JPS5834435A - Electro-optical device - Google Patents

Electro-optical device

Info

Publication number
JPS5834435A
JPS5834435A JP56133149A JP13314981A JPS5834435A JP S5834435 A JPS5834435 A JP S5834435A JP 56133149 A JP56133149 A JP 56133149A JP 13314981 A JP13314981 A JP 13314981A JP S5834435 A JPS5834435 A JP S5834435A
Authority
JP
Japan
Prior art keywords
layer
light
liquid crystal
film
transparent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP56133149A
Other languages
Japanese (ja)
Other versions
JPS6230615B2 (en
Inventor
Tatsuo Masaki
正木 辰雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP56133149A priority Critical patent/JPS5834435A/en
Priority to US06/396,051 priority patent/US4538884A/en
Publication of JPS5834435A publication Critical patent/JPS5834435A/en
Publication of JPS6230615B2 publication Critical patent/JPS6230615B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133553Reflecting elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/135Liquid crystal cells structurally associated with a photoconducting or a ferro-electric layer, the properties of which can be optically or electrically varied
    • G02F1/1354Liquid crystal cells structurally associated with a photoconducting or a ferro-electric layer, the properties of which can be optically or electrically varied having a particular photoconducting structure or material
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/135Liquid crystal cells structurally associated with a photoconducting or a ferro-electric layer, the properties of which can be optically or electrically varied
    • G02F1/1357Electrode structure
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/34Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 reflector

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Liquid Crystal (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

PURPOSE:To obtain a liquid crystal light valve which can be driven by a DC and facilitate a display of animation, by providing plural reflectors between a photoconductive layer having the rectifying properties and a light shielding layer having plural through holes via a light transmissive insulated layer contacting with the light shielding layer opposed to said through holes. CONSTITUTION:A rectifying photoconductive film 9 is formed by laminating a Pt layer, an amorphous SiH layer, etc. on a transparent electrode 2b provided on a transparent substrate (not shown in the figure). An Al film is vapor deposited on the film 9 to form plural reflectors 8, and a light transmissive insulated layer 7 is formed with SiC, Si3N4, etc. to cover the reflectors 8 and the film 9. A light shielding layer 5 is formed on the layer 7 so as to form through holes 6 which are slightly smaller than the reflectors 8 with a carbon layer, etc. While a transparent electrode 2a and a polarizing plate 10 are set inside and outside the upper transparent electrode respectively, and a guest-host liquid crystal composition layer 3 is enclosed between the upper and lower substrates. Thus an electro-optical device is obtained. The plus voltage is applied to the electrodes 2a of the electro-optical device and DC voltage is applied to the electrode 2b thereof. Then the signal beam of laser beam is made incident to said device from the side of the layer 9, and the projecting beam is fed from the side of the plate 10. Thus a high-contrast image can be projected on a screen.

