JPS5834385A - Method of coating high-temperature plasma vessel inner wall - Google Patents

Method of coating high-temperature plasma vessel inner wall

Info

Publication number
JPS5834385A
JPS5834385A JP56133679A JP13367981A JPS5834385A JP S5834385 A JPS5834385 A JP S5834385A JP 56133679 A JP56133679 A JP 56133679A JP 13367981 A JP13367981 A JP 13367981A JP S5834385 A JPS5834385 A JP S5834385A
Authority
JP
Japan
Prior art keywords
coating
wall
container
plasma
temperature plasma
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP56133679A
Other languages
Japanese (ja)
Inventor
良彦 土井
陽 土居
直治 藤森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP56133679A priority Critical patent/JPS5834385A/en
Publication of JPS5834385A publication Critical patent/JPS5834385A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/10Nuclear fusion reactors

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 高温高密度のプラズマ装置は各種の核融合炉に代表され
る如く高エネルギープラズマを閉じ込めることが重要な
課題である。多くの場合、磁場を用いてプラズマが真空
容器と直接液しないようにしているが、それでも各種の
イオンによって容器壁面がスパッタリングされる。スパ
ッタリングされた壁面物質がプラズマ中に混入するとプ
ラズマからのエネルギー損失が(原子番号)に比例して
大きくなり高エネルギー状態を維持することが困難とな
る。壁面物質がプラズマに混入した場合、エネルギー損
失は汚染元素の原子番号に依存し、低原子番号の物質程
エネルギー損失を低く抑えることができると云われてい
る。
DETAILED DESCRIPTION OF THE INVENTION An important issue for high-temperature, high-density plasma devices is to confine high-energy plasma, as typified by various nuclear fusion reactors. In many cases, magnetic fields are used to prevent the plasma from directly contacting the vacuum vessel, but the vessel walls are still sputtered by various ions. When sputtered wall material mixes into the plasma, energy loss from the plasma increases in proportion to (atomic number), making it difficult to maintain a high energy state. It is said that when wall materials are mixed into plasma, energy loss depends on the atomic number of the contaminating element, and the lower the atomic number of the material, the lower the energy loss can be suppressed.

従って、プラズマに接する容器壁面をSiC,C。Therefore, the wall surface of the container in contact with the plasma is made of SiC or C.

TiC,TiN等の物質で構成することが有利であると
されている。しかし、これらの物質は本質的に強度が低
く、熱衝撃にも弱いので単体として用いるには構造状の
制約が大きく、特に大型のプラズマ容器では使用するこ
とがむつかしい。しかし、容器内表面をこれ等の物質で
被覆するだけでもプラズマに与える影響を低く抑えるこ
とは可能であり被覆により内壁を低原子番号の物質化す
ることは有力な手段となっている。これ等被覆膜もプラ
ズマからのスパッタリングにより次第に消耗し、やがて
は下地物質が出てくることになるが、商業用核融合炉で
は1m/年以上のスパッター速度と予想されており、こ
のように厚い被覆がむつかしいのと共に厚い被膜ではそ
の性質が単体と変らない等の欠点も指摘されている。薄
くなった被膜を下地ごと交換するのは高真空容器の内部
では極めて煩雑であるし、核融合炉に至っては放射能汚
染で不可能に近い。
It is said that it is advantageous to use materials such as TiC and TiN. However, these materials inherently have low strength and are susceptible to thermal shock, so their use as a single substance is subject to severe structural restrictions, and it is particularly difficult to use them in large plasma vessels. However, it is possible to suppress the influence on the plasma by simply coating the inner surface of the container with these substances, and making the inner wall a material with a low atomic number by coating has become an effective means. These coating films are also gradually consumed by sputtering from the plasma, and the underlying material will eventually come out, but in a commercial fusion reactor, the sputtering speed is expected to be over 1 m/year, so It has been pointed out that it is difficult to make a thick coating, and that the properties of a thick coating are no different from those of a single substance. Replacing the thinned coating along with its base is extremely troublesome inside a high-vacuum vessel, and is nearly impossible in a fusion reactor due to radioactive contamination.

