JPS5834185A - Cathode for electrolysis - Google Patents

Cathode for electrolysis

Info

Publication number
JPS5834185A
JPS5834185A JP56130183A JP13018381A JPS5834185A JP S5834185 A JPS5834185 A JP S5834185A JP 56130183 A JP56130183 A JP 56130183A JP 13018381 A JP13018381 A JP 13018381A JP S5834185 A JPS5834185 A JP S5834185A
Authority
JP
Japan
Prior art keywords
nickel
cathode
nickel oxide
coating layer
sacrificial metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP56130183A
Other languages
Japanese (ja)
Inventor
Hiroshi Miyaji
宮地 洋
Akiyoshi Manabe
明義 真鍋
Hiroyuki Harada
博之 原田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ThyssenKrupp Nucera Japan Ltd
Original Assignee
Chlorine Engineers Corp Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chlorine Engineers Corp Ltd filed Critical Chlorine Engineers Corp Ltd
Priority to JP56130183A priority Critical patent/JPS5834185A/en
Publication of JPS5834185A publication Critical patent/JPS5834185A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electrodes For Compound Or Non-Metal Manufacture (AREA)

Abstract

PURPOSE:To provide an electrode for electrolysis which has a low hydrogen overvoltage, corrosion resistance to alkalis, and excellent retentivity of activity by providing a coating layer of nickel oxide by melt spraying on the surface of a conductive base body. CONSTITUTION:A base body which consists of Fe, Ni, Cu or their alloys, more preferably their alloys and is melt sprayed with Ni is used as a conductive base body. A coating layer of nickel oxide of >=20mu thicknes, more particularly about 50-200mu is provided by melt spraying on the surface of said base body. Here, powder of about 5-200mu is used for the nickel oxide which is a melt spraying source, and the melt spraying may be either of plasma spraying or fire spraying. The cathode having such melt sprayed coating of nickel oxide is better in hydrogen overvoltage and corrosion resistance than cathodes having melt sprayed coatings of nickel.

Description

【発明の詳細な説明】 本発f1杜、アルカリ金属〕s g /ン化物水S*中
アルカリ水溶II[勢の電解に用いるOtc適し九電解
用陰極に関するものであシ、水素過電圧が低く、アルカ
リに対して耐食性があシ且つ活性持続性が優れた電解用
陰極を提供するものである。
Detailed Description of the Invention The present invention relates to a cathode for electrolysis suitable for use in the electrolysis of alkali metals, alkali metals, s g / oxides in water S*, and a cathode for electrolysis. An object of the present invention is to provide a cathode for electrolysis that is resistant to corrosion against alkali and has excellent durability of activity.

従来、アルカリ金属)10ゲン化物水IIIIII1等
の電解に用いる陰極として社、鉄部が用いられてきたが
、これらは水素過電圧がTotJ>低くないので、電力
費の高騰に伴い、よシ低い水素過電圧の陰極の開発が必
費となう九。
Conventionally, iron parts have been used as cathodes for electrolysis of alkali metal) 10-genide water III, etc., but since the hydrogen overvoltage of these is not lower than TotJ, with the rise in electricity costs, much lower hydrogen overvoltages have been used. 9. Development of an overvoltage cathode is necessary.

現在、水素過電圧の点から有力視されているのはxyケ
ルの多孔質被覆を有する陰極であ゛漬、多孔質ニッケル
被覆層の形成方法として、粉末状のニッケルを溶射によ
シ鉄系素地に四着させゐ方法(#Mli52−3285
2)、粒子状= y ? k ト粒子状アルミ1ウムの
1合糎車を湊射後アル々具つムを溶出する方法(特開4
52−34583)、及びニッケルとアルイエりムO相
互拡散合金層からアル建具りムを溶出してラネーニッケ
ルの表面層を形成する方法(特開昭55−81484)
$がある。
Currently, from the point of view of hydrogen overvoltage, the most promising method is to immerse the cathode with a porous coating of How to make it wear four (#Mli52-3285
2), Particulate = y? k A method of eluating aluminum after pouring a paste wheel containing 1 um of particulate aluminum (Unexamined Japanese Patent Publication No. 4)
52-34583), and a method for forming a surface layer of Raney nickel by eluting Al fitting rim from a nickel and Al rim O interdiffusion alloy layer (Japanese Patent Laid-Open No. 55-81484)
There is $.

