JPS5832689A - Process for making reduced iron as well as pyrolysis of heavy oil - Google Patents

Process for making reduced iron as well as pyrolysis of heavy oil

Info

Publication number
JPS5832689A
JPS5832689A JP13178481A JP13178481A JPS5832689A JP S5832689 A JPS5832689 A JP S5832689A JP 13178481 A JP13178481 A JP 13178481A JP 13178481 A JP13178481 A JP 13178481A JP S5832689 A JPS5832689 A JP S5832689A
Authority
JP
Japan
Prior art keywords
gas
fluidized bed
iron
furnace
heavy oil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP13178481A
Other languages
Japanese (ja)
Other versions
JPH0238627B2 (en
Inventor
Masayasu Arikawa
有川 正康
Kenji Mori
憲二 森
Kiichi Narita
成田 貴一
Dentaro Kaneko
金子 伝太郎
Nobuo Kamimura
上村 信夫
Kazuhiro Miyazaki
宮崎 一裕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Research Association for Residual Oil Processing
Original Assignee
Research Association for Residual Oil Processing
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Research Association for Residual Oil Processing filed Critical Research Association for Residual Oil Processing
Priority to JP13178481A priority Critical patent/JPH0238627B2/en
Priority to CA000392341A priority patent/CA1164388A/en
Priority to DE8181110560T priority patent/DE3171626D1/en
Priority to EP81110560A priority patent/EP0054926B1/en
Priority to BR8108297A priority patent/BR8108297A/en
Priority to ES508223A priority patent/ES508223A0/en
Priority to MX19081082A priority patent/MX157385A/en
Publication of JPS5832689A publication Critical patent/JPS5832689A/en
Publication of JPH0238627B2 publication Critical patent/JPH0238627B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Manufacture Of Iron (AREA)

Abstract

PURPOSE:A cracked gas from heavy oil and waste reducing gas are reformed by the action of the reduced iron to effect stabilized and continuous treatment of a large amount of heavy oil and iron ores, thus producing useful light oil fractions and high-quality reduced iron in high production efficiency. CONSTITUTION:At first, heavy oil is brought into contact with heated iron ore particles in the fluidized bed cracker 2 to effect oil's cracking and simultaneously partial reduction of the iron ore. At the same time, the carbon formed as a by-product deposits on the iron ore particles. Then, the iron ore covered with carbon are fed to the fluidized bed reduction furnace 3 to bring the iron ore particles into contact with a reducing gas to give reduced iron. The reduced iron is fed to the fluidized bed gas reformer 4 where the reduced iron is brought into contact with the exhaust gas from the reduction furnace and the cracked gas from the cracking furnace 2 to reform 2 to reform these gases into a reducing gas mainly consisting of hydrogen and carbon monoxide. Further, the reducing gas and a partially oxidized reduced iron from the reformer 4 are fed to the reduction furnace 3.

Description

【発明の詳細な説明】 本発明は重質油を熱分解して軽質油及び分解ガスを製造
すると共に、該分解生成物を利用して鉄鉱石を還元し、
還元鉄を製造する′方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention thermally decomposes heavy oil to produce light oil and cracked gas, and uses the decomposition products to reduce iron ore.
This invention relates to a method for producing reduced iron.

石油資源の枯渇化に伴ない、良質の軽質原油は次第に入
手難となり、中国原油を始めとする原油の重質化は時代
1勢であり、この重質油を熱分解してガソリン、軽油等
の軽質油を工業的有利に生産する技術の確立は、わが国
産業の発展のため喫緊率として各方面から重大な関心が
寄せられている。
With the depletion of petroleum resources, it is becoming increasingly difficult to obtain high-quality light crude oil, and heavy crude oil, including Chinese crude oil, is becoming more and more heavy. This heavy oil is thermally decomposed to produce gasoline, light oil, etc. The establishment of technology for industrially advantageous production of light oil is an urgent matter for the development of Japan's industry, and there is great interest from various quarters.

重質油を熱分解して軽質化する方法としては、流動状態
にあるシリカ、アルミナ等の触媒粒子の存在下に接触熱
分解する流動接触分解法(F2O法)が古くから用いら
れているが、このpoo法では重質油の熱分解時に副生
ずる炭素(コークス)が触媒粒子に沈積して活性を低下
するため、頻繁に触媒を再生賦活する必要があり、また
重質油とは云っても通常、ガス油のような溜出油や限定
された良質の残渣油についてのみ適用不能であるという
難点がある。
The fluid catalytic cracking method (F2O method), which involves catalytic thermal decomposition in the presence of fluidized catalyst particles such as silica and alumina, has been used for a long time as a method for thermally decomposing heavy oil to make it lighter. In this POO method, carbon (coke) produced as a by-product during the thermal decomposition of heavy oil is deposited on the catalyst particles and reduces its activity, so it is necessary to frequently reactivate the catalyst. However, the drawback is that it is usually only applicable to distillate oils such as gas oil and limited high-quality residual oils.