発明者らはこれ等の問題に鑑み、プラズマ容器において
、低原子番号の物質を被覆する方法について検討し本発
明に至ったものである。SjC,Tie。
In view of these problems, the inventors investigated a method of coating a plasma vessel with a substance having a low atomic number and arrived at the present invention. SjC, Tie.

TiN等の化合物を被覆するにはイオンブレーティング
法が下地に与える影響が少いために好適である。
Ion blating is suitable for coating compounds such as TiN because it has little effect on the underlying layer.

イオンブレーティングは金属を電子ビーム等で溶解し、
発生した蒸気をプラズマ化させ被覆物体上でN2やCH
4等の雰囲気ガスとの反応によって上述の化合物を作る
。従って、溶解する金属がこぼれ落ちないような幾何学
な位置関係で被覆できる場所や形状が決定されてしまう
。プラズマ容器では上面や下面に被覆が必要であり、こ
のようなイオンブレーティング法では容器内での被覆は
不可能である。
Ion blating melts metal with an electron beam, etc.
The generated vapor is turned into plasma and converted to N2 and CH on the coated object.
The above-mentioned compounds are produced by reaction with an atmospheric gas such as No. 4. Therefore, the locations and shapes that can be coated are determined based on geometrical relationships that prevent the molten metal from spilling out. Plasma vessels require coating on the top and bottom surfaces, and such ion blating methods cannot coat the inside of the vessel.

本発明は、蒸発源としてアーク放電を用いることによっ
てプラズマ容器内で化合物の被覆をどの容器内面にも均
一に行うことを可能とするものである。蒸発させたい2
本(1対)の該化合物金属製電極間にアーク放電を起し
、この電極と容器との間にバイアスをかけ、反応容器内
を反応ガス雰囲気にすることにより容器内壁面に化合物
の被覆が可能となる。
The present invention makes it possible to uniformly coat any inner surface of a plasma vessel with a compound by using an arc discharge as an evaporation source. I want to evaporate 2
An arc discharge is caused between the compound metal electrodes (a pair), a bias is applied between the electrodes and the container, and a reaction gas atmosphere is created in the reaction container, thereby coating the inner wall of the container with the compound. It becomes possible.

本発明が容器内被覆法として優れている点は次の通りで
ある。
The advantages of the present invention as a method for coating inside containers are as follows.

■壁面の方向にかかわらず被覆が可能。■Can be coated regardless of the direction of the wall surface.

■蒸発源の重量が極めて小さいので操作用治具が簡単で
ある。
■Since the weight of the evaporation source is extremely small, the operating jig is simple.

■被覆面との距離が自由にとれ膜厚の制御が容易である
■The distance to the coated surface can be set freely, making it easy to control the film thickness.

■蒸発源の位置カゴ自由に変えられる。■The location of the evaporation source can be changed freely.

■蒸発源が複数個容易にとりつけられる。■Multiple evaporation sources can be easily installed.

なお、本発明はイオン化を促進する方法がいがなる方法
でも良く、直流電流、高周波電力、マイクロ波、レーザ
ー等においてもその効果は同じである。
Note that the present invention may be applied to any method for promoting ionization, and the effect is the same even when using direct current, high frequency power, microwave, laser, etc.

被覆物質はB4C,Tie”SやC%BN、 Si3N
+ 、TiN、 VN。
The coating material is B4C, Tie”S, C%BN, Si3N
+, TiN, VN.

AiN等の窒化物が実用的であるが、目的によっては他
の化合物においても本発明の効果は損われない。以下実
施例によって説明する。
Although nitrides such as AiN are practical, other compounds may be used depending on the purpose without impairing the effects of the present invention. This will be explained below using examples.