しかしながら、溶射法によ多形成されるニッケルの被覆
層は、化学的耐食性の点で不十分であシ、電解槽の通電
停止時の電流変化に基づく陽分極によn=ニッケル溶出
が起とpやずいという問題が参った0本発明看は、金属
よシも化学的耐食性に優れ、且つ陽分極によ)影響を受
けない材質について、連射O可能性及び電気化学的特性
を検討し、水素過電圧及び耐食性ともに優れ九電解用陰
極を提供すべく研究した結果、溶射される材質として酸
化ニッケルを見い出し、本発明に到達したものである。
However, the nickel coating layer formed by thermal spraying is insufficient in terms of chemical corrosion resistance, and n = nickel elution occurs due to anodic polarization due to current changes when the electrolytic cell is stopped energizing. The present inventor has investigated the possibility of continuous O radiation and the electrochemical properties of materials that have excellent chemical corrosion resistance, even metals, and are unaffected by anodic polarization. As a result of research to provide a cathode for electrolysis with excellent hydrogen overvoltage and corrosion resistance, nickel oxide was discovered as a material to be thermally sprayed, and the present invention was achieved.

本願第1の発明は、導電性基体表面上に、溶射によpH
化ニッケルの被覆層を設けてなる電解用陰極に関する。
The first invention of the present application provides pH adjustment by thermal spraying onto the surface of a conductive substrate.
The present invention relates to an electrolytic cathode provided with a coating layer of nickel oxide.

まえ、本願第2の発明は、導電性基体表面上に、溶射に
よ〉酸化ニッケルと犠牲金属との混合被覆層を設は九畿
、腋被榎層よル犠牲金属を溶出除去してなる電解用陰極
に関する。
The second invention of the present application is to form a mixed coating layer of nickel oxide and sacrificial metal on the surface of a conductive substrate by thermal spraying, and to remove the sacrificial metal from the underarm layer by elution. Regarding cathodes for electrolysis.

導電性基体としては、鉄、ニッケル、鋼又れこれらの合
金等が用いられるが、酸化ニッケルの又は酸化ニッケル
を含む溶射層との結合力を高めるために鉄、ニッケル、
銅又はこれらの合金からなる基材上にニッケルを溶射し
たものを基体として用いるのが望ましい。
Iron, nickel, steel, or alloys thereof are used as the conductive substrate, but iron, nickel,
It is desirable to use a substrate made of copper or an alloy thereof with nickel sprayed on it.

本願第1の発明においては、導電性基体表面上に、溶射
によシ酸化ニッケルの被覆層を設ける。
In the first invention of the present application, a coating layer of nickel silica is provided on the surface of the conductive substrate by thermal spraying.

酸化ニッケルは5〜200μ程度の粉末を使用する。溶
射は、プラズマ溶射、火炎溶射のいずれでもよく、溶射
によ多形成される酸化ニッケルの被覆層の厚さは20,
4以上、好ましくは50〜200Pである。
Powder of nickel oxide with a size of about 5 to 200 microns is used. Thermal spraying may be either plasma spraying or flame spraying, and the thickness of the nickel oxide coating layer formed by thermal spraying is 20 mm.
4 or more, preferably 50 to 200P.

本願第2の発明においては、導電性基体表面上に、溶射
によシ酸化ニッケルと犠牲金属との混合被覆層を般社た
後、諌被覆層よシ犠牲金属を溶出除去する。
In the second aspect of the present invention, a mixed coating layer of nickel oxide and sacrificial metal is formed on the surface of the conductive substrate by thermal spraying, and then the sacrificial metal is eluted and removed from the coating layer.

