JPS5834566B2 - Chiyuukuumukiseninoseizouhouhou - Google Patents

Chiyuukuumukiseninoseizouhouhou

Info

Publication number
JPS5834566B2
JPS5834566B2 JP50024828A JP2482875A JPS5834566B2 JP S5834566 B2 JPS5834566 B2 JP S5834566B2 JP 50024828 A JP50024828 A JP 50024828A JP 2482875 A JP2482875 A JP 2482875A JP S5834566 B2 JPS5834566 B2 JP S5834566B2
Authority
JP
Japan
Prior art keywords
inorganic
spinning
core
sheath
fibers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP50024828A
Other languages
Japanese (ja)
Other versions
JPS5199122A (en
Inventor
達昭 西川
徹 武村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP50024828A priority Critical patent/JPS5834566B2/en
Publication of JPS5199122A publication Critical patent/JPS5199122A/en
Publication of JPS5834566B2 publication Critical patent/JPS5834566B2/en
Expired legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は中空の無機繊維の製造に関するものである。[Detailed description of the invention] The present invention relates to the production of hollow inorganic fibers.

無機繊維としては既にガラス繊維やロックウール等がそ
れらの優れた耐熱性、不燃性によって広く用いられてお
り、これらは比較的容易に溶融する性質を利用して、溶
融紡糸法によって工業生産されている。
As inorganic fibers, glass fibers, rock wool, etc. are already widely used due to their excellent heat resistance and non-flammability, and these are industrially produced by melt-spinning, taking advantage of their relatively easy melting properties. There is.

又、炭素繊維は有機繊維を焼成する方法によって得られ
ている。
Carbon fibers are also obtained by firing organic fibers.

しかしながら、一般に溶融が行なわれ難いものについて
は、無機化合物の溶液を有機繊維に含浸させた後、乾燥
焼成して焼結するとか、有機繊維の原液に無機粉末を混
合紡糸して繊維化した後に焼成して焼結する方法が色々
と試みられているがいづれも無機化合物の含有率を高く
して安定に紡糸することが出来ないために、繊維化が非
常に難かしい。
However, in general, for materials that are difficult to melt, organic fibers are impregnated with a solution of an inorganic compound, then dried and fired and sintered, or after spinning an inorganic powder into a raw solution of organic fibers. Various firing and sintering methods have been tried, but none of them allow for stable spinning with a high content of inorganic compounds, making it extremely difficult to make fibers.

このように一般に無機繊維の製造は困難であり、さらに
無機繊維の中空化は未だ全く試みられていないと云って
よい。
As described above, it is generally difficult to manufacture inorganic fibers, and furthermore, it can be said that no attempt has been made to make inorganic fibers hollow.

本発明者等は高温における優れた断熱材として、又、高
温下における精密沢過材料として最適な中空無機繊維の
簡易な製造方法について種々検討した結果本発明に到達
したものであり、その発明の要旨とするところは、芯成
分として有機重合体を用い、鞘成分として有機重合体と
無機微細粉末との混合物を用いて芯鞘型複合繊維を紡糸
し、次いで該芯鞘型複合繊維を200〜300℃の空気
中又は不活性雰囲気中で焼成して炭素を一部残した状態
で無機物質が焼結し得る温度まで昇温した後、酸素を制
御しつつ導入して炭素を燃焼除去しつつ無機物質の焼結
を完了せしめることを特徴とする中空無機繊維の製造方
法にある。
The present inventors have arrived at the present invention as a result of various studies on a simple manufacturing method for hollow inorganic fibers that are suitable as excellent heat insulating materials at high temperatures and as precision permeable materials at high temperatures. The gist is that a core-sheath type composite fiber is spun using an organic polymer as a core component and a mixture of an organic polymer and an inorganic fine powder as a sheath component, and then the core-sheath type composite fiber is After firing in air or an inert atmosphere at 300°C to raise the temperature to a temperature at which the inorganic material can sinter with some carbon remaining, oxygen is introduced in a controlled manner to burn and remove the carbon. A method for producing hollow inorganic fibers characterized by completing sintering of an inorganic substance.

本発明を更に詳細に説明すると、本発明における複合紡
糸の方式は特に限定されないが、乾式、湿式もしくは乾
湿式紡糸方式が好ましく、又使用する重合体は一般に紡
糸可能なものであればポリエステル系、ポリアミド系、
ポリアクリロニトリル系、ポリビニルアルコール系、ポ
リ塩化ビニル系、セルロース系、その他いづれも使用可
能であるが、ポリアクリロニトリル系、ポリビニルアル
コール系、セルロース系重合体のように一般的に溶液紡
糸に用いられている重合体が好ましい。
To explain the present invention in more detail, the method of composite spinning in the present invention is not particularly limited, but dry, wet or dry-wet spinning methods are preferable, and the polymer used is generally a polyester type, as long as it can be spun. polyamide,
Polyacrylonitrile-based, polyvinyl alcohol-based, polyvinyl chloride-based, cellulose-based, and other types can be used, but polyacrylonitrile-based, polyvinyl alcohol-based, and cellulose-based polymers are commonly used for solution spinning. Polymers are preferred.