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、光による入力像を光電効果によって投影像に
変換する電気光学装置に関する。 従来、この種の電気光学装置として液晶ンイトバルブ(
光弁)なるものが知られている。 その−例として、特開昭56−43681号公報に於て
は、液晶ノWと訪′Iαミラーと、2個の透明電極間に
侠まれた光電感応層(光導11f層)とから成る薄膜の
多層構造をとる液晶ライトパルプが開示されている。そ
して、この様な液晶ライトバルブに於て、前記誘電ミラ
ーは、液晶層側から入射する投影光が光導電層には達し
ない様、事前に反射させる為に必要な要素である。 斯かる誘mミラーとしては、例えばZnS1Na、AI
F、 、 MgF、、’II’ i 0..5101等
から成る多層膜を用いている。このとき、可視域全域の
波長光を反射する誘電ミラーを得る為には、約15層以
上の積層体を各層厚の精確な制御を行ないつつ作成する
必要があり、相当に高度な製造技術を要する。又、仮に
前述の目的を以て作成された誘電ミラーであっても、実
際には、投影光を完全には反射することができず、光導
電層と誘電ミラーとの間に別途、光吸収ノーを設けてそ
の機能を補うことが必要であった。 従って、この様な従来の液晶ライトバルブでは、所期の
機能が充分には発揮されず、且つ複雑な構造になる上そ
の製造にも手間がかかり、製造コストも高いものとなっ
ていた。 そこで、本発明は、斯かる従来の諸欠点を除去すると共
に、直流駆動を可能にして動画表示が容易である一般に
は液晶ライトパルプと呼ばれる′I狂気光学装置を提供
することを目的とするものである。この様な目的を達成
する本発明は、液晶層及び光導電層を具え、光による入
力像を光電効果によって投影像に変換する゛[d気光学
装置であって、前記光導′1層が整流性を示すこと、並
びに、複数の透孔余有する遮光層及び、この遮光層の片
面に接した透光性の絶縁層を介して前Refh孔の各々
に対面し且つ互に分離した複数の反射鏡を前記液晶層と
光導′I[、Nとの間に介在させて成ることを特徴とす
るものである。 以下、回部を用いた具体例によって本発明の詳細な説明
する。 第1図は、ライトパルプ装置の一例の略画断面図であり
、図に於て、10は偏光子(板)である。Ia、lbけ
共に透明基板で、ガラス板又は樹脂板よ構成る。又、2
a、2bは共に透明電極で、例えばSnO2やIn、 
(Sn)Os等の薄膜(厚さ、500〜3000^程度
)から成る。3は液晶層、又、4はスペーサーであって
、液晶層3をVtY封すると共に、この層厚を調整する
為のものである。 そしてこのスペーサー4としては通常、アルミナ粉末や
ガラスファイバー粉末を混入した(夕]脂製接着剤が用
いられる。液晶層3に於ける液晶構造の変化には、通常
、1)SIVfのように電流効果によるものの他、TN
方式(ねじれネマティック効果)、DAP(電界制御複
/111折効果)方式、相遷移方式あるいはGlf (
ゲストホスト効果)方式のように電界効果によるものが
あるが、この図示例ではG lf方式が好適なものとし
て採用されている。具体的に、このGII(ゲストホス
ト)液晶層3に用いる液晶に就いては谷に制限はないが
、駆動時の温度上昇を考bwしてクリアリング温度が5
0゛C以上、望if、(は、60 ’0液晶にゲストと
して混入される染料としては耐光性の良い、例えば、ア
ンスラキノン系の染料が好ましく用いられる。このとき
、液晶中の染(1Fの含有址は、液晶の種類によって左
右されるが、通常、重量%で、0.05〜10襲、望ま
しくは、0.1〜5俤である。更に、この液晶層3の厚
さは、一般に、1〜20μm程度とし、液晶の性能、応
答速度、駆動電圧等によって適切な厚さが設定される。 5は遮光層であυ、カーボンや金属を堆積法により厚さ
500八〜2μm程度に成膜させたものである。そして
、この遮光層5は第1図のA1A’iNJに於ける切1
tJi平面図である第2図のとおりの平面形状を有し、
この遮光層5には多数の透孔6が配列しである。尚、こ
の透孔6の一つが、投影像に於ける一画素に相当する。 因に、これ等の透孔6の形状は、図示例の正方形のみに
限られず、任意の形状のものとすることができる。 更に、第1図中の7は透光性絶縁層で、望ましくは 1
0 ttΩ・硼以上の体積抵抗率を有する。 これは例えば、グロー放電分解法によって形成されるS
iC,5ilN4の膜、スパッタ蒸着法等により形成さ
レルSiO□膜やPbTi0.、I)LZT、ポリバラ
キシリレン等の強誘電体の膜から成る。そして、この透
光性絶縁層7の厚さは、1000A〜5tt1−nの範
囲とするのが良い。 8は反射ミラーであり、鏡面を成すAe等金金属厚さ5
00X〜1μm程度の堆積膜から成る。このミラー8は
前記絶縁層7を介して透孔6の全てに対面する様に多数
個配置され、各ミラー8は第1図のBSB’線に於ける
切断平…1図である第3図のとおりに配列しである。尚
、このミラー801個は、各ミラーの間隙81(からの
もれ光を防ぐ目的〃・ら、少なくとも前記透孔6の面積
以上の面積(広さ)に成形しである。 9は整流性を示す光導電層で、ここで謂う、整流性とは
、後述する様に通常のダイオードに於ける整流性と異な
9更に広い概念である。 ところで、第1図の構成例に於て、遮光ノー5の透光性
絶縁層7側の面には、カーボン層等の光吸収部材を設け
て、投影光のミラー8による反射戻り光を吸収するのが
、投影像のコントラストを上げる為には望ましいことで
ある。 又、反射ミラー8は、全て導′α体から成9、且つ分離
していなければならないが、その形状の如何は問わない
。反射ミラー8の全てが分離している理由は、これ等が
連続していると、同一・電位になって電位差が生じない
為、作像が不r+]’能になるからである。 ここで、別の回向を用いて、第1図に示した光曹込ノl
11!液晶ライトパルプの作動eて就いて詳しく説明す
ると共に、不発明に於ける″整流性″の概念を明確にす
る。第4図は、第1図のライトバルブ装置の作動原理を
説すJする模式図である。 第4図に於て、透明′電極2aと2bとの間に電dli
!20 F(:よりi、!l+定の直流′
The present invention relates to an electro-optical device that converts an input optical image into a projected image using the photoelectric effect. Conventionally, this type of electro-optical device was a liquid crystal light valve (
The light valve) is known. As an example, JP-A No. 56-43681 discloses a thin film consisting of a liquid crystal W, an Iα mirror, and a photoelectrically sensitive layer (light conducting layer 11f) interposed between two transparent electrodes. A liquid crystal light pulp having a multilayer structure is disclosed. In such a liquid crystal light valve, the dielectric mirror is a necessary element for reflecting the projection light incident from the liquid crystal layer side in advance so that it does not reach the photoconductive layer. As such an attractive mirror, for example, ZnS1Na, AI
F, , MgF, ,'II' i 0. .. A multilayer film made of 5101 or the like is used. At this time, in order to obtain a dielectric mirror that reflects wavelengths throughout the visible range, it is necessary to create a laminate of approximately 15 or more layers while precisely controlling the thickness of each layer, which requires considerably advanced manufacturing technology. It takes. Furthermore, even if a dielectric mirror is made for the above purpose, in reality it cannot completely reflect the projected light, and a separate light absorption layer is required between the photoconductive layer and the dielectric mirror. It was necessary to establish a system and supplement its functions. Therefore, such conventional liquid crystal light valves do not fully exhibit their intended functions, have a complicated structure, are time-consuming to manufacture, and are expensive to manufacture. SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide a crazy optical device, generally called a liquid crystal light pulp, which eliminates the various drawbacks of the conventional technology and also enables direct current driving and facilitates display of moving images. It is. To achieve these objects, the present invention provides an optical device comprising a liquid crystal layer and a photoconductive layer, which converts an input image of light into a projected image by the photoelectric effect, wherein the first layer of light guides has a rectifying layer. A light-shielding layer having a plurality of transparent holes, and a plurality of reflections facing each of the front Refh holes and separated from each other via a light-transmitting insulating layer in contact with one side of the light-shielding layer. It is characterized in that a mirror is interposed between the liquid crystal layer and the light guides 'I[,N. Hereinafter, the present invention will be explained in detail using a specific example using a circular part. FIG. 1 is a schematic sectional view of an example of a light pulp apparatus, and in the figure, 10 is a polarizer (plate). Both Ia and lb are transparent substrates made of glass plates or resin plates. Also, 2
Both a and 2b are transparent electrodes, such as SnO2, In,
It consists of a thin film (thickness, approximately 500 to 3000^) of (Sn)Os, etc. 3 is a liquid crystal layer, and 4 is a spacer for sealing the liquid crystal layer 3 to VtY and adjusting the layer thickness. As this spacer 4, a resin adhesive mixed with alumina powder or glass fiber powder is usually used.The changes in the liquid crystal structure in the liquid crystal layer 3 are usually caused by 1) electric current such as SIVf. In addition to effects, TN
method (twisted nematic effect), DAP (electric field controlled double/111 fold effect) method, phase transition method or Glf (
Although there are methods based on electric field effects such as the guest-host effect method, the Glf method is suitably adopted in this illustrated example. Specifically, there is no limit to the valley of the liquid crystal used for this GII (guest host) liquid crystal layer 3, but the clearing temperature is set at 5 bw in consideration of the temperature rise during driving.
0゛C or higher, desirably, (is 60'0) As the dye to be mixed into the liquid crystal as a guest, it is preferable to use a dye with good light resistance, such as anthraquinone dye. The content of the liquid crystal layer 3 depends on the type of liquid crystal, but is usually 0.05 to 10 times, preferably 0.1 to 5 times by weight.Furthermore, the thickness of the liquid crystal layer 3 is as follows: In general, the thickness is about 1 to 20 μm, and the appropriate thickness is set depending on the performance of the liquid crystal, response speed, driving voltage, etc. 5 is a light shielding layer, which has a thickness of about 5008 to 2 μm by depositing carbon or metal. This light shielding layer 5 is formed at the cut 1 in A1A'iNJ in FIG.
It has a planar shape as shown in FIG. 2, which is a plan view of tJi,
This light shielding layer 5 has a large number of through holes 6 arranged therein. Note that one of the through holes 6 corresponds to one pixel in the projected image. Incidentally, the shape of these through holes 6 is not limited to the square shown in the illustrated example, but can be any shape. Furthermore, 7 in FIG. 1 is a transparent insulating layer, preferably 1
It has a volume resistivity of 0 ttΩ・boron or more. For example, S formed by glow discharge decomposition method
iC, 5ilN4 film, SiO□ film formed by sputter deposition method, PbTi0. , I) Consists of a ferroelectric film such as LZT or polyvaraxylylene. The thickness of the transparent insulating layer 7 is preferably in the range of 1000A to 5tt1-n. 8 is a reflective mirror, which has a mirror surface made of gold metal such as Ae, which has a thickness of 5.
It consists of a deposited film of about 00X to 1 μm. A large number of mirrors 8 are arranged so as to face all of the through holes 6 through the insulating layer 7, and each mirror 8 is arranged along the line BSB' in FIG. Arranged as follows. The 801 mirrors are formed to have an area (width) that is at least larger than the area of the through hole 6, in order to prevent light from leaking through the gap 81 between each mirror. In the photoconductive layer shown in FIG. In order to increase the contrast of the projected image, a light absorbing member such as a carbon layer is provided on the surface of No. 5 on the side of the translucent insulating layer 7 to absorb the reflected light reflected by the mirror 8 of the projected light. This is desirable.Also, all of the reflecting mirrors 8 must be made of a conductive material 9 and must be separated, but their shape does not matter.The reason why all of the reflecting mirrors 8 are separated is as follows. , if these are continuous, they will be at the same potential and no potential difference will occur, making it impossible to form an image. The light source shown in
11! The operation of the liquid crystal light pulp will be explained in detail, and the concept of "rectification" in the invention will be clarified. FIG. 4 is a schematic diagram illustrating the operating principle of the light valve device of FIG. 1. In FIG. 4, an electric current is placed between the transparent electrodes 2a and 2b.
! 20 F (: from i, !l + constant DC'

