JPS5834091A - Water purifier using activated sludge - Google Patents

Water purifier using activated sludge

Info

Publication number
JPS5834091A
JPS5834091A JP56132724A JP13272481A JPS5834091A JP S5834091 A JPS5834091 A JP S5834091A JP 56132724 A JP56132724 A JP 56132724A JP 13272481 A JP13272481 A JP 13272481A JP S5834091 A JPS5834091 A JP S5834091A
Authority
JP
Japan
Prior art keywords
amount
aeration
sludge
controlling
mixed liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP56132724A
Other languages
Japanese (ja)
Inventor
Shinsuke Nishida
信介 西田
Kenichi Kimura
賢一 木村
Hidetomo Hiratsuka
平塚 英智
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Engineering Co Ltd
Hitachi Ltd
Original Assignee
Hitachi Engineering Co Ltd
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Engineering Co Ltd, Hitachi Ltd filed Critical Hitachi Engineering Co Ltd
Priority to JP56132724A priority Critical patent/JPS5834091A/en
Publication of JPS5834091A publication Critical patent/JPS5834091A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Activated Sludge Processes (AREA)

Abstract

PURPOSE:To lower power consumption required for aeration, by providing a sedimentation pool to separate mixed liquid flowing from an aeration vessel into sludge and treated water, a means for controlling an amount of the mixed liquid, a means for controlling an amount of returned sludge and a means for controlling an aeration amount. CONSTITUTION:When an inflow amount becomes smaller, a water level in an aeration vessel 1 is lowered without changing a flow amount of mixed liquid flowing from the aeration vessel 1 into a sedimentation pool 2. As the water level in the aeration vessel 1 becomes lower, controlling is performed by a controlling means 14 to obtain ejecting pressure corresponding to the depth of water and to maintain a staying time in the aeration vessel 1 constant. To put it concretely, the ejecting pressure and the air-blow amount of a blower 5 and an amount of sludge to be returned by a sludge-returning pump 3 are controlled. As a result, the capacity of the blower 5 can be decreased in response to an amount of inflow water, and the reduction of power consumption can be performed.

Description

【発明の詳細な説明】 本発明は活性汚泥水処理装置に係り、特に、曝気に要す
る消費電力を低減するようにした活性汚泥水処理装置に
関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an activated sludge water treatment device, and particularly to an activated sludge water treatment device that reduces power consumption required for aeration.

第1図に従来の活性汚泥水処理装置のブロック図を示す
FIG. 1 shows a block diagram of a conventional activated sludge water treatment device.

第1図において、汚水は汚水流入管6から曝気槽1に導
入される。曝気槽lでは沈殿池2より返送汚泥ポンプ3
によって返送された活性汚泥の微生物と汚水とが混合さ
れる。ブロワ5による曝気によって酸素供給が行なわれ
、曝気槽lを流下する過程で汚水中の有機汚染質は活性
汚泥に摂取・分解され沈殿池2へ流入する。曝気風量は
風量調節弁12を介して曝気槽に供給される。
In FIG. 1, wastewater is introduced into an aeration tank 1 from a wastewater inflow pipe 6. In the aeration tank 1, a return sludge pump 3 is sent from the settling tank 2.
The microorganisms in the activated sludge returned by the sludge are mixed with wastewater. Oxygen is supplied by aeration by the blower 5, and organic pollutants in the sewage are absorbed and decomposed by the activated sludge while flowing down the aeration tank 1, and flow into the settling tank 2. The aeration air volume is supplied to the aeration tank via the air volume control valve 12.

沈殿池2においては、活性汚泥と処理水とがIE力沈降
によって固液分−離され、上澄液は処理水として、処理
水雷8を通じて放流される。また、沈降汚泥の一部は、
余剰汚泥ポ/ブ4により余情汚泥管10を通じて引き抜
かれるが、大部分の汚泥は返送汚泥ポンプ3によって、
返送汚泥管9を通じて曝気槽1に返送される。
In the settling tank 2, activated sludge and treated water are separated into solid and liquid by IE force sedimentation, and the supernatant liquid is discharged as treated water through a treated torpedo 8. In addition, some of the settled sludge is
The excess sludge is drawn out through the surplus sludge pipe 10 by the surplus sludge pump 4, but most of the sludge is removed by the return sludge pump 3.
The sludge is returned to the aeration tank 1 through the return sludge pipe 9.