犠牲金属としては、アルミニウム、”亜鉛、スズ等であ
り、このうち特に好ましい犠牲金属はアルミニウムであ
る。
Examples of the sacrificial metal include aluminum, zinc, tin, etc. Among these, the particularly preferred sacrificial metal is aluminum.

酸化ニッケルと犠牲金属紘各々5〜200P程度の粉末
を使用し、あらかじめ混合したものを溶射してもよいし
、また溶射ガンを2個以上用意し、酸化ニッケルと犠牲
金属とを別々のガンから同時に溶射してもよい。
You can spray the nickel oxide and the sacrificial metal using powders of about 5 to 200 P each, mixed in advance, or prepare two or more thermal spray guns and spray the nickel oxide and the sacrificial metal from separate guns. It may be thermally sprayed at the same time.

酸化ニッケル粉末と犠牲金属粉末との割合は、陰極の水
素過電圧と耐久性の両者の兼ね合いから、体積百分率で
酸化ニッケル粉末50〜90%、犠牲金属50〜101
JIからなる範囲が好ましく、特に好ましくは酸化ニッ
ケル粉末60〜70−1犠牲金属40〜50−の範囲で
ある。犠牲金属が10−以下で社、犠牲金属の滲出によ
る水素過電圧低下の効果がなく、犠牲金属が50−以上
では耐久性が劣るようになる。尚、酸化ニッケル粉末の
一部を具ツケル粉末で置きかえることもできる。
The ratio of the nickel oxide powder and the sacrificial metal powder is determined by volume percentages of 50 to 90% of the nickel oxide powder and 50 to 10% of the sacrificial metal, considering the balance between hydrogen overvoltage and durability of the cathode.
The range consisting of JI is preferred, and the range of nickel oxide powder from 60 to 70 -1 and sacrificial metal from 40 to 50 - is particularly preferred. When the sacrificial metal is less than 10, there is no effect of reducing the hydrogen overvoltage due to leaching of the sacrificial metal, and when the sacrificial metal is more than 50, the durability becomes poor. Incidentally, a part of the nickel oxide powder can also be replaced with nickel powder.

溶射はプラズマ溶射、火炎溶射のいずれを用いることも
でき、溶射によ多形成される被覆層の厚さはsap以上
、好ましくa50〜300pである。
Thermal spraying can be either plasma spraying or flame spraying, and the thickness of the coating layer formed by thermal spraying is at least SAP, preferably from A50 to 300P.

溶射後、犠牲金属の拡散を良くするためには、60〜7
0℃で1〜3時間加熱処理するのが望ましい。
After thermal spraying, in order to improve the diffusion of the sacrificial metal, 60 to 7
It is desirable that the heat treatment be carried out at 0°C for 1 to 3 hours.

上記のようにして、酸化ニッケルと犠牲金属との混合被
覆層を設けた後、被覆層中よシ犠牲金属を溶出除去する
。仁の溶出は力七イソーダ等のアルカリ中に浸漬するこ
とにより行う、溶出の条件は、被覆層中の犠牲金属の種
類、成分量によっても異なるが、はじめ5重量−1i度
の低鎖度カセイソーダ涛液中に一昼夜浸漬後、20〜3
0重量−の高濃度カセイソーダ溶液中に数時間浸漬する
方法が被覆に耐久性を持たせる上で望ましい。
After providing the mixed coating layer of nickel oxide and sacrificial metal as described above, the sacrificial metal is eluted and removed from the coating layer. The elution of the seeds is carried out by immersing them in an alkali such as sodium chloride soda. The elution conditions vary depending on the type and content of the sacrificial metal in the coating layer, but the elution conditions are initially 5 weight - 1 i degrees of low chain caustic soda. After soaking in the liquid for a day and night, 20~3
A method of immersing the coating in a highly concentrated caustic soda solution of 0 weight for several hours is desirable from the viewpoint of imparting durability to the coating.