【u界を印加
する。このとき、信号光線が投射された領域では、発生
したギヤリア(図中ではO印で示すr4子)が前記1匡
界Vこよシ反MJミン−8に移動する。これによって、
透り」′嵯極2aと反射ミラー8の間のぼ圧が透孔6全
通して増太し閾値を越え、液晶層3に於て、認定異方性
が正の液晶分子3αと染料3βとがホモジーニアス配向
状態からホメオトロピック配向状態に変化する。そ[−
て、ここに、投影光を偏光板10を通1〜て投射すると
、偏光が透光6を;i!i して反射ミラー8に至った
後ここで反射され反射光RI、2が得られる。 他方、信号光線が入射しない領域では、フォトキャリア
が発生しないので、キー)!リアは透Ql電極2bに留
り、反射ミラー8へは移動しない。 従って、この場合には液晶層3に印加をれる電圧が閾値
を越えることなく、液晶分子3αと染料3βはホモジー
ニアス配向状態に保たれる。 そこで、ここに入射した投影光(偏光)は液晶層3中の
二色性染料3βによって吸収され、反射ミラー8による
反射光RL、は11工記反射光11L。 に較べて光量が少なくなっている。 この様にして、反射光景の差に基づく投影像(・・・投
影する為の像)が形成され、液晶層3中に生じた像が不
図示のスクリーン等に拡大して投影される。 尚、斜上の過程に於ては、遮光層5及びミラー8によっ
て、信号光線が液晶層3側にもれ出ること及び、逆に投
影光が光導電層9に入射する不都合が阻止されている。 又、斜上の作動例に於て、液晶層3中に形成される投影
像が極微細なものでない限りは、特別な投影光によらな
くても室内光の下で投影像を目視観察することもできる
。 次に、第5図を用いた具体的構成例に就いて説明する。 MY 1の構成例では、第5図に示す様に、透明基板1
bに設けた透明電極2b上に、Pt 、 Pd。 Au又はMoを20〜500大、望ましくは30〜20
0穴の原さに焦眉して基層9aを形成する。次いで、S
iルを主体とするガスを放電分解して基層9a上にa−
8i−If層9bを形成する。このa−8t−H層91
Jは弱いn型の半導体となシ基層9aとの間にショトキ
−バリア一層を形成する。尚、a−8t −I−I層9
bは、通常、i層と呼ばれる。 そして、この層9bの厚さは、他の層、とシわけ、液晶
層3との関係で決められるが、通常、5000 A〜2
0μmの範囲にある。 更に、このa −Si −HJi 91)土に、5il
I、を主体とするガスにPH,を100〜20000p
pm 、望1しくは、1000〜110000pp混入
して放′屯分解を行い、厚さ、100〜3000A 、
望ましくは500〜2000Aに堆積した11層9cを
形成して整流性光導電層9を作成する。 次いで、第1図に示した実施例と同様に、Alから成る
反射ミラー8、透光性絶縁層7、遮光層5の形成を行っ
た後、別の透明基板1aの両面に偏光板10と透明′電
極2aを設けて、遮光層5と透明′1極2aとの間にG
 II液晶/#3を封入してライトバルブ装置の一例が
完成する。この様にして得られたライトバルブ装置に於
ける光導電層9のバンドダイアグラム(il−第6図t
a+に示す。 このバンドダイアグラムから解る様に、」二記装置によ
って投影像を得る場合、透明′#JL極2aと2b間に
印加される電圧は、2bIIllが負になる様に印加さ
れる。このとき、仮に、ショトキ−バリア層を形成せず
に透明電極2bに直接、a−Si−II層(i /留)
 9 bを設けると、透明電極2bからギヤリア(・・
・i層が弱いn型で、この場合、・電子)のインジェク
ションを生じるので、光導・屯Kl 9の暗抵抗が10
8〜109Ω・鑞にある場合、期待しない結果となる。 これに対して、本例の様にショトキ−バリア層を形成す
ると、光導電層9へのギヤリアインジェクションが阻止
さJl−N光4篭層9の暗抵抗が1o12 (,2・α
以上になる為、期待とおシの投影像を形成することがi
iJ能になる。 又、本例Vこ於ける1層9Cは、投影像全消去する際、
7第1・ギヤリアを受容した反射ミラー8から透明′1
極2bにフォトキャリア全掃引するの全容易、且つ安定
して可能にする作用を持つ0 但し、このn M 9 cは、電気的(fこ低抵抗であ
るから、作像の都合上、ミラー8と同様、複数に分割し
て′r区気的にアイソレイトさせることが必要であり、
実際には、第5図に示す(かに、写真蝕刻法を用いて、
ミラー8とKr、 を同様のパターンに形成される。 尚、この場合、平行光で入射し/こ投影光を反射ミラー
8によって平行光として反射させるときには、個々の1
層9cの面積を、ミラー8のそれと同等か若干、広くす
ることが必要である。 因に、個々のn/@9cの面積がミラー8のそれよシも
小さいときには、ミラー80面に凹凸ができて、入射光
を散乱させることになり、それが拡散板としての効果を
示す様になる。 又、仮に、この1層9cを設けず、a−8i−I−I層
9bに反射ミラー8が直接、接して形成される場合には
、両者の界面にバリアが形成されることがあり、フォト
キャリアの掃引に場]訴ムラがあったシネ完全になる等
の不都合が見られることが多い。但し、上記バリアが形
成さノ′しない場合には、1層9cを省略することもで
きる。 ところで、フ第1・キャリアの掃引に際して本例装置に
印加される電圧は、液晶層3にnトる電圧が閾値を越え
ない限シ、透明電極2bが同2aに対して正になる様な
順方向の直流電圧でも、或は、交流電圧のどちらでも良
い。 次に、第2の構成例を説明する。この例では、透明電極
21〕土に、S II5を主体とするガス中にJl、I
Iae 50〜20000ppm 、望ましくは200
〜10000p ptn混入してグロー放電分解を行い
、厚さ、30〜100OA 、 gHましくは50〜3
00Aに堆積した13層9aを形成する。この2層9a
の適切な厚さは、信号光線の吸収址、及びP7曽9aと
その上に設けられるa−8i−I(層(i層)9bとの
間の空乏層の形成との関係で決められる。 次いで、第1の構成例の場合と同様にして、a &i 
−II Jtl 9 b −、n I’ll 9 c−
i反射ミラー8、透光性絶縁層7、遮光層5を順次、積
層した後、他の透す」電極2aとの間に液晶層3を封入
してライトバルブ装置を完成させた。この装置に於ける
光導′tαノー9のバンドダイアグラムを第6図+l、
lに示す。これから解る様に、投影像を形成する際の印
加延圧の極性は、上記第1の例の場合と同じで、且つ、
同様の効果が得られる。 又、本例に於ても、フ第1・キャリアの反射ミラー8か
ら透明電極2bへの掃引を、第1の例の場合と同様に行
うことができる。尚、2層9aとしては、」二記のもの
の他、5III4とClI4のグロー放電分解による堆
積膜(P型a−8t−C−I(膜)にa−8i−I−I
層9b(i−形成して得られるヘテロジャンクションで
あっても良く、全く同様の効果が得られる。 更に、第3の構成例では、光導電ノー9の構成が、上記
2例と異なるだけで、他は全く同様にして液晶ライトパ
ルプ装置を完成させる。本例では、光導電層9を次のと
おり作成する。即ち、透明電極2b上に、a−8i−N
−I(膜、SlO!膜、又はポリパラキシリレンN ’
tr Jlさ、50〜100OOA1望ましくは100
〜aoooAに形成して透光性絶縁層9aを設けた後、
上記2例の場合と全く同様に、a−8t−H層9b、1
層9Cを順次、積層する0 この第3の例に於ける光導電層9の・くンドダイアグラ
ムを第6図(C)に示す。 本例では、透CLI ’+Ii: ’+M 2 bから
a−8i−H層(i層) 91)へのギヤリアインジェ
クションは絶縁層Qa&こより阻止され、又、a−3i
−IIi層bがl fill半導体である為、投影像を
形成する際に印加される′電圧極性は、上記2例の場合
と全く同じであり、同様の効果が得られる。又、フォト
ギヤリアの掃引操作もこれ等と同様に行うことができる
。 以上、3例の液晶ライトパルプ装置に於ては、S1■ム
を主体とするガスの放置分解によってP層、a−8i−
H層(i層)、n層等の光導′酸層の形成を行ったが、
この他、5iF4(i−主体とするガスの放′屯分解に
よっても、上記のものと同様に、P層(13zl(s 
吟がドーピングガスとして用いられる)、a−8i−F
−IIミラーi層)、n層(ドーピングガスとしてI)
)(、等が用いられる)を形成することができる。 因に、a−8i (a−8t −H、a−8i −F−
H)の作成方法やその性質、ドーピング効果等に就いて
は、[アモルファス電子材月利用技術集成」(サイエン
スフォーラム社出版、1981)、その他の文献に詳し
く記載されているので、参照することができる。 又、容易に想起されることでは、ちるが、本発明に係る
整流性光4電層としては、斜上の他、5eTe 、 A
s2Se3 、 CdS 、 CdTe等と透光性絶縁
層との積層体やCdS (n型)とCdTe(P型)と
のヘテロジャンクレヨン等も適用することができる。 更に、ここで、具体的実施例に基づき本発明の詳細な説
明する。 実施例1 コーニング社製7059スライドガラスIb上のIn、
 (Sn) 0. (松崎貢空製)を透明?M ih 
2 bとし、これに電子ビームによりPtをPn (ベ
ースプレッシャー) = I X 10 ’Torr蒸
着レイト(R)=IA7s、基板温度(Ta ) = 
80’Oで4OAの厚さに蒸着し、pt層9aを設けた
。次いで、容量結合タイプのグロー放電分解法によりa
−3t −III側9bを次のようにして厚さ、−威μ
m堆積した。 アノード、カッ〜ド共に200φ、その間の距離50韻
の反応炉に5il(4/I(、= 50%のガスを20
SCCM導入し、PB = I X 10−’Torr
ガス圧= 0.05Torr 、 Ts = 250°
Cのもとで、RF=13.56■(z 。 1Fパワー=15Wでグロー放電分解し、a−8i−I
(層全スライドガラス上に10時間−e1刊−firt
hf二 堆積し瓜。スライドガラス束はアノード側にセットした
。この様にして得られたa−8t−H層は優れた光導電
性を示しクシ型′厄極を用いてサーフェスタイプで測定
した場合、ρ。(暗抵抗率)=101eΩ−m、pL(
He−Neレーザー、1 mW/cr/Iでの抵抗率)
=10″Ω・篩である。 次に、このa−8i−H層9b上に電子ビーム蒸着によ
りA/を200OAの厚さに蒸着した。このとき、PB
 = I X 10−’Torr1Ts = 60℃、
R−10ん慴であった。次いで、写真蝕刻法によシ、1
個が90μm×90μmの面積で100μmピッチの(
第3図示様のパターンを持つ)反射ミラー8を形成した
。更に、この反射ミラー8上に次のとおり、a−81−
N−IIの透光性絶縁層7を30001堆積した。この
とき、a−8t−IIを作製したのと同一の装置で、上
記の作製工程を経た基板を7ノード側にセットし、Pn
 = I X 10〜’Torrのもとで、5iI(、
/I−I、= 10%を5SCCM、純粋なNil、を
20 SCCMCC上ガス圧を0.15’f’orrと
し、Ts=250°C1RFパワー=5Wの条件で5時
間堆積した。こうして得られたa−8i−N−H)−の
体積抵抗率は101′Ω−crn以上である。次に、こ
のa−8t−N−II透光性絶縁層7上に1/を200
OA蒸着し、第2図示様のパターンの遮光層5を第3図
における反射ミラー8との重複[IJが5μmになるよ
う写真蝕刻法によりパターニングした。従って開口部6
の面積は80μm×80μmである。次いで遮光層5上
にポリパラキシリレンを200OAの厚さに気相熱分解
法により堆積した。ポリパラキシリレン上を綿布でラビ
ングし液晶の配向処理を行った。 遮光層5の周辺(その部分のポリパラキシリレンは除去
しである)に、次の工程で必要な開IIIを有するよう
にAe、0.粉末を分散させたエボ・)・シ樹)1’+
Tを厚さ5μmK塗布し、その上に配向処理をしたボリ
パラギシリレン層(2000λの厚さ)をイj゛する透
明′th:極2a’Q持つ7059スジイドガラス1a
を圧カイした。充分エポキシ1ijj脂を熱硬化さぜた
後これを真空槽内にゲストホスト液晶と共に入れ、ロー
タリーポンプで〜lXl0”−2々にリークしなから真
空槽内を常圧にして雑光ノー5と透明電極2aの間にゲ
ストホスト液晶を満し/ζ鏝、エボギシ樹Jjiで開口
を塞ぎ密封した。 尚、この液晶の配向け、ホモジーニアス配向で必る。ゲ
ストホスト液晶には、メルク社製ネマデイツクa 12
91にBDIIケミカル社製アンスラギノン系ブルーダ
イD5を重量比で0.5%分散させたものを用いた。上
記液晶のクリアリングポイントは107°Cであシ、閾
値電圧は2.2Vである。透り」基板la上に日東電工
製偏光フィルムN1)li’−Q−12にュートラルグ
レー)を着プ装置を完成し/ζ。 第7図にこの液晶ライトバルブ装置41M込んだ投影装
置の概略図を示す。101は、白色拡散面をもつスクリ
ーン、102は、投影光用ハロゲンランプ、103は、
投影光をミラー1()4に集光する為のレンズ、105
は、ゲストホスト液晶ライトバルブ装置106で拳]−
!形成された投影像をスクリーン101に20倍に拡大
するレンズである○107はポリゴンミラーで、督込用
光源109から射出され、集光レンズ108で集光され
たHe −Neレーザーを光導′低層面上の予定された
位置に100μmOのスポットで投射する。 ここで、本実施例の投影像の形成、消去及び、スクリー
ン」二に投影された結果について簡単に述べる。 透明電極2aと2bに直流’tu圧を2bイJIQが負
極になるようにして4.2v印加した。ポリゴンミラー
107を駆動しながら書込用Ile −Neレーザーを
透明基板1b全通して光導WJti9に投射した。’+
JL圧印加時間20m5ec、レーザーの書込強度、2
00μ’JJ / crAで予定した投影像をゲストホ
スト液晶に形成し、■00μW / ctlのハロゲン
ランプによる投影光で投影像をスクリーン上に投影した
。・taられたスクリーン上の像のコントラストは、明
III ’1iINの反射光強度で最大6:1であった
。 投影像の消去は、透明電極2aと2bとの間VCI K
I4.zの交流車圧2Vを20m5ec印加して行った
。 このとき、光専珀:層9の逆方向暗抵抗率は】OI″S
、l −cut以上で、順方向暗抵抗率は0易所ムラが
あるが)108〜109Ω・篩であった。 又、前記ポリパジキシリレンは透明′電極2a或は遮光
ノー5からのイオン注入を阻止し、液晶の寿命を増大さ
せる上で有効に作用した。 実施例2 実施例1と同様にして透明基板lb上の透明′電極2b
面にptを蒸着し、次いで、a−8i−H層9bを堆積
した。このa−8i−H層9b上に次に示す条件でn層
9cをxoooXの厚さに堆積した〇く堆積条件〉 PB = I X 10−”Torrのもとで5in4
/if、−10%CD カスを2 SCCM、 PH,
/ll2=1001)I)M (7)ガスを10800
M導入してガス圧を0.1 Torrとし、Ta=20
0°0、RFパワー=8Wで16分間、堆積する。 この様にして得たn層を写真蝕刻法によp第3図示の反
射ミラーと同一形状にパターニングした。因に、このと
きの光導゛1区層9のバンドダイアグラムは第6図(I
I)の様になる。 次に、得られた9層9c上に実施例1と同様にして反射
ミラー8、透光性絶縁層7、遮光層5を形成し、配向処
理したポリバラギシリレン層を有する遮光層5と透明電
極2aとの間にゲストホスト液晶を密封した後、偏光板
lOを透明基板la上に装着して本実施例の液晶ライト
バルブ装置を完成した。このライトバルブ装置を組込ん
だ第7図の装置を用いて、実施例1と同様に操作して曹
込光伯号に応じた像がスクリ−ンJ旧上に再生された。 但し、投影像を形成するとき、透明電極2aと2bとに
印加する1「圧は4.3■であった。 又、投影像の消去動作も実施例1と同一条件で行ったが
、光2.4 ’fit層9の順方向暗抵抗率は108Ω
・clItで且つ、場所ムラが少なかった。 実施例3 透明基板(7059スライドガラス)la上の透明’、
lj 極(In、 (Sn) 03 ) 2 aに次に
示す条件でPJM 9 a ’tc 100Aの厚さに
堆積しfc。 〈堆積条件〉 pH= 1− X ]、 01Torrのもとで5il
I4/H2= 10%のガス’x 4  ScCM 1
13.Ha/lIy too PPMのガスを1()S
00M導入してガス正金0.ITorrとし、Ts=2
50 ’C,RFパワー=10Wで100秒間、堆積し
た。こうしてイ↓tら、tシた13層9a上に実施例1
と同様にしてa Si If層91)を堆積し、次いで
、実施例2と同一条件でnJiij9cを堆積しノ々タ
ーニングした後、実hi!i例へ1と同様にして反射ミ
ラー8、透光性絶縁層7、遮光層5全形成し、配向処理
したポリパラキシリレン層を有する遮光層5と透明電極
2aとの間にゲストホスト液晶を密封し、偏光板10を
?!!i明基板la上に装着して本実施例の液晶ライト
パルプ装置を完成した。本実施例における光導電層9の
バンドダイアグラムは第6図fblのようになり、逆方
向暗抵抗率は101!Ω・CnL以−ヒ、順方向暗抵抗
率は108Ω・鑞で場所ムラは少なかった。実施例1と
同様にして書込光信号に応じた像がスクリ−ン101上
に再生された。その際の投影像形成の駆動印加′4圧は
実施例2と同様に4.3 Vである。 投影像の消去動作も実施例1と同一条件で行うことがで
きた。 実施例4 透明基板(7059スライドガラス)Ia上の透明′電
極(In、 (Sn) Os ) 2 a上にa−8t
−N−IIから成る透光性絶縁膜9afc、実施例1に
於て透光性絶縁層7を作製した条件と同一条件で200