実施例1゜ 垂直断面が500Bφの直径を有し、長さ3mのステン
レス容器内に1対のTiの放電電極を設け、10 ’ 
TorrのN2を導入した。該Ti電極に1500vの
電圧をかけて放電を起しTiNの被覆を行った。
Example 1 A pair of Ti discharge electrodes was provided in a stainless steel container with a vertical cross section of 500 Bφ and a length of 3 m.
Torr N2 was introduced. A voltage of 1500 V was applied to the Ti electrode to generate a discharge, thereby coating the Ti electrode with TiN.

電極と容器の間には500Vの電圧をかけ、長手方向に
放電電極を移動し容器内壁面全体にTANを被覆した。
A voltage of 500 V was applied between the electrode and the container, and the discharge electrode was moved in the longitudinal direction to coat the entire inner wall surface of the container with TAN.

この容器内壁のTiN被覆厚さを調べたところ全面にわ
たって20μ±1.5μ であった。
The thickness of the TiN coating on the inner wall of this container was examined and was found to be 20μ±1.5μ over the entire surface.

実施例2゜ 実施例1に示した容器にて、エタンガスを5×10−5
Torrの雰囲気とし、容器内に設けられたSi円板と
Si棒の間に放電を起して、実施例1と同様5− に容器内壁全体にSiCを被覆した。厚さは20μ±0
.8μ程度のばらつきであった。
Example 2゜In the container shown in Example 1, 5 x 10-5 ethane gas was added.
The atmosphere was set to Torr, and electric discharge was generated between the Si disk and the Si rod provided in the container, and the entire inner wall of the container was coated with SiC in the same manner as in Example 1. Thickness is 20μ±0
.. The variation was about 8μ.

実施例3゜ 実施例1と同様の装置にふ・いて、B粉末の成型体捧を
電極としてアーク放電を起し、容器内をプロパン10 
’ Torrの雰囲気にしてB、Cの被覆を行った。得
られたB4C被覆層の厚さは30μ±3μであった。
Example 3 Using the same apparatus as in Example 1, an arc discharge was generated using a molded body of B powder as an electrode, and 10% of propane was charged inside the container.
' B and C were coated in an atmosphere of Torr. The thickness of the obtained B4C coating layer was 30μ±3μ.

以上説明した如く、本発明によりプラズマ装置内で高エ
ネルギーのプラズマ状態を維持することが可能となり、
高温、高密度のプラズマを広く利用することが可能とな
った。
As explained above, the present invention makes it possible to maintain a high-energy plasma state within a plasma device,
It has become possible to widely utilize high-temperature, high-density plasma.

6−6-

Claims (2)

【特許請求の範囲】[Claims] (1)容器内壁面を化合物で被覆するに当り、容器内を
該化合物の非金属元素を分解する雰囲気とし、1対の該
化合物金属元素の電極間にアーク放電をおこして該金属
元素を蒸発し容器内表面に該化合物を被覆することを特
徴とする高温プラズマ容器内壁の被覆方法。
(1) When coating the inner wall surface of the container with a compound, the inside of the container is made into an atmosphere that decomposes the nonmetallic elements of the compound, and an arc discharge is generated between a pair of electrodes of the metal element of the compound to evaporate the metal element. A method for coating an inner wall of a high-temperature plasma container, the method comprising coating the inner surface of the container with the compound.
(2)被覆すべき該化合物がB4C,BN、 SiC,
5t3N4、TiC,TiN、 VC,VN より選ば
れた1種以上であることを特徴とする特許請求の範囲第
(1)項記載の高温プラズマ容器内壁の被覆方法。
(2) The compound to be coated is B4C, BN, SiC,
5t3N4, TiC, TiN, VC, and VN. 5t3N4, TiC, TiN, VC, VN.
JP56133679A 1981-08-25 1981-08-25 Method of coating high-temperature plasma vessel inner wall Pending JPS5834385A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56133679A JPS5834385A (en) 1981-08-25 1981-08-25 Method of coating high-temperature plasma vessel inner wall

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56133679A JPS5834385A (en) 1981-08-25 1981-08-25 Method of coating high-temperature plasma vessel inner wall

