JPS5833840Y2 - Wastewater denitrification tank - Google Patents

Wastewater denitrification tank

Info

Publication number
JPS5833840Y2
JPS5833840Y2 JP1979021149U JP2114979U JPS5833840Y2 JP S5833840 Y2 JPS5833840 Y2 JP S5833840Y2 JP 1979021149 U JP1979021149 U JP 1979021149U JP 2114979 U JP2114979 U JP 2114979U JP S5833840 Y2 JPS5833840 Y2 JP S5833840Y2
Authority
JP
Japan
Prior art keywords
section
denitrification
tank
nitrification
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1979021149U
Other languages
Japanese (ja)
Other versions
JPS55122898U (en
Inventor
克之 片岡
Original Assignee
荏原インフイルコ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 荏原インフイルコ株式会社 filed Critical 荏原インフイルコ株式会社
Priority to JP1979021149U priority Critical patent/JPS5833840Y2/en
Publication of JPS55122898U publication Critical patent/JPS55122898U/ja
Application granted granted Critical
Publication of JPS5833840Y2 publication Critical patent/JPS5833840Y2/en
Expired legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Aeration Devices For Treatment Of Activated Polluted Sludge (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Description

【考案の詳細な説明】 本考案は、下水、し尿、産業廃水、その他の有機性廃水
を生物学的に脱窒素して浄化するための処理装置に関す
るものである。
[Detailed Description of the Invention] The present invention relates to a treatment device for biologically denitrifying and purifying sewage, human waste, industrial wastewater, and other organic wastewater.

従来の代表的プロセスである硝化液循環脱窒素プロセス
の主要部である脱窒素工程と硝化工程は、第1図に示し
たように脱窒素槽4′から硝化槽3′へ、脱窒素を完了
した液を連通配管5′によって自然流過で流入させると
ともに、硝化槽3′がら、硝化液を脱窒素槽4′に循環
用ポンプPで、強制的に循環させている一方、硝化槽3
′内のエアレーションはポンプPとは別個のブロワP′
などで散気させる方法によって行なっているプロセスで
あることがよく知られている。
The denitrification process and nitrification process, which are the main parts of the nitrification liquid circulation denitrification process, which is a typical conventional process, are carried out from the denitrification tank 4' to the nitrification tank 3' to complete denitrification, as shown in Figure 1. The nitrified liquid is allowed to flow naturally through the communication pipe 5', and the nitrified liquid is forcibly circulated from the nitrification tank 3' to the denitrification tank 4' by a circulation pump P.
Aeration in ' is done by blower P' which is separate from pump P.
It is well known that this process is carried out using methods such as aeration.

すなわち、液循環とエアレーションを全く別個にポンプ
PとブロワP′によって行なっているので液循環用のポ
ンプ動力が相当多く、省エネルギ的なプロセスとは言え
ながった。
That is, since the liquid circulation and aeration are performed completely separately by the pump P and the blower P', a considerable amount of pump power is required for liquid circulation, and this cannot be said to be an energy-saving process.

本考案は、これら従来プロセスの問題点を改善し、省エ
ネルギ化対策に有効な生物学的膜窒素装置を構成簡単、
安価な形態で提供することを目的としたものである。
The present invention improves the problems of these conventional processes and provides a simple and easy-to-configure biological membrane nitrogen device that is effective as an energy-saving measure.
It is intended to be provided in an inexpensive format.