OAの厚さに形成した。次いで、実施例1と同様にして
a−8i−4I層9bを堆積した後、実施(タリ2と同
−条件でnN9cを形成しパターニングする。次いで、
実施例1と同様にして反射ミラー8、透光性絶縁層7、
遮光層5を形成し、配向処理したポリパラキシリレン膜
を有する遮光層5と透明電極2aとの間にゲストホスト
液晶を密刊し、偏光板10を透明基板la上に装着し、
本実施例の液晶ライトパルプ装置を完成した。 本実施例における光導′酸層9のバンドダイアグラムは
第6図+C1のようになり、実施例2及び実施例3と同
様にその逆方向暗抵抗率は1O13Ω・CIrL以」二
、順方向暗抵抗率は10”Ω・口であり、場j’)iム
ラは少なかった。 この液晶ライトバルブ装置を組込んだ第7図の装置を用
いて、実施例1と同様の操作で書込光信号に応じた像が
スクリーン101上に再生さ/ 同一条件にて行うことができた。 以上に詳しく説ゆ]した本発明の′祇気光学装置によれ
ば、 ■、 直流’fit圧駆動によって電気光学効果全利用
した表示が可能であって、その際、動画表示が容易であ
る。 2、′ホ圧の巾が広くとれて、駆動’Lii IIHの
制御が容易である。 3、投影像を形成したとき、表示面全体C画質が安定し
ている。 4、装置が長寿命である。 5、装置構成要素、とりわけ、反射ミラーの構造が簡略
で、装置it f−コンパクトにすることができる。 6、反射ミラー要素によって直流′ぼ圧駆動に於けるフ
ォトキャリアの受容がIJT f7i:である。等々の
諸効果が得られる。
[Apply u field. At this time, in the region onto which the signal beam is projected, the generated gear (r4 child indicated by O in the figure) moves to the above-mentioned 1 bound V-koyoshi anti-MJ min-8. by this,
The partial pressure between the polarization pole 2a and the reflection mirror 8 increases through the entire through-hole 6 and exceeds the threshold, and in the liquid crystal layer 3, liquid crystal molecules 3α and dye 3β with positive certified anisotropy and changes from a homogeneous orientation state to a homeotropic orientation state. That[-
Here, when the projection light is projected through the polarizing plate 10, the polarized light passes through the light 6;i! i and reaches the reflecting mirror 8, where it is reflected to obtain reflected light RI,2. On the other hand, in areas where the signal beam is not incident, no photocarriers are generated, so key)! The rear remains at the transparent Ql electrode 2b and does not move to the reflective mirror 8. Therefore, in this case, the voltage applied to the liquid crystal layer 3 does not exceed the threshold value, and the liquid crystal molecules 3α and the dye 3β are maintained in a homogeneous alignment state. Therefore, the projection light (polarized light) incident thereon is absorbed by the dichroic dye 3β in the liquid crystal layer 3, and the reflected light RL from the reflecting mirror 8 is reflected light 11L. The amount of light is less compared to . In this way, a projected image (an image to be projected) is formed based on the difference in reflected scenes, and the image generated in the liquid crystal layer 3 is enlarged and projected onto a screen (not shown) or the like. In addition, during the tilting process, the light shielding layer 5 and the mirror 8 prevent the signal light from leaking to the liquid crystal layer 3 side and conversely prevent the projection light from entering the photoconductive layer 9. There is. In addition, in the case of tilted operation, unless the projected image formed in the liquid crystal layer 3 is extremely fine, the projected image can be visually observed under room light without using special projection light. You can also do that. Next, a specific configuration example will be explained using FIG. 5. In the configuration example of MY 1, as shown in FIG.
Pt and Pd are placed on the transparent electrode 2b provided in b. Au or Mo 20 to 500, preferably 30 to 20
A base layer 9a is formed by focusing on the origin of the 0 hole. Then, S
A-
8i-If layer 9b is formed. This a-8t-H layer 91
J forms a Schottky barrier layer between the weak n-type semiconductor and the base layer 9a. In addition, a-8t-I-I layer 9
b is usually called the i-layer. The thickness of this layer 9b is determined depending on the relationship with other layers and the liquid crystal layer 3, but is usually 5000 A to 2.
It is in the range of 0 μm. Furthermore, in this a -Si -HJi 91) soil, 5il
PH of 100 to 20,000p to a gas mainly composed of I.
pm, preferably 1,000 to 110,000 pp, and subjected to radioactive decomposition, and the thickness is 100 to 3,000 A,
The rectifying photoconductive layer 9 is formed by forming 11 layers 9c, preferably 500 to 2000 Å. Next, similarly to the embodiment shown in FIG. 1, a reflective mirror 8 made of Al, a transparent insulating layer 7, and a light shielding layer 5 are formed, and then a polarizing plate 10 and a polarizing plate 10 are formed on both sides of another transparent substrate 1a. A transparent electrode 2a is provided, and G is formed between the light shielding layer 5 and the transparent electrode 2a.
An example of a light valve device is completed by enclosing II liquid crystal/#3. Band diagram of the photoconductive layer 9 in the light valve device thus obtained (il-FIG. 6t)
Shown in a+. As can be seen from this band diagram, when a projected image is obtained by the apparatus described in "2", the voltage applied between the transparent '#JL poles 2a and 2b is applied so that 2bIIll becomes negative. At this time, suppose that the a-Si-II layer (i/ru) is directly applied to the transparent electrode 2b without forming a Schottky barrier layer.
9b is provided, the transmission from the transparent electrode 2b to the gear rear (...
・The i-layer is weak n-type, and in this case, ・electrons) are injected, so the dark resistance of light guide ・tun Kl 9 is 10
If the resistance is between 8 and 109Ω, the result will be unexpected. On the other hand, when a Schottky barrier layer is formed as in this example, the gear injection into the photoconductive layer 9 is blocked and the dark resistance of the Jl-N light 4 cage layer 9 is 1o12 (,2・α
In order to achieve the above, it is necessary to form a projected image of expectations and Oshi.
Become iJ Noh. Moreover, when the first layer 9C in this example V is erased entirely of the projected image,
7 Transparent '1 from the reflective mirror 8 that received the first gear
However, this n M 9 c has the effect of making it possible to easily and stably sweep the entire photocarrier to the pole 2b. Similar to 8, it is necessary to divide it into multiple parts and isolate them spatially.
In reality, as shown in Figure 5, using the photo-etching method,
Mirror 8 and Kr are formed in a similar pattern. In this case, when the projected light incident as parallel light is reflected as parallel light by the reflecting mirror 8, each individual
It is necessary to make the area of the layer 9c equal to or slightly larger than that of the mirror 8. Incidentally, when the area of each n/@9c is smaller than that of the mirror 8, unevenness is formed on the surface of the mirror 80, scattering the incident light, and this appears to act as a diffuser. become. Furthermore, if this single layer 9c is not provided and the reflective mirror 8 is formed in direct contact with the a-8i-I-I layer 9b, a barrier may be formed at the interface between the two. When sweeping the photo carrier, there are often inconveniences such as uneven cine film, etc. However, if the barrier is not formed, one layer 9c can be omitted. By the way, the voltage applied to the device of this example when sweeping the first carrier is such that the transparent electrode 2b becomes positive with respect to the transparent electrode 2a, as long as the voltage applied to the liquid crystal layer 3 does not exceed the threshold value. Either a forward DC voltage or an AC voltage may be used. Next, a second configuration example will be explained. In this example, in the transparent electrode 21] soil, Jl, I in a gas mainly composed of S II5.
Iae 50-20000ppm, preferably 200
〜10000p PTN is mixed in and subjected to glow discharge decomposition, and the thickness is 30 to 100OA, gH or 50 to 3.
Form 13 layers 9a deposited on 00A. These two layers 9a
The appropriate thickness is determined in relation to the absorption of the signal beam and the formation of a depletion layer between the P7 9a and the a-8i-I (layer (i layer) 9b provided thereon). Next, in the same manner as in the first configuration example, a &i