上記方法に関連し、上述した重質油の熱分解時における
副生コークスを製品としそ取り出すフルードコーキング
法も広く行なわれている。この方法は流動状態にある粉
体コークスを、触媒としてではなく、単に熱及び流動媒
体として重質油の熱分解を行なうものであるため、副生
コークスが沈積しても失活の問題はない。従って、重質
油の処理が容易である利点を有し、一般にIP00法用
原料油の製造に用いられている。副生じたコークスけり
アクタ−から抜き出され、その一部は燃焼してリアクタ
ーに循環する粉体コークスの加熱に用いると共に、残部
は製品として抜き出される。このフルードコーキング法
は重質油の処理法として対比されるディレートコ−キン
グ法に比べて完全な連続プロセスであり、且つ分解生成
物の収率が高いなどの利点を有するものの、製品コーク
スが品質上、燃料用途以外の適性がないという欠点があ
る。
In connection with the above-mentioned method, a fluid coking method is also widely used in which the coke produced by the above-mentioned thermal decomposition of heavy oil is taken out as a product. This method uses fluidized coke powder to thermally decompose heavy oil, not as a catalyst, but simply as a heat and fluid medium, so there is no problem with deactivation even if by-product coke is deposited. . Therefore, it has the advantage that heavy oil can be easily processed, and is generally used for producing raw oil for the IP00 method. The by-product is extracted from the coke kicking actor, a part of which is burned and used to heat the powder coke that circulates in the reactor, and the remainder is extracted as a product. This fluid coking method is a completely continuous process compared to the dilate coking method, which is a comparison method for treating heavy oil, and has advantages such as a high yield of cracked products. However, it has the disadvantage of not being suitable for uses other than fuel.

一方、鉄鉱石を固体状態で直接還元剤と接触させ、一般
的に還元率85%以上に還元して還元鉄を得、これを更
に電気炉により溶解、精練して鋼を製造する方法が開発
され、その近年の発展は目醒しいものがある。この所謂
、ガス還元直接製鉄法は、一旦、高炉で過剰の炭素の入
った鉄鉱を得、次いで転炉で過剰の炭素を、随伴する珪
素、−燐な−どと共に酸化除去して鋼を製造する、所謂
、高炉−転炉法に比べて、過剰な還元−酸化という原理
上の無駄がないこと、高炉用コークス原料の強粘結炭を
必要としないことなどの利点を有する。
On the other hand, a method has been developed in which iron ore is brought into direct contact with a reducing agent in a solid state, generally reduced to a reduction rate of 85% or more to obtain reduced iron, which is then melted and refined in an electric furnace to produce steel. Its development in recent years has been remarkable. In this so-called direct steelmaking method, steel is produced by first obtaining iron ore containing excess carbon in a blast furnace, and then oxidizing and removing the excess carbon along with accompanying silicon, phosphorus, etc. in a converter. Compared to the so-called blast furnace-converter method, this method has advantages such as no waste in principle due to excessive reduction and oxidation, and no need for highly coking coal as a raw material for blast furnace coke.

ガス還元直接製鉄法では通常、天然ガス(OH4)に高
温で触媒の存在下に酸化性ガス(、I(2o 、、 、
、OO,)を接触させることによって得られる還元性ガ
ス(co−4−a2)を還元剤として酸化鉄の還元を行
なうものであり、還元炉としでに、流動床、固定層、シ
ャフト炉などが使用されるが、何れも還元性ガスと酸化
鉄との気固接触反応である。この方法は前述の利点の故
に更に今後の発展が期待される反面・発達阻害要因とし
て、使用エキ/1/F、操作技術面で次の制約がある。
In the gas reduction direct steelmaking process, natural gas (OH4) is usually injected with an oxidizing gas (, I(2o, , ,
, OO,) is used as a reducing agent to reduce iron oxide. are used, but both are gas-solid catalytic reactions between reducing gas and iron oxide. Although further development of this method is expected in the future due to the above-mentioned advantages, on the other hand, there are the following restrictions in terms of the exhaust/1/F used and the operating technique as factors that hinder its development.

(1)  還元剤としてのエネルギー源は現在のところ
天然ガスが最も有利であり、それを経済的に入手できる
地域が限られている。
(1) Natural gas is currently the most advantageous energy source as a reducing agent, and there are only a limited number of regions where it can be economically obtained.

(2)天然ガスを改質して還元ガス(OO+H2)を得
るために、還元ガス製造設備即ちリフオーマ−を付設せ
ねばならず、それには高価な耐熱鋼チューブと多量の触
媒とを必要とし、設備投資と経費の増大を招く。
(2) In order to obtain reducing gas (OO+H2) by reforming natural gas, it is necessary to install reducing gas production equipment, ie, a reformer, which requires expensive heat-resistant steel tubes and a large amount of catalyst; This results in increased capital investment and expenses.

(3)高炉法における炉内温度が最終的K1500℃を
越えるのに対して、直接製鉄法における反応温度は通常
、1ooo℃を越えることはなへこの方法においても還
元ガス温度が高い程、生産性が高く、エネルギー効率も
良いが、余り高温になると還元生成した金属鉄i子が固
相拡散焼結現象により相互に固着し合い、遂には粒子層
が連結体を形成し、シンタリング現象を惹起し、安定し
た連続操作が維持できなくなる。特に流動床の場合、使
用鉄鉱石粒度が小さいことから、還元反応速度や熱伝達
速度が大である反面、還元温度の上昇が制約される。
(3) While the final furnace temperature in the blast furnace method exceeds 1500°C, the reaction temperature in the direct steelmaking method usually does not exceed 100°C. Even in this method, the higher the reducing gas temperature, the higher the productivity. However, if the temperature is too high, the metal iron particles produced by reduction will stick to each other due to the solid phase diffusion sintering phenomenon, and the particle layer will eventually form a connected body, causing the sintering phenomenon. This may cause it to become impossible to maintain stable continuous operation. In particular, in the case of a fluidized bed, since the iron ore particle size used is small, the reduction reaction rate and heat transfer rate are high, but on the other hand, the increase in the reduction temperature is restricted.