本願第10発明の酸化ニッケルの溶射被覆を有する論極
拡、ニッケルの溶射被覆を有する陰極よりも、水素過電
圧、耐食性ともに優れたものである。また、本願第2の
発明の酸化ニッケルと犠牲金属との混合溶射被覆から犠
牲金属を溶出除去してなる陰極線、微多孔質の酸化ニッ
ケル被覆を有し、水素過電圧値が更に低く、優れたもの
となる。
The cathode having a nickel oxide spray coating according to the tenth invention of the present application is superior to the cathode having a nickel spray coating in both hydrogen overvoltage and corrosion resistance. In addition, the cathode ray obtained by eluting and removing the sacrificial metal from the mixed sprayed coating of nickel oxide and sacrificial metal of the second invention of the present application, which has a microporous nickel oxide coating, has an even lower hydrogen overvoltage value, and is excellent. becomes.

実施例1 軟鋼板(200■×600■)、ニッケル板(200■
×600■)、及び軟鋼板にプラズマ溶射によpニッケ
ル層(厚さ50μ)を設けた一基板(200■×600
閤)各々に粒径10〜100μの酸化ニッケル粉末をプ
ラズマ溶射して試料1〜3を作成した。グッズマ済射に
敵、プラズマダイン社製プラズマトoySQ100を使
用し、形成された酸化ニッケル層の厚さはいずれも10
0μであうた。各試料から30mX30■の試片を切p
出し、下記の条件下で陰極としての初期水素過電圧を測
定しえ。
Example 1 Mild steel plate (200cm x 600cm), nickel plate (200cm
×600■), and one substrate (200■×600μ) with a p-nickel layer (thickness 50μ) formed on a mild steel plate by plasma spraying.
Samples 1 to 3 were prepared by plasma spraying nickel oxide powder with a particle size of 10 to 100 μm to each sample. We used Plasma Toy SQ100 manufactured by Plasma Dyne, which is the enemy of goods mass shooting, and the thickness of the nickel oxide layer formed was 10 mm.
I fired at 0μ. Cut a 30m x 30cm piece from each sample.
and measure the initial hydrogen overvoltage as a cathode under the following conditions.

水酸化ナトリクム水sen度      10wt%温
  度                  75℃電
tII111度              50 A
/dm”陽 極             ニッケル板
照會電1i               Hp/Ht
O上記の1〜3の試料を各々陰極として用い、陽極とし
てルテニウム酸化物被覆チタンを使用し、會フッ素スル
フォン駿系イオン交換膜(デ瓢ボン社製ナフィオン22
7)で仕切られ九イオン交換属電解槽において食塩の電
解を行った。電流密度はs o A/dm”、陰極室か
らの抜き出しカセイソーダ水溶液の濃度は20重量−と
した。120日間の連続運転を行った後、上記と同様に
して電解試験後の水素過電圧を測定した。
Sodium hydroxide water Sen degree 10wt% Temperature 75°C Electricity II 111° 50 A
/dm” Anode Nickel plate photoelectric 1i Hp/Ht
Samples 1 to 3 above were used as cathodes, titanium coated with ruthenium oxide was used as an anode, and a fluorine sulfone ion exchange membrane (Nafion 22 manufactured by Dehyobong Co., Ltd.) was used.
Salt was electrolyzed in a nine ion-exchange metal electrolytic tank partitioned by 7). The current density was s o A/dm", and the concentration of the caustic soda aqueous solution extracted from the cathode chamber was 20% by weight. After 120 days of continuous operation, the hydrogen overvoltage after the electrolytic test was measured in the same manner as above. .

初期水素過電圧及び電解試験後の水素過電圧の測定値を
表1に示す。また、電解槽の停止と通電を10回繰p返
し友が、陰極電位及び陰極表面層に変化は見られなかっ
た。
The measured values of the initial hydrogen overvoltage and the hydrogen overvoltage after the electrolytic test are shown in Table 1. Further, even after stopping and energizing the electrolytic cell 10 times, no change was observed in the cathode potential or cathode surface layer.