-II Jtl 9 b -,n I'll 9 c-
After the reflective mirror 8, the transparent insulating layer 7, and the light shielding layer 5 were sequentially laminated, the liquid crystal layer 3 was sealed between the transparent electrode 2a and the light valve device was completed. The band diagram of the light guide 'tα No. 9 in this device is shown in Figure 6+l.
Shown in l. As can be seen from this, the polarity of the applied rolling pressure when forming the projected image is the same as in the first example above, and
A similar effect can be obtained. Also in this example, the first carrier can be swept from the reflective mirror 8 to the transparent electrode 2b in the same manner as in the first example. The second layer 9a includes, in addition to those described in "2", a deposited film (a-8i-I-I on P-type a-8t-C-I (film)) by glow discharge decomposition of 5III4 and ClI4.
It may be a heterojunction obtained by forming the layer 9b (i-), and the same effect can be obtained. Furthermore, in the third configuration example, the only difference is that the configuration of the photoconductive layer 9 is different from the above two examples. A liquid crystal light pulp device is completed in the same manner as above.In this example, the photoconductive layer 9 is prepared as follows.That is, on the transparent electrode 2b, a-8i-N
-I (membrane, SlO! membrane, or polyparaxylylene N'
tr Jl, 50-100OOA1 preferably 100
~aoooA and providing the transparent insulating layer 9a,
In exactly the same way as in the above two examples, the a-8t-H layers 9b, 1
A Kund diagram of the photoconductive layer 9 in this third example is shown in FIG. 6(C). In this example, the gear injection from the transparent CLI'+Ii:'+M2b to the a-8i-H layer (i layer) 91) is blocked by the insulating layer Qa &
Since the -IIi layer b is an l fill semiconductor, the voltage polarity applied when forming a projected image is exactly the same as in the above two examples, and the same effect can be obtained. Further, the photo gear rear sweeping operation can be performed in the same manner as above. As mentioned above, in the three liquid crystal light pulp devices, the P layer, a-8i-
Although the photoconducting acid layers such as the H layer (i layer) and the n layer were formed,
In addition, similar to the above, the P layer (13zl(s
(Gin is used as a doping gas), a-8i-F
-II mirror i layer), n layer (I as doping gas)
) (, etc. are used) can be formed. Incidentally, a-8i (a-8t -H, a-8i -F-
The preparation method of H), its properties, doping effects, etc. are described in detail in the ``Compilation of Technologies for Utilizing Amorphous Electronic Materials'' (Science Forum Publishing, 1981) and other documents, so please refer to them. can. Furthermore, it is easily recalled that the rectifying photoquaternary conductive layer according to the present invention includes 5eTe, A
A laminate of s2Se3, CdS, CdTe, etc. and a transparent insulating layer, a heterojunction of CdS (n type) and CdTe (p type), etc. can also be applied. Furthermore, the present invention will now be described in detail based on specific examples. Example 1 In on Corning 7059 slide glass Ib,
(Sn) 0. (made by Mitsuzaki Matsuzaki) transparent? M ih
2b, and Pt is added to it using an electron beam, Pn (base pressure) = I
A PT layer 9a was formed by vapor deposition at 80'O to a thickness of 4OA. Next, a capacitively coupled glow discharge decomposition method was used to
-3t -The thickness of the III side 9b is as follows, -width μ
m deposited. 5il (4/I(, = 50% gas is 200%
Introducing SCCM, PB = I X 10-'Torr
Gas pressure = 0.05Torr, Ts = 250°
Under C, RF = 13.56■ (z. Glow discharge decomposition with 1F power = 15W, a-8i-I
(Layer the entire glass slide for 10 hours - e1 edition - firt
hf2 piled melon. The slide glass bundle was set on the anode side. The a-8t-H layer obtained in this manner exhibits excellent photoconductivity and has a ρ value of ρ when measured with a surface type using a comb-type yakuken. (Dark resistivity)=101eΩ-m, pL(
He-Ne laser, resistivity at 1 mW/cr/I)
= 10''Ω・sieve. Next, A/ was deposited to a thickness of 200 OA on this a-8i-H layer 9b by electron beam evaporation. At this time, PB
= I X 10-'Torr1Ts = 60°C,
It was R-10. Then, by photolithography, 1
The pieces have an area of 90 μm x 90 μm and a pitch of 100 μm (
A reflecting mirror 8 (having a pattern as shown in FIG. 3) was formed. Furthermore, on this reflecting mirror 8, as follows, a-81-
A 30,001-layer N-II transparent insulating layer 7 was deposited. At this time, using the same equipment used to fabricate a-8t-II, set the substrate that underwent the above fabrication process on the 7th node side, and
= I
/I-I, = 10% in 5SCCM, pure Nil in 20 SCCMCC, with gas pressure of 0.15'f'orr and Ts = 250°C, 1RF power = 5W, and deposited for 5 hours. The volume resistivity of a-8i-N-H)- thus obtained is 101'Ω-crn or more. Next, on this a-8t-N-II transparent insulating layer 7, 1/200
OA vapor deposition was carried out, and the light shielding layer 5 having a pattern as shown in FIG. 2 was patterned by photolithography so that it overlapped with the reflecting mirror 8 in FIG. 3 (IJ was 5 μm). Therefore, the opening 6
The area of is 80 μm×80 μm. Next, polyparaxylylene was deposited on the light shielding layer 5 to a thickness of 200 OA by vapor phase pyrolysis. The polyparaxylylene was rubbed with a cotton cloth to align the liquid crystal. Around the light-shielding layer 5 (the polyparaxylylene in that part has been removed), Ae, 0. Evo・)・shiki)1'+ with powder dispersed
7059 tinned glass 1a with transparent ′th:pole 2a′Q, coated with T to a thickness of 5 μm, and then an oriented polyparaglysilylene layer (2000λ thick) applied thereon.
I was impressed. After thoroughly curing the epoxy 1ijj resin, put it in a vacuum chamber together with a guest host liquid crystal, and use a rotary pump to prevent any leakage. A guest-host liquid crystal was filled between the transparent electrodes 2a, and the opening was closed and sealed with a ζ-trowel and Ebogishi tree Jji. Note that this is necessary due to the homogeneous orientation of the liquid crystal. Nemadetsk a 12
91 and anthraginone-based Blue Dai D5 manufactured by BDII Chemical Co., Ltd. dispersed in an amount of 0.5% by weight was used. The clearing point of the liquid crystal is 107°C, and the threshold voltage is 2.2V. A device was completed for attaching Nitto Denko's polarizing film N1)li'-Q-12 (neutral gray) onto a transparent substrate la. FIG. 7 shows a schematic diagram of a projection device incorporating this liquid crystal light valve device 41M. 101 is a screen with a white diffusion surface, 102 is a halogen lamp for projection light, and 103 is
Lens 105 for condensing projection light onto mirror 1 ( ) 4
fist at the guest host LCD light valve device 106 ]-
! A polygon mirror ○107 is a lens that magnifies the formed projected image on the screen 101 by 20 times, and the He-Ne laser emitted from the collection light source 109 and focused by the condensing lens 108 is guided into the lower layer. A spot of 100 μmO is projected onto a predetermined position on the surface. Here, a brief description will be given of the formation, erasure, and results of projection images on the screen in this embodiment. A DC 'tu pressure of 4.2 V was applied to the transparent electrodes 2a and 2b with 2b and JIQ being negative electrodes. While driving the polygon mirror 107, a writing Ile-Ne laser was projected onto the light guide WJti9 through the entire transparent substrate 1b. '+
JL pressure application time 20m5ec, laser writing intensity, 2