かくして、叙上のような石油資源枯渇化を控えた、時代
の趨勢と、技術の現状とに鑑み、本出願人らは、前述の
FCC法ないしばフルードコーキング法等の重質油の流
動接触又は熱分解法とガス還元直接製鉄法とを合理的に
組合わせて軽質油の採取と共に還元鉄を得る方法につい
て予てより研究を重ね、還元鉄製造法並びに重質油の流
動熱分解法の問題点を、重質油の流動熱分解に抛てシリ
カ、アルミナ触媒粒子や粉体コークスの代りに鉄鉱石粒
子を用いることにより解決すると共に、流動層熱分解炉
の熱源となる加熱された鉄鉱石粒子の合理的な供給法を
確立し、更に又、前記重質油の熱分解時に副生ず11や
炭素を鉄鉱石粒子に付着させてこれを流動層熱分解炉か
ら抜き出し、得られた炭素付着鉄鉱石粒子を流動層還元
炉に供給し、流動状態で高温還元ガスと接触させて還元
鉄を製 ′造する一方、前記流動層熱分解炉から排出さ
れる熱分解生成物より分解ガス若しくは蒸溜残渣油を分
離してこれを改質炉にて水素及び−酸化炭素を主成分と
する還元ガスに改質し、前記流動層還元炉に供給する方
法を開発し、それぞれ先に提案した。
Thus, in view of the trends of the times and the current state of technology, with the depletion of petroleum resources as described above, the applicants have decided to use the fluid contact method for heavy oil such as the above-mentioned FCC method or fluid coking method. Or, we have conducted research in advance on a method to obtain reduced iron while extracting light oil by rationally combining the pyrolysis method and the gas reduction direct iron production method, and we have developed a method for producing reduced iron and a fluid pyrolysis method for heavy oil. This problem is solved by using iron ore particles instead of silica, alumina catalyst particles and powder coke in fluidized bed pyrolysis of heavy oil, and heated iron ore is used as the heat source for the fluidized bed pyrolysis furnace. A rational method for supplying stone particles was established, and furthermore, by-product 11 and carbon were attached to iron ore particles during the pyrolysis of the heavy oil, and the particles were extracted from a fluidized bed pyrolysis furnace. Carbon-adhered iron ore particles are supplied to a fluidized bed reduction furnace and brought into contact with high-temperature reducing gas in a fluidized state to produce reduced iron, while cracked gas is extracted from the pyrolysis products discharged from the fluidized bed pyrolysis furnace. Alternatively, we have developed a method of separating distillation residue oil and reforming it in a reforming furnace into a reducing gas mainly composed of hydrogen and carbon oxide, and supplying it to the fluidized bed reduction furnace, as previously proposed. .

しかして本発明は、それら頃に提案 された方法に更に
改良を加え、従来法のもつ欠点を悉く解消し、生産効率
が高く、安定連続操作が可能な、重質油の熱分解と共に
還元鉄を製造する方法を提供するものであり、その主要
な目的は、(イ)還元剤の原料として、従来から使用さ
れている天然ガス(OH4) だけでなく、種々の炭化
水素を初め、重油、タール、ピッチ、蒸溜残渣油などの
利用をも可能とすること。
Therefore, the present invention has further improved the method proposed around that time, eliminates all the drawbacks of the conventional method, has high production efficiency, and enables stable continuous operation. Its main purpose is to provide a method for producing (a) not only natural gas (OH4), which has traditionally been used as a raw material for reducing agents, but also various hydrocarbons, heavy oil, It is also possible to use tar, pitch, distillation residue oil, etc.

(ロ)還元ガス製造りフォーマ−設備を可及的に縮小す
るか、又は省略しても鉄鉱石の還元が可能な、工業的有
利な方法を提供すること、 (ハ)還元炉内における還元鉄粒子相互の固着を防IF
シ、高温還元ガスによる還元を可能とする、等の点にあ
る。
(b) To provide an industrially advantageous method in which iron ore can be reduced even when reducing gas production former equipment is reduced as much as possible or omitted; (c) Reduction in a reduction furnace. IF prevents iron particles from sticking to each other
Second, it enables reduction using high-temperature reducing gas.

即ち、本発明の特徴とするところは、鉄鉱石粒子を流動
状態に保持した流動層熱分解炉で重質油を熱分解して軽
質油並びに分解ガスを製造すると共に、分解ガスを利用
して鉄鉱石を還元し還元鉄を製造するに当り、次の工程
を有することにある。
That is, the characteristics of the present invention are that heavy oil is pyrolyzed in a fluidized bed pyrolysis furnace in which iron ore particles are kept in a fluidized state to produce light oil and cracked gas, and that the cracked gas is used to produce light oil and cracked gas. The purpose is to have the following steps in reducing iron ore and producing reduced iron.