表 1 比較例1 軟鋼板(200■×600■)に、グッズマダイン社製
グツズ!トロン8Gを使用して粒径10〜100μのニ
ッケル粉末をプラズマ溶射して100μの厚さのニッケ
ル層を形成した試料から50■X30−の試片を切夛出
し、実施例1と同様にして初期水素過電圧及び電解試験
後の水素過電圧を測定し九とζろ各々240 mV、2
50 mVであった。
Table 1 Comparative Example 1 Guts made by Goods Madine Co., Ltd. on a mild steel plate (200×600×)! A 50cm x 30mm sample was cut out from a sample in which a 100μ thick nickel layer was formed by plasma spraying nickel powder with a particle size of 10 to 100μ using Tron 8G, and the same procedure as in Example 1 was taken. The initial hydrogen overvoltage and the hydrogen overvoltage after the electrolytic test were measured and were 240 mV and 2, respectively.
It was 50 mV.

実施例2 軟鋼板にプラズマ溶射によシニッケル層(厚さ50P)
を設は九基板(200wX’600■)に、酸化ニッケ
ル粉とアル建ニウム粉(いずれも粒径10〜100声)
からなり、体積百分率が各々50150.60/40.
70/30.80/20の混合粉末をプラズマダイン社
製プラズマ溶射シBG100を使用しプッズ−f#ll
射し、試料4〜7を作成し友。
Example 2 Plasma sprayed nickel layer on mild steel plate (thickness 50P)
9 substrates (200w x '600cm) are coated with nickel oxide powder and aluminum powder (particle size 10-100cm)
each with a volume percentage of 50150.60/40.
A mixed powder of 70/30.80/20 was sprayed using Plasma Dyne's plasma spraying machine BG100.
Then, create samples 4 to 7.

被覆層の厚さはいずれ4100μとした。各試料から5
0箇×30−の試片を切9出し、5重量−のカセイソー
ダ水溶液に一昼夜浸漬後、20重量−のカセイソーダ水
溶液に5時間浸漬し、更に同Sm中70〜75℃に加温
状態で5時間浸漬して被覆層中からアル(=ラム成分を
溶出除去した。
The thickness of the coating layer was 4100μ. 5 from each sample
Cut 9 x 30 specimens, immerse them in a 5-weight caustic soda aqueous solution overnight, immerse them in a 20-weight caustic soda aqueous solution for 5 hours, and then heat them to 70-75°C in the same Sm solution for 5 hours. The aluminum (=rum) component was eluted and removed from the coating layer by immersion for a period of time.

このようにして作成された試料について実施例1と同様
にして初期水素過電圧を測定し、また、実施例1と同様
の電解条件下250日電解試験を行っ死後の水素過電圧
をIll定した結果を表2に示す。
The initial hydrogen overvoltage of the sample thus prepared was measured in the same manner as in Example 1, and the postmortem hydrogen overvoltage was determined by conducting a 250-day electrolytic test under the same electrolytic conditions as in Example 1. It is shown in Table 2.

また、電解槽の停止と通電を10回繰り返したが、陰極
電位及び陰極表面に変化は生じなかった。
Further, although the electrolytic cell was stopped and energized 10 times, no change occurred in the cathode potential or the cathode surface.

Claims (1)