A projected image at 00 μ'JJ/crA was formed on a guest host liquid crystal, and projected onto a screen using projection light from a halogen lamp at ■00 μW/ctl. - The contrast of the image on the captured screen was 6:1 at the maximum with the reflected light intensity of Light III '1iIN. The projected image is erased by VCI K between the transparent electrodes 2a and 2b.
I4. The test was carried out by applying an AC vehicle pressure of 2V for 20m5ec. At this time, the reverse dark resistivity of the optical layer 9 is 】OI″S
, l -cut or more, the forward dark resistivity was 108 to 109 Ω·sieve (although there was some unevenness in some places). In addition, the polypadxylylene effectively prevented ion implantation from the transparent electrode 2a or the light-shielding electrode 5, thereby extending the life of the liquid crystal. Example 2 Transparent electrode 2b on transparent substrate lb in the same manner as in Example 1
PT was deposited on the surface, and then an a-8i-H layer 9b was deposited. On this a-8i-H layer 9b, an n layer 9c was deposited to a thickness of xoooX under the following conditions.
/if, -10% CD waste 2 SCCM, PH,
/ll2=1001)I)M (7) 10800 gas
M is introduced and the gas pressure is set to 0.1 Torr, Ta=20
Deposit for 16 minutes at 0°0 and RF power = 8W. The n-layer thus obtained was patterned into the same shape as the reflecting mirror shown in FIG. 3 by photolithography. Incidentally, the band diagram of the light guide 1 section layer 9 at this time is shown in Fig. 6 (I
It will look like I). Next, a reflective mirror 8, a transparent insulating layer 7, and a light shielding layer 5 are formed on the obtained nine layers 9c in the same manner as in Example 1, and a light shielding layer 5 having an oriented polybalagi silylene layer and a transparent After sealing the guest-host liquid crystal between the electrode 2a and the electrode 2a, a polarizing plate lO was mounted on the transparent substrate la to complete the liquid crystal light valve device of this example. Using the apparatus shown in FIG. 7 incorporating this light valve device and operating in the same manner as in Example 1, an image corresponding to Sogoko Hakugo was reproduced on the screen J old. However, when forming the projected image, the pressure applied to the transparent electrodes 2a and 2b was 4.3 cm.Also, the operation of erasing the projected image was performed under the same conditions as in Example 1, but the light 2.4 The forward dark resistivity of the fit layer 9 is 108Ω
・It was clIt and there was little unevenness in location. Example 3 Transparent substrate (7059 slide glass) on la,
PJM 9 a 'tc was deposited on the lj pole (In, (Sn) 03 ) 2 a to a thickness of 100 A under the following conditions and fc. <Deposition conditions> pH = 1-X], 5 il under 01 Torr
I4/H2 = 10% gas'x 4 ScCM 1
13. Ha/lIy too PPM gas 1()S
00M introduced and gas specie 0. ITorr, Ts=2
Deposition was performed at 50'C, RF power = 10W for 100 seconds. In this way, Example 1 is placed on the 13th layer 9a.
A Si If layer 91) was deposited in the same manner as in Example 2, and then nJiij9c was deposited under the same conditions as in Example 2 and after several turnings, the actual hi! To Example i, a reflective mirror 8, a transparent insulating layer 7, and a light shielding layer 5 were all formed in the same manner as in 1, and a guest host liquid crystal was placed between the light shielding layer 5 having an aligned polyparaxylylene layer and the transparent electrode 2a. Seal the polarizing plate 10? ! ! The liquid crystal light pulp device of this example was completed by mounting it on a bright substrate la. The band diagram of the photoconductive layer 9 in this example is as shown in FIG. 6fbl, and the reverse dark resistivity is 101! For Ω・CnL, the forward direction dark resistivity was 108 Ω・sold, and there was little local unevenness. An image corresponding to the write optical signal was reproduced on the screen 101 in the same manner as in Example 1. At this time, the driving voltage '4 applied for projection image formation was 4.3 V, as in the second embodiment. The operation of erasing the projected image could also be performed under the same conditions as in Example 1. Example 4 Transparent electrode (In, (Sn) Os) on transparent substrate (7059 slide glass) Ia A-8t on 2a
-N-II transparent insulating film 9afc, 200 ml under the same conditions as those for producing the transparent insulating layer 7 in Example 1.
It was formed to the thickness of OA. Next, an a-8i-4I layer 9b was deposited in the same manner as in Example 1, and then an nN9c layer was formed and patterned under the same conditions as Tari 2.
In the same manner as in Example 1, a reflective mirror 8, a transparent insulating layer 7,
A light shielding layer 5 is formed, a guest host liquid crystal is secretly placed between the light shielding layer 5 having an aligned polyparaxylylene film and the transparent electrode 2a, and a polarizing plate 10 is mounted on the transparent substrate la.
The liquid crystal light pulp device of this example was completed. The band diagram of the light-guiding acid layer 9 in this example is as shown in FIG. The rate was 10''Ω·min, and the field j')i nonuniformity was small. Using the device shown in FIG. 7 incorporating this liquid crystal light valve device, the writing optical signal was An image corresponding to It is possible to display using all the optical effects, and in this case, it is easy to display a moving image. 2. The width of the 'E pressure is wide, and the control of the drive 'Li IIH is easy. 3. The projected image When formed, the image quality of the entire display surface is stable. 4. The device has a long service life. 5. The structure of the device components, especially the reflecting mirror, is simple and the device can be made compact. 6. Reception of photocarriers in direct current 'voltage' driving by the reflective mirror element is IJT f7i: and other effects can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図乃至第3図は、本発明装置Hの一構成例の概要説
明図、第4図は本発明装置の作動例を説明する模式図、
第5図は本発明装置に於ける光導電層の詳細構成を説明
する略lI!]I断面図、第6図+itl 、 ibl
 、 telは倒れも、バンドダイアグラムを示す略図
、第7図は、本発明装置を含む投影光学系の概略配置図
である。 図に於て、2a、、2bは透明電極、3は液晶層、3α
は液晶分子、3βは染料、5は進光層、7は透光性絶縁
層、8は反射ミラー、9は光導電層、9aは基層又はP
層又は透光性絶縁層、9bはi層、9cはnMLloは
偏光板、101はスクリーン、102はハロゲンランプ
、103゜108tよ集光レンズ、104は投影光反射
ミラー、105!J−、投影像拡大レンズ、106は液
晶ライトパルプ装置、107はポリゴンミラ−11o9
はレーザー発振源である。 特許出願人 キャノン株式会社 代理人丸島儀−詳Hf7y、:1 J゛。 K== Iき浸九燦 牢6ノ 2し  9α    9し    R8・・□ −/θ
1 to 3 are schematic diagrams illustrating an example of the configuration of the device H of the present invention, and FIG. 4 is a schematic diagram illustrating an example of the operation of the device H of the present invention.
FIG. 5 is a diagram illustrating the detailed structure of the photoconductive layer in the device of the present invention. ] I sectional view, Fig. 6 + itl, ibl
, tel is a schematic diagram showing a band diagram, and FIG. 7 is a schematic layout diagram of a projection optical system including the apparatus of the present invention. In the figure, 2a, 2b are transparent electrodes, 3 is a liquid crystal layer, 3α
is a liquid crystal molecule, 3β is a dye, 5 is a light propagation layer, 7 is a transparent insulating layer, 8 is a reflective mirror, 9 is a photoconductive layer, 9a is a base layer or P
9b is an i layer, 9c is an nMLlo is a polarizing plate, 101 is a screen, 102 is a halogen lamp, 103°108t is a condensing lens, 104 is a projection light reflecting mirror, 105! J-, projection image magnifying lens, 106, liquid crystal light pulp device, 107, polygon mirror 11o9
is the laser oscillation source. Patent Applicant Canon Co., Ltd. Agent Gi Marushima - Details Hf7y: 1 J゛. K== I immersion 9 kan 6 no 2 9α 9 shi R8...□ -/θ