Publications (1)

Publication Number Publication Date
JPS5834385A true JPS5834385A (en) 1983-02-28

Family

ID=15110341

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56133679A Pending JPS5834385A (en) 1981-08-25 1981-08-25 Method of coating high-temperature plasma vessel inner wall

Country Status (1)

Country Link
JP (1) JPS5834385A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60166887A (en) * 1983-10-28 1985-08-30 日本原子力研究所 First wall member for nuclear fusion device and manufacture
JPH01249661A (en) * 1988-03-30 1989-10-04 Japan Atom Energy Res Inst Ceramic material for nuclear fusion reactor
JPH02184570A (en) * 1989-01-10 1990-07-19 Japan Atom Energy Res Inst Ceramics material for nuclear fusion reactor
EP0849767A3 (en) * 1996-12-19 2001-03-21 Applied Materials, Inc. Boron carbide parts and coatings in a plasma reactor

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60166887A (en) * 1983-10-28 1985-08-30 日本原子力研究所 First wall member for nuclear fusion device and manufacture
JPH038713B2 (en) * 1983-10-28 1991-02-06 Nippon Genshiryoku Kenkyusho
JPH01249661A (en) * 1988-03-30 1989-10-04 Japan Atom Energy Res Inst Ceramic material for nuclear fusion reactor
JPH02184570A (en) * 1989-01-10 1990-07-19 Japan Atom Energy Res Inst Ceramics material for nuclear fusion reactor
JPH0585508B2 (en) * 1989-01-10 1993-12-07 Japan Atomic Energy Res Inst
EP0849767A3 (en) * 1996-12-19 2001-03-21 Applied Materials, Inc. Boron carbide parts and coatings in a plasma reactor
US6808747B1 (en) 1996-12-19 2004-10-26 Hong Shih Coating boron carbide on aluminum
KR100588265B1 (en) * 1996-12-19 2006-08-30 어플라이드 머티어리얼스, 인코포레이티드 Boron carbide parts and coatings in a plasma reactor

Similar Documents

Publication Publication Date Title
US4094764A (en) Device for cathodic sputtering at a high deposition rate
US4179351A (en) Cylindrical magnetron sputtering source
US4430184A (en) Evaporation arc stabilization
JP3842166B2 (en) Room temperature chemical vapor deposition system using electron cyclotron resonance and method for producing composite metal film using the same
JPS5834385A (en) Method of coating high-temperature plasma vessel inner wall
US3347772A (en) Rf sputtering apparatus including a capacitive lead-in for an rf potential
US4399013A (en) Method of producing a magnetic recording medium
Spencer et al. Activation of reactive sputtering by a plasma beam from an unbalanced magnetron
GB991840A (en) Improvements in or relating to methods of vacuum plastic coating
Bertelsen Silicon monoxide undercoating for improvement of magnetic film memory characteristics
Mattox Design considerations for ion plating
JPS54141111A (en) Method and apparatus for production of magnetic recording medium
JP2002097569A (en) Surface processing method in vacuum
Clarke et al. Magnetic field and substrate position effects on the ion/deposition flux ratio in magnetron sputtering
JP2857743B2 (en) Thin film forming apparatus and thin film forming method
Fukami et al. Target erosion pattern in planar magnetron sputtering
JPS6321572Y2 (en)
JPS5671831A (en) Manufacture for magnetic recording medium
JPS62235466A (en) Vapor deposition material generator
Grabec Nonlinear ionization waves
Grigoriev et al. Combined processing of optical parts through surface polishing with a beam of fast argon atoms and deposition of nanostructured protective films by magnetron target sputtering
JPS58100672A (en) Method and device for formation of thin film
Brown et al. RESPONSE OP A LANGMUIR PROBE IN A STRONG MAGNETIC FIELD
Bozeman et al. Electron field emission from amorphous carbon-cesium alloys
Van den Berg et al. Gas gain stability in MSGCs and MGCs at high-rate operation