ところで、曝気風量は曝気槽1の溶存酸素濃度により制
御し、返送汚泥量は流入汚水量または、曝気槽のMLS
S(混合汚泥濃度)によって制御している。
By the way, the aeration air volume is controlled by the dissolved oxygen concentration in the aeration tank 1, and the return sludge volume is determined by the inflow sewage volume or the MLS of the aeration tank.
It is controlled by S (mixed sludge concentration).

しかるに、かかる制御では次に述べる様な欠点がともな
う。
However, such control has the following drawbacks.

通常の処理場では夜間に流入汚水前が急激に少なくなる
。従来装置ではR,tが急激に減るにもかかわらず、プ
ロワ5の電力量が、それに応じて減ることはない。これ
は、曝気槽」の水位が変わらない為に、常にそれに応じ
た圧力の空気量を送らねばならない為である。その上、
曝気風量を変えない為に、水量の少ない夜間には過曝気
となる危険がるる。また、DO(溶存鍍素濃度)制御を
行なっていても、大幅な曝気風量の低減には役立ってい
ない。実際のデータでは、DO制御をかける前と後とで
は、数%程の低減が報告されているのが実状である。
In a normal treatment plant, the amount of inflowing sewage decreases rapidly at night. In the conventional device, even though R and t decrease rapidly, the electric power of the blower 5 does not decrease accordingly. This is because the water level in the aeration tank does not change, so it is necessary to constantly send air at a pressure corresponding to the water level. On top of that,
Since the aeration air volume does not change, there is a risk of over-aeration at night when the water volume is low. Further, even if DO (dissolved chlorine concentration) is controlled, it does not help to significantly reduce the amount of aeration air. In actual data, it is reported that there is a reduction of several percent between before and after applying DO control.

したがうて、本発明の目的は上記点を改善した活性汚泥
水処理装置を提供することにある。
Therefore, an object of the present invention is to provide an activated sludge water treatment apparatus that improves the above points.

本発明の特徴は、流入汚水量の変化に応じて曝気槽の混
合液水位を変化させ、この混合液水位に応じて曝気風量
を調節することによって、過曝気を防止すると共にプロ
ワ−の消費電力を低減するようにしたものである。
The present invention is characterized by changing the water level of the mixed liquid in the aeration tank according to changes in the amount of inflowing sewage, and adjusting the aeration air volume according to the water level of the mixed liquid, thereby preventing overaeration and reducing the power consumption of the blower. It is designed to reduce the

第2図に本発明の一実施例を示す。FIG. 2 shows an embodiment of the present invention.

第2図において第1図と異なるのは曝気槽水位計15、
制御装置14、制御弁13を設けられていることである
。なお、沈殿池2は曝気槽1よりも低い位置に設けられ
ており、曝気槽lから制御弁13を通して自然流下出来
るようになっている。
What is different in Fig. 2 from Fig. 1 is the aeration tank water level gauge 15;
A control device 14 and a control valve 13 are provided. The sedimentation tank 2 is provided at a lower position than the aeration tank 1, so that water can naturally flow down from the aeration tank 1 through the control valve 13.

制御弁13は流入汚水量の急激な変化に管路抵抗をI与
えたり、1暴気槽内の滞留時間を一定にしたり、また、
曝気槽がオーバフローしないように制御する。必要に応
じてバイパス管16を用意する。
The control valve 13 provides pipe resistance to rapid changes in the amount of inflowing sewage, keeps the residence time in one atomization tank constant, and
Control the aeration tank so that it does not overflow. A bypass pipe 16 is prepared if necessary.