Claims (1)

【特許請求の範囲】[Claims] 液晶層及び光導電層を具え、光による入力像を光電効果
によって投影像に変換する電気光学装置に於いて、前記
光導電層が整流性を示すこと、並びに、複数の透孔を有
する遮光層及び、この遮光層の片面に接した透光性の絶
縁層を介して前記透孔の各々に対面し且つ互に分離した
複数の反射鏡を前記液晶層と光導11j層との間に介在
させて成ることを特徴とする電気光学装置。
An electro-optical device comprising a liquid crystal layer and a photoconductive layer and converting an input image of light into a projected image by a photoelectric effect, wherein the photoconductive layer exhibits rectifying properties, and a light shielding layer having a plurality of through holes. A plurality of reflective mirrors facing each of the through holes and separated from each other are interposed between the liquid crystal layer and the light guiding layer 11j, and facing each of the through holes via a light-transmitting insulating layer that is in contact with one side of the light-shielding layer. An electro-optical device comprising:
JP56133149A 1981-07-10 1981-08-25 Electro-optical device Granted JPS5834435A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP56133149A JPS5834435A (en) 1981-08-25 1981-08-25 Electro-optical device
US06/396,051 US4538884A (en) 1981-07-10 1982-07-07 Electro-optical device and method of operating same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56133149A JPS5834435A (en) 1981-08-25 1981-08-25 Electro-optical device