ピ) 重質油の熱分解と共に鉄鉱石′粒子を部分還元し
、同時に該熱分解によって副生する炭素を該鉄鉱石粒子
に付着させる工程、 (ロ) 前記炭素付着鉄鉱石粒子を流動層還元炉に供給
し、流動状態で高温還元ガスと接触させて還元鉄を製造
し、排出ガスを流動層ガス改質炉に供給する工程、 (ハ) 前記流動層熱分解炉で生成した熱分解生成物よ
り分解ガスを分離し、分解ガスを加熱して流動層ガス改
質炉に供給する工程、 に)前記(ロ)の工程で製造された還元鉄の一部を流動
層ガス改質炉に供給し、これを流動状態に保持しつつ前
記分解ガス及び流動層還元炉からの排出ガスと接触させ
てこれらのガスをH2及び00を主成分とする還元ガス
に改質する工程、 及び (ホ) 前記に)の工程で生成する還元ガス及びに)の
工程から排出される一部酸化された還元鉄を流動層還元
炉に供給する工程。
ii) partially reducing the iron ore particles while thermally decomposing the heavy oil, and at the same time adhering carbon by-produced by the pyrolysis to the iron ore particles; (b) fluidized bed reduction of the carbon-attached iron ore particles. a step of producing reduced iron by supplying it to a furnace and contacting it in a fluidized state with a high-temperature reducing gas, and supplying the exhaust gas to a fluidized bed gas reforming furnace; (c) pyrolysis products produced in the fluidized bed pyrolysis furnace; A step of separating the cracked gas from the materials, heating the cracked gas, and supplying it to the fluidized bed gas reforming furnace, 2) Part of the reduced iron produced in the step (b) above is sent to the fluidized bed gas reforming furnace. a step of reforming these gases into a reducing gas containing H2 and 00 as main components by contacting the cracked gas and the exhaust gas from the fluidized bed reduction furnace while maintaining the gas in a fluidized state; ) A step of supplying the reducing gas generated in the step (a) above and the partially oxidized reduced iron discharged from the step (b) to a fluidized bed reduction furnace.

以下、更に添付図面にもとづいて本発明方法の具体的な
実施態様を証明する。
Hereinafter, specific embodiments of the method of the present invention will be demonstrated based on the accompanying drawings.

本発明方法の一例のフローシートを示す第1図を参照し
て、工程の概要を述べると、先ず、鉄鉱石粒子は、鉱石
加熱器(1)内にその底部より供給され、そこで充分加
熱された上、流動層熱分解炉(2)へ送給されて流動床
を形成する。該熱分解炉(2)の底部より供給される重
質油は該分解炉(2)内で高温鉄鉱石粒子と接触し、熱
分解すると共に、鉄鉱石粒子を部分還元し、同時に熱分
解によって副生する炭素は鉄鉱石粒子に付′°着6:す
る。
An overview of the process will be described with reference to FIG. 1, which shows a flow sheet of an example of the method of the present invention. First, iron ore particles are fed into an ore heater (1) from the bottom thereof, and are sufficiently heated there. Then, it is fed to a fluidized bed pyrolysis furnace (2) to form a fluidized bed. The heavy oil supplied from the bottom of the pyrolysis furnace (2) comes into contact with high-temperature iron ore particles in the pyrolysis furnace (2) and is thermally decomposed, partially reducing the iron ore particles, and at the same time reducing the iron ore particles by pyrolysis. The by-product carbon is attached to the iron ore particles.

炭素付着鉄鉱石は流動層熱分解炉(2)より鉱石加熱器
(1)に還流し、かくして熱分解炉(2)と鉱石加熱器
(1)との間には、鉱石循環回路が形成される。
The carbon-coated iron ore flows back from the fluidized bed pyrolysis furnace (2) to the ore heater (1), thus forming an ore circulation circuit between the pyrolysis furnace (2) and the ore heater (1). Ru.

゛ 一方、鉱石加熱器(1)内の炭素付着鉄鉱石の一部
は、流動層還元炉(3)に送給され流動状態で高温還元
ガスと接触し撫元鉄となる。還元鉄の一部は系外に取り
出されるが、残部は流動層ガス改質炉(4)に送られ、
そこで炭化水素及び水、炭酸ガス等よりなる酸化性ガス
を還元ガスに変性するための触媒の作用をなすと共に、
自らも部分酸化を受けて流動層還元炉(3)に還流し再
び一部されて金属鉄となる。
゛ On the other hand, a part of the carbon-adhered iron ore in the ore heater (1) is sent to the fluidized bed reduction furnace (3) and comes into contact with high-temperature reducing gas in a fluidized state to become Fugen iron. A part of the reduced iron is taken out of the system, but the rest is sent to the fluidized bed gas reformer (4).
Therefore, it acts as a catalyst to convert oxidizing gases such as hydrocarbons, water, and carbon dioxide into reducing gases, and
It also undergoes partial oxidation and returns to the fluidized bed reduction furnace (3) where it is partially oxidized again to become metallic iron.

