622B2 (en) 1988-11-25

Family

ID=14246248

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9939381A Granted JPS583538A (en) 1981-06-24 1981-06-24 Storage battery charger

Country Status (1)

Country Link
JP (1) JPS583538A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63213430A (en) * 1987-02-26 1988-09-06 松下電器産業株式会社 Constant current/voltage charger
JP2014236525A (en) * 2013-05-30 2014-12-15 日本リライアンス株式会社 Battery charge/discharge device, charge/discharge method, and program

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63213430A (en) * 1987-02-26 1988-09-06 松下電器産業株式会社 Constant current/voltage charger
JP2014236525A (en) * 2013-05-30 2014-12-15 日本リライアンス株式会社 Battery charge/discharge device, charge/discharge method, and program

Also Published As

Publication number Publication date
JPS6360622B2 (en) 1988-11-25

Similar Documents

Publication Publication Date Title
US4405892A (en) Regulator for a generator energized battery
US3688177A (en) Battery charger
US5045768A (en) Off-line battery charger
US5337228A (en) Differential charging circuit
JPH0799775A (en) Power source unit
US4039920A (en) Cycling type of electronic battery charger
JPS583538A (en) Storage battery charger
US5815382A (en) Tracking circuit for power supply output control
JPH09233732A (en) Charge method of secondary battery, and equipment
JPH0787682A (en) Battery charger
JP3152120B2 (en) Constant voltage charger
JPH0622466A (en) Charger
JPS58148633A (en) Automatic charger
JPS5858907B2 (en) power supply
JP3430283B2 (en) Battery charger
JPS614418A (en) Rush current limiting system
JP3393656B2 (en) Battery charging device and battery charging method
SU1095124A1 (en) Device for charging recharging battery
JPS5824923A (en) Switching regulator
JPH0721067Y2 (en) Lead acid battery charge control circuit
JPH0732545B2 (en) Charging circuit for rechargeable vacuum cleaners
SU1534633A2 (en) Automatic device for charging storage battery
JPS6220773B2 (en)
JP3071491B2 (en) Battery charger
JPH065346U (en) Charge control circuit