複合繊維の紡糸は芯鞘型の複合紡糸装置を用いて紡糸す
るわけであるが、本発明の特徴は芯部分に用いられる原
液は紡糸で一般に用いられるものを用いるのに対し、鞘
部分を形成するための紡糸原液は中空繊維を構成するた
めの無機物質の微粉末と重合体とからなっている点にあ
る。
Composite fibers are spun using a core-sheath type composite spinning device, but the feature of the present invention is that the stock solution used for the core part is one that is commonly used in spinning, whereas the stock solution used to form the sheath part is The spinning dope for this purpose consists of a fine inorganic powder and a polymer to constitute the hollow fibers.

そしてこの場合の鞘成分における重合体は無機物質の一
時的ナバインダーとして用いるのであり、且つ本発明に
おける複合紡糸は両成分が剥離しにくい芯鞘型複合紡糸
方式を採るので鞘成分としての重合体は可溶性でバイン
ダーとしての働きがあればどのような重合体を用いても
良いが、一般的には芯成分の重合体と同一のものが好ま
しい。
In this case, the polymer as the sheath component is used as a temporary binder for the inorganic substance, and since the composite spinning in the present invention uses a core-sheath composite spinning method in which both components are difficult to separate, the polymer as the sheath component is used as a temporary binder for the inorganic substance. Although any polymer may be used as long as it is soluble and acts as a binder, it is generally preferable to use the same polymer as the core component.

以上のようにして紡糸された複合繊維は次いで焼成焼結
することにより中空繊維となすのであるが、この場合複
合繊維をいきなり空気中で焼成すると無機物質の焼結が
十分行なわれないで繊維化できない場合があるので本発
明では200〜300℃の空気中又は不活性雰囲気中で
焼成を行って炭素を一部残した状態で無機物質が焼結し
得る温度まで昇温した后、酸素を制御しつ工導入し炭素
を燃焼除去しつ〜焼結を完了させるのである。
The composite fibers spun as described above are then fired and sintered to form hollow fibers. However, in this case, if the composite fibers are suddenly fired in air, the inorganic material will not be sintered sufficiently, resulting in fiber formation. However, in the present invention, firing is performed in air or an inert atmosphere at 200 to 300°C to raise the temperature to a temperature at which the inorganic material can be sintered with some carbon remaining, and then the oxygen is controlled. A sintering process is introduced to burn off the carbon and complete the sintering process.

又、無機物質としては微粉末化し得るものであればいず
れも用いる事が可能であるが、保温性、耐熱性、機械的
性質等の面から第2属(例えばBe、 Mg、 Ca、
Sr、 Ba、 Zn、 Cd)、第3属(例えばA
I、Se、Ga、Yおよび他の希土類元素)、第4属(
例えばSi、Ti、Zr、Hf、Th)、第5属(例え
ばV、 Nb 、 Ta )、第6属(例えばCr、M
o 、W) 、第7属(例えばMn、Re)、第8属(
例えばFe、 Co、 Ni)の一種又はそれ以上の金
属酸化物が好ましい。
In addition, any inorganic substance that can be pulverized can be used, but from the viewpoint of heat retention, heat resistance, mechanical properties, etc.
Sr, Ba, Zn, Cd), genus 3 (e.g. A
I, Se, Ga, Y and other rare earth elements), genus 4 (
For example, Si, Ti, Zr, Hf, Th), genus 5 (e.g. V, Nb, Ta), genus 6 (e.g. Cr, M
o, W), genus 7 (e.g. Mn, Re), genus 8 (
For example, metal oxides of one or more of Fe, Co, Ni) are preferred.

これ等無機物質の粒度は小さい程外観のととのった機械
的性質の優れたものが得られるので粒度の細い物の方が
好ましいが、通常粒度を小さくする事はコストの上昇の
方向にあるため、目的に合わせた粒度を選べば良い。
The smaller the particle size of these inorganic substances, the better the appearance and the better mechanical properties, so it is preferable to use a thinner particle size. Just choose the particle size that suits your purpose.

又、無機物質の粒度は紡糸の安定性にも影響するため安
定に紡糸するためには最大粒経が紡糸ノズル孔径の%以
下好ましくは%以下にしなければならない。
Furthermore, since the particle size of the inorganic substance also affects the stability of spinning, in order to stably spin the material, the maximum particle diameter must be set to be less than %, preferably less than %, of the diameter of the spinning nozzle hole.