かように流動層還元炉(3)と流動層ガス改質炉(4)
との間にも鉄鉱石循環回路が形成されている。又流動層
熱分解炉(2)より排出される熱分解生成物は精溜分離
系(2鴎に送られ、そこでC,〜゛C,C,ガス分とす
る分解ガスを分離し、この分離ガスは、流動層還元炉(
3)から排出されるCO□、 C!O、’H,、H2S
等よりなる廃ガスと合体して流動層ガス改質炉(4)へ
送入し、該ガス改質炉(4)内で還元鉄流動層触媒によ
りoo 、 H2”i(主体とする還元ガスに改質され
たうえ、流、動層還光炉(3)へ供給して鉄鉱石粒子の
還元に利用される。
Fluidized bed reduction furnace (3) and fluidized bed gas reformer (4)
An iron ore circulation circuit is also formed between the two. In addition, the pyrolysis products discharged from the fluidized bed pyrolysis furnace (2) are sent to the rectification separation system (2), where the cracked gas is separated into C, ~ C, C, gas components. The gas is produced in a fluidized bed reduction furnace (
3) CO□ emitted from C! O, 'H,, H2S
It is combined with waste gas consisting of After being reformed, it is supplied to a fluidized bed recirculation furnace (3) and used to reduce iron ore particles.

以上の説明は本発明方法における反応物質の流れの概説
であるが、続いて、各工程の条件9作用並びに工程間の
関連等を以下に詳述する。先ず、例えばフンラドソン炭
素5〜30%、比重0.90〜1.10の減圧蒸溜残渣
油の如き重質油が予熱炉(5)にて熱分解が起こらない
程度の温度、即ち400℃以下の温度に予熱されて、配
管03)を経て竪型円筒状の流動層熱分解炉(2)に供
給され、配管(10)から供給されて炉内で流動状態に
ある鉄鉱石粒子により接触熱分解され、供給重質油の7
0〜90%は分解生成物として、該熱分解炉(2)の頂
部より配管(7)を経て取り出され、分解ガス、ナフサ
、軽油。
The above explanation is an overview of the flow of reactants in the method of the present invention, and then the effects of the conditions 9 in each step and the relationship between the steps will be explained in detail below. First, heavy oil such as vacuum distillation residue oil having 5 to 30% Hunradson carbon and 0.90 to 1.10 specific gravity is heated in a preheating furnace (5) to a temperature at which thermal decomposition does not occur, that is, 400°C or less. The iron ore particles are preheated to a certain temperature and supplied to a vertical cylindrical fluidized bed pyrolysis furnace (2) via piping 03), where they are subjected to catalytic pyrolysis using iron ore particles that are supplied from piping (10) and are in a fluidized state in the furnace. 7 of the heavy oil supplied
0 to 90% is taken out as cracked products from the top of the thermal cracking furnace (2) via the pipe (7), and is cracked gas, naphtha, and light oil.

重油及び重質残渣油等の夫々の部分に分離さ・れるよう
になっている。
It is designed to be separated into its respective parts such as heavy oil and heavy residual oil.

なお、熱分解炉(2)内で鉄鉱石粒子を流動化させるた
め、該炉(2)には下方配管(至)かちスチームが供給
されており、これら鉄鉱石粒子及びスチームは分解炉(
2)内に400〜63−0℃、好ましくは5゜O〜6・
00℃の流動層を形成するのに必要な量及び温度に制御
されて供給される。熱分解・炉(2)においては、上述
の重質油の熱分解によりO,”−we4のガス及びC6
以上の油分を生成し、CIのメタンガスの場合は、炉内
のスチーム及び炭酸ガスと次の反応を起こして、”−酸
化炭素と水素とよりなる還元ガスが生成する。
In addition, in order to fluidize the iron ore particles in the pyrolysis furnace (2), steam is supplied to the furnace (2) through a downward pipe (toward), and these iron ore particles and steam are passed through the cracking furnace (2).
2) within 400-63-0℃, preferably 5℃-6.
The amount and temperature required to form a fluidized bed at 00°C are controlled and supplied. In the pyrolysis/furnace (2), O,''-we4 gas and C6 are produced by the above-mentioned pyrolysis of the heavy oil.
In the case of CI methane gas, the following reaction occurs with the steam and carbon dioxide gas in the furnace to generate a reducing gas consisting of carbon oxide and hydrogen.

OH4→0−)2)12(炭素の副生)OH,−)H2
0→C!O+ 3)120H4+002→200 +2
H。
OH4→0-)2) 12 (carbon by-product) OH,-)H2
0→C! O+ 3) 120H4+002→200 +2
H.

更にこの還元ガスの作用により鉄鉱石粒子は次の通り部
分還元され、同時に前記熱分解によって副生ずる炭素が
該鉄鉱石粒子に付着する。
Furthermore, the iron ore particles are partially reduced by the action of this reducing gas as follows, and at the same time, carbon produced as a by-product from the thermal decomposition is attached to the iron ore particles.