この構成において、流入流量が減少してくると、曝気槽
1から沈殿池2に流入する混合液流量を変化させずに、
曝気槽1の水位を下げる。曝気槽1の水位が下がるにつ
れて、制御装置14にょシ、水深に応じた吐出圧となる
ように、また、曝気槽1の滞留時間が一定となるように
制御される。具体的にはプロワ5の吐出圧と空気量、及
び返送汚泥ポンプ3による返送汚泥量の制御を行なう。
In this configuration, when the inflow flow rate decreases, without changing the flow rate of the mixed liquid flowing into the settling tank 2 from the aeration tank 1,
Lower the water level in aeration tank 1. As the water level in the aeration tank 1 decreases, the control device 14 controls the discharge pressure in accordance with the water depth and the residence time in the aeration tank 1 to be constant. Specifically, the discharge pressure and air amount of the blower 5 and the amount of return sludge by the return sludge pump 3 are controlled.

その結果、プロワ5の能力は流入水量に応じて下げるこ
とが出来、消費電力の低減可能となる。
As a result, the capacity of the blower 5 can be lowered according to the amount of inflow water, and power consumption can be reduced.

−例として、プロワを数台設置する場合には、大容瀘と
低容量のものを組み合せ、曝気風量の減少に合わせて、
小容量に切り換え、消費電力を低減することが考えられ
る。
- For example, when installing several blowers, combine a large-capacity blower with a low-capacity blower to match the decrease in aeration air volume.
It is possible to reduce power consumption by switching to a smaller capacity.

このように、本発明により、曝気槽1の水位を変えるこ
とで、プロワ5の電力量低減が可能となる。
As described above, according to the present invention, by changing the water level of the aeration tank 1, it is possible to reduce the power consumption of the blower 5.

曝気槽lのDo制御を行なう場合にはDO制制御フレー
管加えることによりDO制御も可能である。
When performing Do control of the aeration tank 1, DO control is also possible by adding a DO control control flare pipe.

−万、流入汚水量に応じて返送汚泥量を変化させて、流
入fjff、量と返送汚泥量との比を一定となるように
制御すると、曝気槽内の滞留時間が一定とする制御と合
せて、処理の安定化がよシ良くなる。
- If the amount of returned sludge is changed according to the amount of inflowing sewage and the ratio of the amount of inflow fjff to the amount of returned sludge is controlled to be constant, it will be possible to control the residence time in the aeration tank to be constant. This improves processing stability.

第3図は本発明の他の実施例を示すもので、曝気槽lと
沈殿池2を同一レベルに設置し、制御弁13の代りにポ
ンプ17を用いたものである。流入流型に応じて、曝気
槽1の水位を変え、滞留時間を一定にするようにポンプ
17を制御することで、前記の制御弁と同様の効果が期
待され、ブロワ醒力量の低減と、処理の安定化が可能と
なる。
FIG. 3 shows another embodiment of the present invention, in which the aeration tank 1 and the settling tank 2 are installed at the same level, and a pump 17 is used in place of the control valve 13. By controlling the pump 17 to change the water level in the aeration tank 1 and keep the residence time constant according to the inflow type, the same effect as the control valve described above can be expected, and the blower wake-up force can be reduced. Processing can be stabilized.

このように、本発明によれば処理場の消費電力の大部分
を占めているプロワ−電力値の低減と処理の安定化が可
能となる。
As described above, according to the present invention, it is possible to reduce the power value of the blower, which accounts for most of the power consumption in a processing plant, and to stabilize the processing.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来装置の一例を示す構成図、g2図は本発明
の一実施例を示す構成図、第3図は本発明の他の実施例
を示す構成図である。 1・・・曝気槽・、2・・・沈殿池、3・・・返送汚泥
ポンプ、4・・・余剰汚泥ポンプ゛、5・・・プLJソ
、6・・・υ1し人〆り水管、7・・・混合液管、8・
・・処理水管、9・・・汚泥引抜管、12・・・風量調
節弁、13・・・流量制御弁、14蔓 2(2N 富3I21I
FIG. 1 is a block diagram showing an example of a conventional device, FIG. g2 is a block diagram showing an embodiment of the present invention, and FIG. 3 is a block diagram showing another embodiment of the present invention. 1... Aeration tank, 2... Sedimentation tank, 3... Return sludge pump, 4... Excess sludge pump, 5... Plumbing tank, 6... υ1 water pipe , 7... mixed liquid pipe, 8...
... Treated water pipe, 9 ... Sludge extraction pipe, 12 ... Air volume control valve, 13 ... Flow rate control valve, 14 Vine 2 (2N Tomi 3I21I