Publications (2)

Publication Number Publication Date
JPS5834435A true JPS5834435A (en) 1983-02-28
JPS6230615B2 JPS6230615B2 (en) 1987-07-03

Family

ID=15097856

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56133149A Granted JPS5834435A (en) 1981-07-10 1981-08-25 Electro-optical device

Country Status (1)

Country Link
JP (1) JPS5834435A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62502074A (en) * 1985-07-25 1987-08-13 ヒユ−ズ・エアクラフト・カンパニ− Reflection matrix mirror - visible light - infrared light conversion tube light valve
JPH03221919A (en) * 1990-01-29 1991-09-30 Victor Co Of Japan Ltd Information recording medium
EP0560289A3 (en) * 1992-03-10 1994-01-26 Sharp Kk
US5324549A (en) * 1991-12-18 1994-06-28 Sharp Kabushiki Kaisha Method of fabricating photoconductor coupled liquid crystal light valve
US5583676A (en) * 1993-09-02 1996-12-10 Matsushita Electric Industrial Co., Ltd. Spatial light modulator, method of production thereof and projection-type display
US5602659A (en) * 1992-02-21 1997-02-11 Sharp Kabushiki Kaisha Liquid crystal light valve with photoconductor including light absorbing and light blocking layers of non-alloy amorphous silicon
US5693958A (en) * 1995-01-25 1997-12-02 Sharp Kabushiki Kaisha Light-writing-type liquid crystal element having a photoconductor between carrier blocking layers

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63288725A (en) * 1987-05-20 1988-11-25 Ube Ind Ltd Injection molder

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62502074A (en) * 1985-07-25 1987-08-13 ヒユ−ズ・エアクラフト・カンパニ− Reflection matrix mirror - visible light - infrared light conversion tube light valve
JPH03221919A (en) * 1990-01-29 1991-09-30 Victor Co Of Japan Ltd Information recording medium
US5324549A (en) * 1991-12-18 1994-06-28 Sharp Kabushiki Kaisha Method of fabricating photoconductor coupled liquid crystal light valve
US5602659A (en) * 1992-02-21 1997-02-11 Sharp Kabushiki Kaisha Liquid crystal light valve with photoconductor including light absorbing and light blocking layers of non-alloy amorphous silicon
EP0560289A3 (en) * 1992-03-10 1994-01-26 Sharp Kk
US5583676A (en) * 1993-09-02 1996-12-10 Matsushita Electric Industrial Co., Ltd. Spatial light modulator, method of production thereof and projection-type display
US5693958A (en) * 1995-01-25 1997-12-02 Sharp Kabushiki Kaisha Light-writing-type liquid crystal element having a photoconductor between carrier blocking layers

Also Published As

Publication number Publication date
JPS6230615B2 (en) 1987-07-03

Similar Documents

Publication Publication Date Title
US4538884A (en) Electro-optical device and method of operating same
US5594567A (en) Spatial light modulator with a photoconductor having uneven conductivity in a lateral direction and a method for fabricating the same
US5583676A (en) Spatial light modulator, method of production thereof and projection-type display
JPS5834435A (en) Electro-optical device
US5471331A (en) Spatial light modulator element with amorphous film of germanium, carbon and silicon for light blocking layer
JPH0752268B2 (en) Optical writing type liquid crystal element
Takizawa et al. Reflection mode polymer-dispersed liquid crystal light valve
WO1987000643A1 (en) Reflective matrix mirror visible to infrared converter light valve
US5309262A (en) Optically addressed light valve system with two dielectric mirrors separated by a light separating element
JP3071650B2 (en) Manufacturing method of liquid crystal display device
Grinberg et al. Liquid-crystal electro-optical modulators for optical processing of two-dimensional data
JP3202574B2 (en) Optical writing type liquid crystal element
JPS6257016B2 (en)
JPS5835516A (en) Electrooptic device
JPH03110524A (en) Space optical modulating element
JP2724207B2 (en) Ferroelectric liquid crystal element and optical writing type liquid crystal display
JP3070252B2 (en) Spatial light modulation element and display device
CN107783339B (en) Wide-viewing-angle liquid crystal spatial light modulator
JP2769395B2 (en) LCD light valve
JPH03130720A (en) Display device
JPH08122811A (en) Space light modulating element and its manufacture
Kangcheng et al. A-Si: H-based LCLV with an CdTe and VOPc multiple absorption layers
JPH10325948A (en) Reflection type picture display device
JPH0784282A (en) Production of spatial optical modulator
JPH08286205A (en) Spatial optical modulation element and projection type display