本考案は、原水流入部を有する脱窒素部と、処理水流出
部を有する硝化部とを連通状態で備えた生物学的処理槽
において、処理槽1を隔壁2によって上部を硝化部3に
、また下部を脱窒素部4とに区画構成すると共に、該硝
化部3と脱窒素部4とを前記隔壁2に形成した連通流路
5によって連絡せしめ、かつ前記隔壁2に開口6を介し
て脱窒素部4内に垂直方向に配置されたエアリフト部7
で連絡し、このエアリフト部7内に空気、その他酸素含
有ガスを供給する空気供給管11を開口配備したことを
特徴としたものである。
The present invention is a biological treatment tank that is equipped with a denitrification section having a raw water inflow section and a nitrification section having a treated water outflow section in a communicating state. Further, the lower part is divided into a denitrification section 4, and the nitrification section 3 and the denitrification section 4 are connected through a communication channel 5 formed in the partition wall 2, and the denitrification section 3 is connected to the denitrification section 4 through an opening 6 in the partition wall 2. Air lift section 7 arranged vertically within nitrogen section 4
This is characterized in that an air supply pipe 11 for supplying air and other oxygen-containing gases into the air lift section 7 is provided in an open manner.

本考案の実施態様において、第2図例では、処理槽1内
は処理水流出管9を有する硝化部3の下部に原水流入管
10を有する脱窒素部4が、仕切り用の隔壁2を介して
配置されている。
In the embodiment of the present invention, in the example shown in FIG. 2, inside the treatment tank 1, a denitrification section 4 having a raw water inflow pipe 10 is located at the bottom of a nitrification section 3 having a treated water outflow pipe 9, and a denitrification section 4 is connected to the denitrification section 4, which has a raw water inflow pipe 10, through a partition wall 2. It is arranged as follows.

この脱窒素部4内には、エアリフトチューブなどのエア
リフト部7が少なくとも一つ設けられており、エアリフ
ト部7の上端開口部は隔壁2に開口連絡していて、また
エアリフト部7の下部にはブロワ(図示せず)からの空
気供給管11が開口配備されている。
This denitrification section 4 is provided with at least one air lift section 7 such as an air lift tube, the upper end opening of the air lift section 7 is in open communication with the partition wall 2, and the lower end of the air lift section 7 is in open communication with the partition wall 2. An air supply pipe 11 from a blower (not shown) is open.

しかして、原水は原水流入管10から嫌気的雰囲気にあ
る脱窒素部4内に流入したのち、所定時間滞留し、エア
リフト部7の下部開口6′から空気供給管11によるエ
アリフト作用の液上昇運動によって、エアリフト部7内
に流入しエアリフト部7内でエアレーションを受けなが
ら上昇してゆき、上端開口6から、空気泡とともに硝化
部3内に流入してゆく。
After the raw water flows into the denitrification section 4 in an anaerobic atmosphere from the raw water inflow pipe 10, it stays there for a predetermined period of time, and the liquid rises due to the air lift effect from the lower opening 6' of the air lift section 7 through the air supply pipe 11. As a result, the air flows into the air lift section 7 and rises while receiving aeration within the air lift section 7, and flows into the nitrification section 3 together with air bubbles through the upper end opening 6.

この硝化部3内には硝化菌が存在しているので、脱窒素
部4からエアリフト部7内を通って流入してくる原水中
のNH4−Nが、エアリフト部7から硝化部3内に放出
される空気泡によるエアレーションと硝化菌によって、
N03−N。
Since nitrifying bacteria are present in the nitrifying section 3, NH4-N in the raw water flowing from the denitrifying section 4 through the air lift section 7 is released from the air lift section 7 into the nitrifying section 3. Through aeration caused by air bubbles and nitrifying bacteria,
N03-N.

N02−Nに生物学的に硝化される。Biologically nitrified to N02-N.

この際硝化部3内にもチューブ状のドラフト部8を、脱
窒素部4のエアリフト部7の上部に配置しておくと、よ
り効果的に硝化槽内のエアレーションが行なわれる。
At this time, if a tube-shaped draft part 8 is also arranged in the nitrification part 3 above the air lift part 7 of the denitrification part 4, the aeration in the nitrification tank can be carried out more effectively.

この場合このドラフト部8の下端が仕切り用の隔壁2と
離れているように配置しておくことが考慮されている。
In this case, consideration is given to arranging the draft portion 8 such that the lower end thereof is separated from the partition wall 2.