3 Fe、 o、十co −’) 21”C3o4+ 
CO23Fe’2Q、+H2+ 2F’e304+ H
2OFe3O4+ co −+ 3 ?e’O→C02
’Fe304 +H2−+ 311’e O斗H,0熱
分解炉(2)の炉内温度を630℃以上に上げてこの段
階で鉄鉱石の部分還元を更r進行させることも勿論可能
であるが、そのように熱分解温度を上昇させるのは一般
にガス発生量が増加すると共にエネルギーコスト面から
不利であるので、好ましくは上記温度範囲が採用される
。゛ 熱分解炉(2)内の空塔速度は原料粉鉱石の粒度に関係
するが、一般に30’%ec以下、炉内圧力は2を以下
で操業され、前述の通り重質油の約70〜90%は分解
生成物として炉頂より配管(7)を経て清潔分離系(2
21に送り出され、残りの約10〜30%は副生炭素と
なり、鉄鉱石粒子に付着してこれと共に配管(9)によ
り鉱石加熱器(1)に給送される。
3 Fe, o, ten co-') 21”C3o4+
CO23Fe'2Q, +H2+ 2F'e304+ H
2OFe3O4+ co −+ 3 ? e'O→C02
'Fe304 +H2-+ 311'e OtoH,0 It is of course possible to further advance the partial reduction of the iron ore at this stage by increasing the temperature inside the pyrolysis furnace (2) to 630°C or higher. Since raising the thermal decomposition temperature in this way generally increases the amount of gas generated and is disadvantageous in terms of energy costs, the above temperature range is preferably employed. Although the superficial velocity in the pyrolysis furnace (2) is related to the particle size of the raw material powder ore, it is generally operated at 30'% ec or less, and the furnace pressure is 2. ~90% is decomposed products from the top of the furnace through piping (7) to the clean separation system (2).
The remaining approximately 10 to 30% becomes by-product carbon, which adheres to iron ore particles and is fed together with the iron ore particles to the ore heater (1) through the pipe (9).

一方、前記流動層熱分解炉(2)に供給される鉄鉱石粒
子は、Pめ平均粒径10〜200μに粉砕されてホッパ
ー(図示せず)に貯蔵されており、配管(8)からスチ
ームと共に鉱石加熱器(1)に供給され、流動層熱分解
炉(2)から配管(9)を通ってリサイクルされる炭素
付着鉄鉱石粒子の付着炭素の一部及び還元ガスの一部を
、配管07)から導入される空気によって燃焼させるこ
とによって予め600〜700℃、あるいは次の還元炉
(3)への熱量供給を考慮して800℃あるいけそれ以
上に加熱するようになっている。
On the other hand, the iron ore particles to be supplied to the fluidized bed pyrolysis furnace (2) are pulverized to a particle diameter of 10 to 200 μm and stored in a hopper (not shown), and are steamed from the pipe (8). A portion of the carbon deposited on the carbon-coated iron ore particles and a portion of the reducing gas are supplied to the ore heater (1) and recycled from the fluidized bed pyrolysis furnace (2) through the piping (9). By combustion with the air introduced from 07), it is heated in advance to 600 to 700°C, or to 800°C or more in consideration of the heat supply to the next reduction furnace (3).

加熱された鉄鉱石粒子は、配管0Qを通って前記流動層
熱分解炉(2)に送給される。該熱分解炉(2)におけ
る分解反応は吸熱反応であるから、該炉(2)には充分
な熱量が供給されなければならず、又、この熱量は主i
して鉄鉱石粒子によって炉内に搬入される熱量であるか
ら、このため熱分解炉(2)より配管(9)を通って鉱
石加熱器(1)に還流する副生炭素付鉱石粒子を再加熱
した後、その一部、できれば90%以上を再び配管(1
0)より熱分′解炉(2つに供給する鉱石循環回路を形
成して、熱分解炉(2)への加熱鉄鉱石粒子供給量が大
きくなるように工夫されている。
The heated iron ore particles are fed to the fluidized bed pyrolysis furnace (2) through pipe 0Q. Since the decomposition reaction in the pyrolysis furnace (2) is an endothermic reaction, a sufficient amount of heat must be supplied to the furnace (2), and this amount of heat is mainly i
This is the amount of heat carried into the furnace by the iron ore particles, so the ore particles with by-product carbon that flow from the pyrolysis furnace (2) through the piping (9) to the ore heater (1) are recycled. After heating, part of it, preferably 90% or more, is re-piped (1
An ore circulation circuit is formed to feed the pyrolysis furnace (2) from the pyrolysis furnace (2) to increase the amount of heated iron ore particles supplied to the pyrolysis furnace (2).

なお、鉱石加熱器(1)としては、図示の如く熱分解炉
(2)と同様に流動層形式のものに限定されず、移動層
形式のものでもよく、その構造は任意であるが、連続的
に鉄鉱石粒子を加熱できるものでなければならない。
The ore heater (1) is not limited to a fluidized bed type like the pyrolysis furnace (2) as shown in the figure, but may be a moving bed type, and its structure is arbitrary, but continuous It must be able to heat iron ore particles in a controlled manner.

次に、前記流動層熱分解炉(2)から還送される炭素付
着鉄鉱石粒子は前述の通り鉱石加熱器(1)内で再加熱
に付され、その大部分は再び゛熱分解炉(2)へ送られ
、重質油熱分解の流動床となるが、残部は配管(1])
を通って次工程である流動層還元炉(3)に送給される
0該還元炉(3)Lll、前記熱分解炉(2)と同じく
流動層となっており、流動状態において下部より吹き込
まれる主、として水素及び−酸化炭素からなる高温還元
ガスによ、って炭素付着鉄鉱石粒子は次のように還元さ
れ、還元鉄として取り出される。
Next, the carbon-coated iron ore particles returned from the fluidized bed pyrolysis furnace (2) are reheated in the ore heater (1) as described above, and most of them are returned to the pyrolysis furnace. 2) and becomes a fluidized bed for heavy oil pyrolysis, but the rest is sent to piping (1)
The reduction furnace (3) Lll is fed to the next step, the fluidized bed reduction furnace (3), which is a fluidized bed like the pyrolysis furnace (2), and is blown from the bottom in a fluidized state. The carbon-adhered iron ore particles are reduced as follows by a high-temperature reducing gas mainly consisting of hydrogen and carbon oxide, and are taken out as reduced iron.