更に無機物質の含有率は紡糸性とも関連するが焼結を充
分に行なわせるためには鞘部分に於ける体積含有率で1
0%以上が望ましく又、鞘部分に於ける無機物質の体積
含有率が75%以上になると紡糸性は極めて悪くなるた
めそれ以下にするととが望ましい。
Furthermore, the content of inorganic substances is also related to spinnability, but in order to achieve sufficient sintering, the volume content of the sheath should be 1.
The volume content of the inorganic substance in the sheath portion is preferably 0% or more, and since the spinnability becomes extremely poor if the volume content of the inorganic substance in the sheath portion is 75% or more, it is desirable that the content is less than 75%.

芯部分と鞘部分の比率は目的とする用途によって選択す
ることが必要であるが中空を保つためには鞘部分の割合
が横断面積比で30%以上であることが望ましく、且つ
芯部分の比率は紡糸時の安定性に影響するため、少なく
とも横断面積比で15%以上占めるのが望ましい。
It is necessary to select the ratio of the core part to the sheath part depending on the intended use, but in order to maintain the hollowness, it is desirable that the ratio of the sheath part is 30% or more in terms of cross-sectional area, and the ratio of the core part Because it affects the stability during spinning, it is desirable that it accounts for at least 15% or more in terms of cross-sectional area ratio.

鞘部分の無機物質の比率が高い場合は芯部分の比率を高
めにする方が紡糸性の面から好ましく、その割合は複合
繊維全体に対しての無機物質の体積含有率が60%を越
えない程度を目安とするのが良い。
When the ratio of inorganic substances in the sheath part is high, it is preferable to increase the ratio in the core part from the viewpoint of spinnability, and the volume content of the inorganic substance to the entire composite fiber does not exceed 60%. It is best to use the degree as a guideline.

上述の如く構成された本発明によれば、断熱材や高温下
における精密濾過材として最適な中空無機繊維が極めて
安定に得られるという顕著な作用効果を奏するものであ
る。
According to the present invention configured as described above, a remarkable effect is achieved in that hollow inorganic fibers suitable for use as a heat insulating material or a microfiltration material under high temperatures can be obtained in an extremely stable manner.

実施例 アクリロニトリル93重量%、酢酸ビニル7重量%から
なる繊維用アクリロニトリル系重合体をジメチルアセト
アミドに溶解して22重量%の原液(4)を調製した。
Example An acrylonitrile polymer for textiles consisting of 93% by weight of acrylonitrile and 7% by weight of vinyl acetate was dissolved in dimethylacetamide to prepare a 22% by weight stock solution (4).

又、同じ重合体を用いてジメチルアセトアミド54重量
%、重合体13重量%、無機物質(Al2O2比重4.
0粒度350メツシユ)33重量%の原液(B)を調製
した。
In addition, using the same polymer, dimethylacetamide 54% by weight, polymer 13% by weight, inorganic material (Al2O2 specific gravity 4.
A stock solution (B) of 33% by weight (particle size: 350 mesh) was prepared.

紡糸原液Aを芯に紡糸原液Bを鞘として通常の芯鞘型複
合紡糸口金を用いて湿式複合紡糸し洪水で2倍延伸して
外径80ミクロンの芯鞘の体積比率35:65の芯鞘型
アクリル系複合繊維を得た。
Wet composite spinning using a normal core-sheath type composite spinneret using spinning dope A as a core and spinning dope B as a sheath, and stretching twice by flooding to produce a core-sheath with an outer diameter of 80 microns and a core-sheath volume ratio of 35:65. A molded acrylic composite fiber was obtained.

該繊維2グをN2を213/m1ytの速度で通しなか
ら定長で50℃/hr の昇温速度で室温から800℃
まで昇温しくこの場合200〜300℃の温度範囲では
2時間焼成されることになる)、その後11/rni!
1のN2に1%の空気を混入しながら通し300℃/h
r の昇温速度で1900℃まで昇温した。
Two grams of the fibers were passed through N2 at a rate of 213/ml, and then heated from room temperature to 800°C at a heating rate of 50°C/hr over a constant length.
(In this case, in the temperature range of 200 to 300°C, it will be baked for 2 hours), then 11/rni!
1% N2 mixed with 1% air at 300℃/h
The temperature was raised to 1900°C at a heating rate of r.

このようにして得られたアルミナ繊維は外径53ミクロ
ンで中空であり引張強度は1000kg/crA、弾性
率は200 t /cwtで見掛密度が低く高温用断熱
材として適当なものであった。
The thus obtained alumina fiber had an outer diameter of 53 microns, was hollow, had a tensile strength of 1000 kg/crA, had an elastic modulus of 200 t/cwt, and had a low apparent density, making it suitable as a heat insulating material for high temperatures.