なぜならもし、ドラフト部8の下端を隔壁2に密着させ
てしまうと、硝化部3内での液循環が良好に行なわれず
、また、硝化液の脱窒素部4内への循環流量が過大にな
りすぎ、脱窒素部4が嫌気的に維持できにくくなる場合
が起こるからである。
This is because if the lower end of the draft section 8 is brought into close contact with the partition wall 2, liquid circulation within the nitrification section 3 will not be performed well, and the circulation flow rate of the nitrification solution into the denitrification section 4 will become excessive. This is because if the temperature is too high, it may become difficult to maintain the denitrification section 4 anaerobically.

なお前記ドラフト部8内にも空気を供給できるように空
気供給管12を開口配備すると硝化が一層促進されるが
、該空気供給管12は前記空気供給管11から分岐させ
てもよく、また流量制御弁の開閉で分配若しくは切換え
供給できるようにすることもできる。
Note that nitrification is further promoted when the air supply pipe 12 is opened so that air can be supplied into the draft section 8, but the air supply pipe 12 may be branched from the air supply pipe 11, and the flow rate may be It is also possible to distribute or switch supply by opening and closing a control valve.

また前記連通流路5としては隔壁2に穿設した連通孔で
もよいが隔壁2の周縁の一部又は全部を処理槽1の内壁
面より隔離し、その間隙を連通路として形成することも
できる。
Further, the communication flow path 5 may be a communication hole bored in the partition wall 2, but it is also possible to isolate a part or the whole of the periphery of the partition wall 2 from the inner wall surface of the processing tank 1 and form the gap as a communication path. .

しかして、硝化液(硝化部3内で、NH4−N→N0x
−Nの反応が完了した液のこと)は、連通流路5を経由
して脱窒素部4内にリサイクルされ、原水中の有機炭素
源を利用して、脱窒素菌によって、N0x−N−)N2
丁の反応が行なわれる。
Therefore, the nitrifying solution (in the nitrifying section 3, NH4-N→N0x
-The liquid in which the N reaction has been completed) is recycled into the denitrification section 4 via the communication channel 5, and is processed by denitrification bacteria using the organic carbon source in the raw water. )N2
A reaction of Ding is carried out.

硝化液のリサイクルは、脱窒素部4のエアリフト部7の
下端から吸引上昇される液の運動によって自動的に遠戚
され、従来法のようにポンプを使用する必要がない。
The recycling of the nitrifying solution is automatically carried out by the movement of the liquid sucked up from the lower end of the air lift section 7 of the denitrification section 4, and there is no need to use a pump unlike the conventional method.

なお、硝化液のリサイクル量は、エアリフト部7下端か
ら吸引される脱窒素液の流量に等しく運転処理される。
It should be noted that the amount of nitrification liquid recycled is operated to be equal to the flow rate of the denitrification liquid sucked from the lower end of the air lift section 7.

第3図の具体例は、エアリフト部7および/又はドラフ
ト部8を第2図のように中央部に配置せず、片側に配置
した場合であり、この場合には、チューブではなくバッ
フルによってエアリフト部7および/又はドラフト部8
を構成するのが、構造的に有利である。
In the specific example shown in FIG. 3, the air lift section 7 and/or the draft section 8 are not arranged in the center as shown in FIG. 2, but are arranged on one side. Section 7 and/or draft section 8
It is structurally advantageous to configure

本考案は、ブロワによる散気のみによってエアレーショ
ンと硝化液の脱窒素部への循環を可能にした構成とした
ことにより、従来法に比べ著しく省エネルギ的であり、
循環ポンプが不要なのでイニシャルコストも安くなるし
、しかも処理槽の上下方向に硝化部、脱窒素部を合理的
な態様で配置したので、従来法に比べ著しく設置面積の
節減が可能になると共に、硝化液のリサイクル量を少な
くとも供給空気流量と同一量にすることができるので脱
窒素効率を大巾に高められる。
The present invention has a structure that enables aeration and circulation of nitrification liquid to the denitrification section only by air diffusion using a blower, so it is significantly energy-saving compared to conventional methods.
Since a circulation pump is not required, the initial cost is reduced, and since the nitrification section and denitrification section are arranged in a rational manner above and below the treatment tank, it is possible to significantly reduce the installation area compared to conventional methods. Since the amount of recycled nitrification liquid can be made at least the same amount as the flow rate of supplied air, denitrification efficiency can be greatly increased.