(1段ill ) Fe2O5−)−+2−) 2Fe
O+ H2O1Fe203 + (jo −) gFe
O+002Pe、04−1− H,→31FeO+H2
OFe304 +00 →3Fe O+ co2(2段
目) Fe O+H2→We +H20?e Q −1
−00−+ Fe −) Co2かかる還元反応は流動
層還元のもつ利点を充分発揮し、しかも流動状態にある
鉄鉱石粒子はその表面が炭素により被覆されているため
、還元された鉄粒子相互の固相拡散焼結現象が妨げられ
、焼結が生じないので、900℃以上の高温で行なうこ
とが可能となり、又、鉄鉱石粒子表面を被曹している炭
素質が Fe2O,+ 30 →2’W2 +300Fe304
 +40 →3Fe +400FeO十〇−5Fe+C
0 のように反応して還元に寄与する。なお、流動層還元炉
(3)内の熱量としては、前記鉱石加熱器(])で加熱
された鉄鉱石粒子及び高温の還元ガス力;導入されるの
で、充分な熱量の搬入が可能であり、炉内は700〜1
200℃、好ましくは700〜1000℃の高温の還元
性雰囲気に保持され、鉄鉱石は付着炭素及び還元ガスで
還元されて鉄品位85〜95%程度あるいはそれ以上の
還元鉄となり、配管(19)より取り出され適宜公知の
1程へ送られ、又一部は配管(+4)により流動層ガス
改質炉(4)に供給される。
(1 stage ill) Fe2O5-)-+2-) 2Fe
O+ H2O1Fe203 + (jo −) gFe
O+002Pe, 04-1-H, →31FeO+H2
OFe304 +00 →3Fe O+ co2 (2nd stage) Fe O+H2 → We +H20? e Q-1
-00-+ Fe -) Co2 This reduction reaction fully demonstrates the advantages of fluidized bed reduction, and since the surface of iron ore particles in a fluidized state is coated with carbon, the reduced iron particles interact with each other. Since the solid phase diffusion sintering phenomenon is prevented and sintering does not occur, it is possible to perform the process at a high temperature of 900°C or higher, and the carbonaceous substance coating the surface of the iron ore particles is Fe2O, + 30 → 2 'W2 +300Fe304
+40 →3Fe +400FeO10-5Fe+C
0 and contributes to reduction. In addition, the amount of heat in the fluidized bed reduction furnace (3) includes iron ore particles heated by the ore heater () and high-temperature reducing gas power; therefore, a sufficient amount of heat can be brought in. , inside the furnace is 700-1
The iron ore is maintained in a high-temperature reducing atmosphere of 200°C, preferably 700-1000°C, and the iron ore is reduced with deposited carbon and reducing gas to become reduced iron with an iron grade of about 85-95% or higher, and the iron ore is heated to the piping (19). The gas is extracted from the reactor and sent to a known stage as appropriate, and a portion is supplied to the fluidized bed gas reforming furnace (4) through a pipe (+4).

流動層ガス改質炉(4)は、前記熱分解炉(2)力・ら
排出される熱分解生成物から分離した分解ガス及び流動
層還元炉(3)からの排出ガスを高温還元ガスとなし、
上記還元炉(3)に供給する役目を掌る。即ち熱分解炉
(2)からは油分、メタンを初めとする分解ガス、硫化
水素等の熱分解生成物が、炉中の002゜+20 、0
0 、 +2等に伴なわれて排出され、配管(7)を経
て清潔分離系(2りへ送られる。そこで、ナフサ。
The fluidized bed gas reforming furnace (4) converts the cracked gas separated from the pyrolysis products discharged from the pyrolysis furnace (2) and the exhaust gas from the fluidized bed reduction furnace (3) into high-temperature reducing gas. none,
It plays the role of supplying the above-mentioned reduction furnace (3). That is, from the pyrolysis furnace (2), pyrolysis products such as oil, cracked gas including methane, and hydrogen sulfide are released into the furnace at 002°+20,0
It is discharged along with 0, +2, etc., and sent to the clean separation system (2) via piping (7).

軽油1重油等の中、高沸点部分及び蒸溜残渣油を分離さ
れたo、−we4の分解ガス、 Co2. H20、0
0。
Cracked gas of o, -we4 from which high boiling point parts and distillation residue oil are separated from light oil, 1 heavy oil, etc., Co2. H20, 0
0.

H2、H2S k@ trッ。ヵ8□遵50閂l門や応
。、脱硫装置C24)によって硫化水素を除去した上、
加熱器(6)により分解しない程度に加熱され、配管(
231を経て流動層ガス改質炉(4)へ送給される0又
、流動層還元炉(3)から排出される約700〜100
0℃の高温排ガスは、重質油に斉有されていた硫黄成分
の一部が軟化したH2Sの他、未反応のH2,00と共
に還元反応の結果生成する00.及びH20を含んでお
り、配管(ロ)を通り冷却されて、好ましくはガス浄化
装置05)によって排ガス中に含まれるダスト。
H2, H2S k@tr. Ka8□Jun 50 bar gate and response. , after removing hydrogen sulfide by desulfurization equipment C24),
The heater (6) heats the piping (
231 to the fluidized bed gas reforming furnace (4), and about 700 to 100 gas discharged from the fluidized bed reduction furnace (3).
The high-temperature exhaust gas at 0°C contains H2S, which is a softened portion of the sulfur components present in heavy oil, as well as 00. and H20, and is cooled through the pipe (b) and preferably contained in the exhaust gas by the gas purification device 05).