【特許請求の範囲】[Claims] (1)  導電Ikm体表面上に、溶射によ〉酸化ニッ
ケルO被覆層を設けてなる電解用陰極。 に)導電性基体が、鉄、ニッケ・ル、銅又社これらO合
金かbtkha#上Kxツケルを溶射したもO″e魯り
特許請求01111第(1)項記載の電解用陰極。 に)導電愉基体貴藺上に、溶射によ〕酸化品ツケルと1
憧金属とO11金被覆層を設けた後、該被覆層よp@牲
金金属111出除去してなる電解用−極。 (旬 体積1分率で、酸化品ッケル看車50〜90−と
犠噛金属湯車sO〜1040割会で溶射する善許請京O
聰閤第に)項記載0電鱗用陰極。 に)1愉金属がアル電エクムである特許請求の範囲第に
)項記載O電解用陰極。 (句 導電性基体が、鉄、ニッケル、銅又は辷れらO合
金からtkる基材上にニッケルを湊射しえもO″e番る
特許請求omws第(句項記載の電解用陰極。
(1) An electrolytic cathode in which a nickel oxide O coating layer is provided on the surface of a conductive Ikm body by thermal spraying. 2) The electrolytic cathode described in paragraph (1) of patent claim 01111, in which the conductive substrate is made of iron, nickel, copper alloys, or alloys of these materials, or is thermally sprayed with Kx on btkha#. Oxide product 1 is applied by thermal spraying onto the conductive substrate.
An electrolytic electrode formed by providing a gold coating layer with a sacrificial metal and removing the p@ sacrificial metal 111 from the coating layer. (1% by volume, thermal spraying with 50~90% of oxidized product and 1040% of sacrificial metal steamer)
Cathode for electric scales described in Section 0. 2) The cathode for electrolysis according to claim 1), wherein the metal is Alden Ecum. (The electrolytic cathode described in Patent Claim No. OMWS), wherein the conductive substrate is made of iron, nickel, copper or an O alloy by injecting nickel onto the substrate.
JP56130183A 1981-08-21 1981-08-21 Cathode for electrolysis Pending JPS5834185A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56130183A JPS5834185A (en) 1981-08-21 1981-08-21 Cathode for electrolysis

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56130183A JPS5834185A (en) 1981-08-21 1981-08-21 Cathode for electrolysis

Publications (1)

Publication Number Publication Date
JPS5834185A true JPS5834185A (en) 1983-02-28

Family

ID=15028047

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56130183A Pending JPS5834185A (en) 1981-08-21 1981-08-21 Cathode for electrolysis

Country Status (1)

Country Link
JP (1) JPS5834185A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4555317A (en) * 1982-12-17 1985-11-26 Solvay & Cie Cathode for the electrolytic production of hydrogen and its use
US4584085A (en) * 1983-05-31 1986-04-22 The Dow Chemical Company Preparation and use of electrodes

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4555317A (en) * 1982-12-17 1985-11-26 Solvay & Cie Cathode for the electrolytic production of hydrogen and its use
US4584085A (en) * 1983-05-31 1986-04-22 The Dow Chemical Company Preparation and use of electrodes

Similar Documents

Publication Publication Date Title
KR950011405B1 (en) Cathode for electrolysis and process for producing the same
JPS5948872B2 (en) Electrolytic cathode and its manufacturing method
JPS5917197B2 (en) Electrolytic electrodes with melt-sprayed and leached nickel or corvat coatings
US10662540B2 (en) Electrolyte for electroplating
JPS634920B2 (en)
JPS6013074B2 (en) Electrolytic cathode and its manufacturing method
US3974058A (en) Ruthenium coated cathodes
CA1184871A (en) Low overvoltage hydrogen cathodes
RU2045583C1 (en) Method for manufacture of electrode
CA1072915A (en) Cathode surfaces having a low hydrogen overvoltage
JPS5834185A (en) Cathode for electrolysis
GB2074190A (en) Improved Electrode
JPH0257159B2 (en)
JP3676554B2 (en) Activated cathode
KR840001428B1 (en) A hydrogen-erolution electrode
CN106011924B (en) Electrode for electrolysis and preparation method thereof containing lanthanum
Kublanovsky et al. Electrodeposition of palladium coatings from iminodiacetate electrolyte
JPS5846553B2 (en) Method of manufacturing activated electrodes
JPS589988A (en) Electrolytic cell
WO1985000389A1 (en) An electrode, processes for the manufacture thereof and use thereof
JPS5959890A (en) Method for preventing deterioration in activity of ferrous cathode of electrolytic cell
JP3941898B2 (en) Activated cathode and method for producing the same
JPS6293389A (en) Electrode
JPS602686A (en) Active electrode
JPS5881984A (en) Electrolytic cathode