Claims (1)

【特許請求の範囲】[Claims] 1、汚水と返送汚泥が供給される曝気槽と、該曝気槽よ
り流出する混合液を汚泥と処理水とに分離する沈殿池と
、前記曝気槽から前記沈殿池へ流入する混合液量を制@
1する混合液量制御手段と、前記沈殿池より前記曝気槽
に返送される返送汚泥量を制御する返送汚泥量制御手段
と、前記曝気槽への曝気風量を制御する曝気風量制御手
段とを具備し、流入汚水量に基づき前記曝気槽の混合液
水位を変化させ、この混合液水位に応じて前記曝気風量
と風量吐出圧を調節するようにしたことを特徴とする活
性汚泥水処理装置。
1. An aeration tank to which sewage and return sludge are supplied, a settling tank that separates the mixed liquid flowing out from the aeration tank into sludge and treated water, and controlling the amount of mixed liquid flowing from the aeration tank to the settling tank. @
1; a return sludge amount control means for controlling the amount of returned sludge returned from the settling tank to the aeration tank; and an aeration air volume control means for controlling the amount of aeration air to the aeration tank. An activated sludge water treatment apparatus characterized in that the mixed liquid level in the aeration tank is changed based on the amount of inflowing sewage, and the aeration air volume and air volume discharge pressure are adjusted in accordance with the mixed liquid water level.
JP56132724A 1981-08-26 1981-08-26 Water purifier using activated sludge Pending JPS5834091A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56132724A JPS5834091A (en) 1981-08-26 1981-08-26 Water purifier using activated sludge

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56132724A JPS5834091A (en) 1981-08-26 1981-08-26 Water purifier using activated sludge

Publications (1)

Publication Number Publication Date
JPS5834091A true JPS5834091A (en) 1983-02-28

Family

ID=15088094

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56132724A Pending JPS5834091A (en) 1981-08-26 1981-08-26 Water purifier using activated sludge

Country Status (1)

Country Link
JP (1) JPS5834091A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102897903A (en) * 2012-09-26 2013-01-30 冯秀娟 Efficient biochemical reactor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102897903A (en) * 2012-09-26 2013-01-30 冯秀娟 Efficient biochemical reactor

Similar Documents

Publication Publication Date Title
RU2501744C2 (en) Method of sewage purification and device for method realisation
KR20050043855A (en) Self controlling sewage or wastewater treatment process
JP3487092B2 (en) Method of controlling biological water treatment equipment
JPS5834091A (en) Water purifier using activated sludge
JP2002126779A (en) Sludge treatment method and apparatus used therefor
JPH0389993A (en) Method for controlling concentration of phosphorus in waste water
KR101416756B1 (en) Method of effluent treatment through processing sludge aeration in water treatment plant
RU80164U1 (en) DEVICE FOR BIOLOGICAL SEWAGE TREATMENT
JP2004000986A (en) Method for controlling biological water treatment apparatus
JPH072079Y2 (en) Sewage septic tank
JP3257946B2 (en) Sewage treatment method and sewage treatment apparatus
JP2001000989A (en) Flow rate adjusting device having sewage purifying function
KR20220095841A (en) Sewage treatment method and equipment corresponding to flow rate and time fluctuation
JP7437144B2 (en) water treatment plant
JP2002336604A (en) Method and apparatus for separating pollutants in polluted water
JPS62176597A (en) Apparatus for biological treatment of waste water
JPH0647393A (en) Anaerobic treatment apparatus
JPS5597291A (en) Control of returned sludge amount
JPS6128397B2 (en)
JPH04166295A (en) Activated sludge process by srt control
JPH0630776B2 (en) Organic wastewater treatment method
JPS60114396A (en) Control method of do in oxidation ditch method
JPS60129108A (en) Process and apparatus for separating precipitate in activated sludge treatment
JPS6369594A (en) Method for controlling operation of aeration tank
JPS60206491A (en) Apparatus for treatment of waste water