Claims (1)

【特許請求の範囲】[Claims] 1 芯成分として有機重合体を用い、鞘成分として有機
重合体と無機微細粉末との混合物を用いて芯鞘型複合繊
維を紡糸し、次いで該芯鞘型複合繊維を200〜300
℃の空気中又は不活性雰囲気中で焼成して炭素を一部残
した状態で無機物質が焼結し得る温度まで昇温した後、
酸素を制御しつつ導入して炭素を燃焼除去しつつ無機物
質の焼結を完了せしめることを特徴とする中空無機繊維
の製造方法。
1 Spinning a core-sheath type composite fiber using an organic polymer as a core component and a mixture of an organic polymer and an inorganic fine powder as a sheath component, and then spinning the core-sheath type composite fiber into
After firing in air or an inert atmosphere at ℃ to a temperature at which the inorganic substance can be sintered with some carbon remaining,
A method for producing hollow inorganic fibers, which comprises controlling the introduction of oxygen to burn and remove carbon while completing sintering of an inorganic substance.
JP50024828A 1975-02-27 1975-02-27 Chiyuukuumukiseninoseizouhouhou Expired JPS5834566B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP50024828A JPS5834566B2 (en) 1975-02-27 1975-02-27 Chiyuukuumukiseninoseizouhouhou

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP50024828A JPS5834566B2 (en) 1975-02-27 1975-02-27 Chiyuukuumukiseninoseizouhouhou

Publications (2)

Publication Number Publication Date
JPS5199122A JPS5199122A (en) 1976-09-01
JPS5834566B2 true JPS5834566B2 (en) 1983-07-27

Family

ID=12149038

Family Applications (1)

Application Number Title Priority Date Filing Date
JP50024828A Expired JPS5834566B2 (en) 1975-02-27 1975-02-27 Chiyuukuumukiseninoseizouhouhou

Country Status (1)

Country Link
JP (1) JPS5834566B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4105548A (en) * 1977-02-22 1978-08-08 E. I. Du Pont De Nemours And Company Separation device of rigid porous inorganic hollow filament and use thereof
US4222977A (en) * 1978-05-16 1980-09-16 Monsanto Company Process to produce inorganic hollow fibers
US4175153A (en) * 1978-05-16 1979-11-20 Monsanto Company Inorganic anisotropic hollow fibers
JP3869142B2 (en) * 1999-01-29 2007-01-17 独立行政法人科学技術振興機構 Hollow fiber silica and method for producing the same
US6764628B2 (en) * 2002-03-04 2004-07-20 Honeywell International Inc. Composite material comprising oriented carbon nanotubes in a carbon matrix and process for preparing same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3246764A (en) * 1961-11-30 1966-04-19 Du Pont Fluid separation

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3246764A (en) * 1961-11-30 1966-04-19 Du Pont Fluid separation

Also Published As

Publication number Publication date
JPS5199122A (en) 1976-09-01

Similar Documents

Publication Publication Date Title
US5017316A (en) Internally modified ceramic fiber
US4797378A (en) Internally modified ceramic fiber
CA1276761C (en) Bicomponent ceramic fibers
US8993199B2 (en) Flexible carbon fiber nonwoven fabric
US7708805B2 (en) Method of producing carbon fibers, and methods of making protective clothing and a filter module
US4824623A (en) A method of making bicomponent green and ceramic fibers
CN113089132B (en) Zirconate fiber and preparation method thereof
JPS5834566B2 (en) Chiyuukuumukiseninoseizouhouhou
US3723150A (en) Surface modification of carbon fibers
JPS63315655A (en) Polyphenylene sulfide melt blow nonwoven fabric and its production
US4098776A (en) Poly(arylene sulfide) fibers
US4948574A (en) Method of manufacturing of pitch-base carbon fiber
US4118225A (en) Method for producing fibrous steel matts
US4541973A (en) Production of ferrimagnetic spinel fibers
KR102121130B1 (en) PAN-Fe2O3 magnetic composites amd manufacturing method thereof
JPH02242920A (en) Carbon fiber containing composite metal
JPS58115121A (en) Acrylic carbon fiber
JPH09241918A (en) Fibrous composition containing composite metallic titanate fiber and its production
US4978515A (en) Perovskite fibers from bimetal complexes
JP2900375B2 (en) Manufacturing method of porous hollow fiber
JP2002001071A (en) Braidlike carbon hollow yarn membrane
DE2158798C3 (en) Process for the production of carbon fibers
JPS60155713A (en) Production of carbon fiber having high performance
JPS60224814A (en) Inorganic fiber
JPH0491227A (en) Production of zirconia filament