即ち理論的に硝化液循環量を多くするほど、脱窒素部に
おけるN0x−N−+N2↑の反応効率が向上できる結
果、従来法では、循環ポンプ動力がかさむため、硝化液
循環量を多くとることは困難であったのに対し、この欠
点の除去も容易であり運転経費の増加を招かないし運転
管理も簡易であるなどの実用上の効果がある。
In other words, the reaction efficiency of NOx-N-+N2↑ in the denitrification section can theoretically be improved by increasing the amount of nitrification fluid circulated.As a result, in the conventional method, the circulation pump power increases, so it is necessary to increase the amount of nitrification fluid circulation. However, this drawback can be easily removed, and there are practical effects such as no increase in operating costs and simple operation management.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来例の縦断面図、第2図は本考案の実施例の
縦断面図、第3図は本考案の他の実施例の縦断面図であ
る。 1・・・・・・処理槽、2・・・・・・隔壁、3・・・
・・・硝化部、4・・・・・・脱窒素部、5・・・・・
・連通流路、6・・・・・・開口、7・・・・・・エア
リフト部、8・・・・・・ドラ7 ト部、9・・・・・・処理水流出管 10・・・・・・原水流入管、11.12・・・・・・
空気供給管。
FIG. 1 is a vertical cross-sectional view of a conventional example, FIG. 2 is a vertical cross-sectional view of an embodiment of the present invention, and FIG. 3 is a vertical cross-sectional view of another embodiment of the present invention. 1... Processing tank, 2... Partition wall, 3...
... Nitrification section, 4 ... Denitrification section, 5 ...
・Communication channel, 6...Opening, 7...Air lift section, 8...Draft section, 9...Treatment water outflow pipe 10...・・・・Raw water inflow pipe, 11.12・・・・・・
Air supply pipe.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 1.処理槽1の槽内を隔壁2をもって上下に区画し、上
部を処理水流出部のある硝化部3に、また下部を原水流
入部のある脱窒素部4とに構成するとともに、該硝化部
3と脱窒素部4とを連通流路5によって連絡せしめ、前
記隔壁2に開口6を介して脱窒素部4内の垂直方向に配
置されたエアリフト部7を備え、このエアリフト部7内
に空気供給管を開口配備して成ることを特徴とする廃水
の脱窒素槽。 2、前記硝化部3が、前記脱窒素部4に設けたエアノッ
ト部7の上部開口6の上方にドラフト部8を配置したも
のである実用新案登録請求の範囲第1項記載の脱窒素槽
。 3、前記硝化部3が、ドラフト部8を備えたものであっ
て、該ドラフト部8の下端を前記隔壁2と隔離して設け
たものである実用新案登録請求の範囲第1項又は第2項
記載の脱窒素槽。 4、前記硝化部3が、ドラフト部8を備えたものであっ
て、該ドラフト部8内に空気供給管を開口配備したもの
である実用新案登録請求の範囲第2項又は第3項記載の
脱窒素槽。 5、前記隔壁2が、少なくとも一つ槽内に備えられるも
のであって、周縁の一部又は全部が処理槽1の内壁より
隔離した仕切板である実用新案登録請求の範囲第2項、
第3項又は第4項記載の脱窒素槽。 6、前記エアリフト部7が、少なくとも−っ槽内に備え
られたものであって、バッフル板で構成されたものであ
る実用新案登録請求の範囲第2項、第3項、第4項又は
第5項記載の脱窒素槽。
1. The inside of the treatment tank 1 is divided into upper and lower parts by a partition wall 2, and the upper part is configured as a nitrification part 3 with a treated water outlet, and the lower part is a denitrification part 4 with a raw water inlet. and the denitrification section 4 are connected through a communication channel 5, and the partition wall 2 is provided with an air lift section 7 arranged vertically within the denitrification section 4 through an opening 6, and air is supplied into the air lift section 7. A wastewater denitrification tank characterized by having pipes arranged in an open manner. 2. The denitrification tank according to claim 1, wherein the nitrification section 3 has a draft section 8 disposed above the upper opening 6 of the air knot section 7 provided in the denitrification section 4. 3. The nitrification section 3 is provided with a draft section 8, and the lower end of the draft section 8 is separated from the partition wall 2. Claims 1 or 2 Denitrification tank as described in section. 4. The nitrification unit 3 is equipped with a draft part 8, and an air supply pipe is disposed in the draft part 8. Denitrification tank. 5. Utility model registration claim 2, wherein at least one partition wall 2 is provided in the tank, and a part or all of the periphery is a partition plate isolated from the inner wall of the processing tank 1.
The denitrification tank according to item 3 or 4. 6. Utility model registration claims 2, 3, 4 or 6, wherein the air lift section 7 is provided at least in the tank and is composed of a baffle plate. The denitrification tank described in item 5.
JP1979021149U 1979-02-21 1979-02-21 Wastewater denitrification tank Expired JPS5833840Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1979021149U JPS5833840Y2 (en) 1979-02-21 1979-02-21 Wastewater denitrification tank

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1979021149U JPS5833840Y2 (en) 1979-02-21 1979-02-21 Wastewater denitrification tank

Publications (2)

Publication Number Publication Date
JPS55122898U JPS55122898U (en) 1980-09-01
JPS5833840Y2 true JPS5833840Y2 (en) 1983-07-28

Family

ID=28853472

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1979021149U Expired JPS5833840Y2 (en) 1979-02-21 1979-02-21 Wastewater denitrification tank

Country Status (1)

Country Link
JP (1) JPS5833840Y2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI472488B (en) * 2012-07-06 2015-02-11 Jinmin Li Apparatus and method for biological sewage treatment

Also Published As

Publication number Publication date
JPS55122898U (en) 1980-09-01

Similar Documents

Publication Publication Date Title
CN105668789A (en) Integrated denitrification sewage treatment device and sewage treatment method
CN217148724U (en) Sewage treatment integrated biological nitrogen and phosphorus removal device
CN113582339A (en) Energy-conserving MBR sewage treatment system
CN205328793U (en) Formula sewage treatment plant is used to MABR and MBR antithetical couplet
JPS5833840Y2 (en) Wastewater denitrification tank
CN111348746A (en) Miniature bionic type integrated sewage treatment equipment and sewage treatment method thereof
CN202011812U (en) Integrated equipment for treating high-concentration organic wastewater
CN205442795U (en) A high efficiency aeration biological filter device for angering explosive waste water treatment
CN214457121U (en) Bury formula integration sewage treatment device
CN213950729U (en) Wastewater biomembrane microbubble oxygenation type high-rate trickling filtration treatment tower
CN208814748U (en) Combined integral membrane bioreactor
CN208747755U (en) The combination membrane bioreactor of dual reflux
JPS6231640B2 (en)
CN220845728U (en) Nitrosation reaction device for anaerobic ammoxidation treatment of landfill leachate
CN216005352U (en) Energy-conserving MBR sewage treatment system
CN213506198U (en) Integrated sewage treatment device
CN109574217A (en) A kind of method of the coupling integrated Anammox efficient denitrification of segmental influent
CN216998071U (en) Sewage purification tank capable of periodically changing flow direction
JPH10337584A (en) Sewage treatment tank
CN212450836U (en) Backflow type contact oxidation sewage treatment equipment
CN215049019U (en) Internal circulation MBR reactor
CN221217468U (en) Anaerobic ammonia oxidation reaction tank based on MBBR method
CN210945017U (en) Integrated sewage treatment device
JPS628239B2 (en)
CN214653943U (en) Sewage treatment system