硫黄化合物、過剰の炭酸ガス、水等の余剰不要成分を除
去した後、配管CDにより加熱器(2eへ送られ充分に
加熱された上、前記熱分解炉(2)から送られた分解ガ
スと合流して流動層ガス改質炉(4)へ送給される。
After removing surplus unnecessary components such as sulfur compounds, excess carbon dioxide, and water, the pipe CD sends the gas to the heater (2e) where it is sufficiently heated, and then the decomposed gas sent from the pyrolysis furnace (2) is heated. The gases are combined and fed to the fluidized bed gas reformer (4).

ここで本発明方法の最も特長とする点は、該ガ。The most distinctive feature of the method of the present invention is that the moth.

ス改質炉(4)内には、流動層還元炉(3)で還元され
た金属鉄粒子の一部が配管0→によって送り込まれ、流
動床が形成されfいることである。
A part of the metal iron particles reduced in the fluidized bed reduction furnace (3) is fed into the gas reforming furnace (4) through the pipe 0→, forming a fluidized bed.

本発明者等の実験によれば、酸化鉄は炭化水素の分解に
対する触媒効果に乏しく、還元生成した金属鉄において
その効果が著しいことが判明した。
According to experiments conducted by the present inventors, it has been found that iron oxide has a poor catalytic effect on the decomposition of hydrocarbons, and that the effect is remarkable in metallic iron produced by reduction.

即ち、第2図は、各酸化鉄及び還元鉄と、メタンガスの
還元ガスへの変性率との関係を示−is図であり、還元
鉄の触媒効果が酸化鉄に比し格段に優れていることを示
している。従って、流動層ガス改質炉(4)ではOH,
を始めとする04以下の炭化水素。
That is, Figure 2 is an IS diagram showing the relationship between each iron oxide and reduced iron and the rate of modification of methane gas to reducing gas, and the catalytic effect of reduced iron is much superior to that of iron oxide. It is shown that. Therefore, in the fluidized bed gas reformer (4), OH,
Hydrocarbons below 04, including

Co 、、 H,、002,H20等が、流動層還元炉
(3)から循環する還元鉄を触媒として次の反応を生起
する。
Co, H, 002, H20, etc., cause the following reaction using reduced iron circulating from the fluidized bed reduction furnace (3) as a catalyst.

(OH4の場合) OH4+H20→CO+34 OH,−1−00,→200斗2H2 (02H6の場合) 0□H6−1−2H204200−4−4H2o、 H
6−1−2002→400−1−3H。
(For OH4) OH4+H20→CO+34 OH, -1-00,→200 2H2 (For 02H6) 0□H6-1-2H204200-4-4H2o, H
6-1-2002→400-1-3H.

かくして得られたH2.Co  成分に富む還元ガスは
配管06)を通り加熱器(27)で加熱された上1.流
動層還元炉(3)へ導かれ、鉄鉱石の還元に寄与する。
The thus obtained H2. The reducing gas rich in Co components passes through the pipe 06) and is heated by the heater (27). It is guided to a fluidized bed reduction furnace (3) and contributes to the reduction of iron ore.

又、ガス改質炉(4)へ供給されるガスに’!、””2
とH20よりなる酸化性ガスを含むので、その量が多い
場合には、還元鉄が次の反応によって一部酸化する。
Also, the gas supplied to the gas reforming furnace (4) is '! ,””2
Since it contains an oxidizing gas consisting of and H20, if the amount is large, the reduced iron will be partially oxidized by the following reaction.

Fe +H20→Fe O−) H2 Fe +C!02−+ FeO+C0 これらの反応は前述のOH,の分解反応と共に還元ガス
の生成を補助し、又、CH4の分解反応が吸熱反応であ
るのに対し、これらの反応は発熱反応であるから、ガス
改質炉(4)内の熱的条件を有利に保つ。
Fe +H20→Fe O-) H2 Fe +C! 02-+ FeO+C0 These reactions assist the production of reducing gas along with the decomposition reaction of OH, mentioned above, and while the decomposition reaction of CH4 is an endothermic reaction, these reactions are exothermic reactions, so the gas Maintaining favorable thermal conditions within the reforming furnace (4).

カくシてガス改質炉(4)で再酸化された還元鉄は再び
配管(ロ)を通って流動層還元炉(3)へ循環する。
The reduced iron that has been cooled and reoxidized in the gas reforming furnace (4) is circulated through the pipe (b) again to the fluidized bed reduction furnace (3).

ガス改質炉(4)における上述の諸反応を効率よく達成
するため、炉内温度を700〜1100℃、好ましくは
800〜1000℃に保持するよう、供給するガスの温
度が適宜に制御される。
In order to efficiently achieve the above-mentioned reactions in the gas reforming furnace (4), the temperature of the gas to be supplied is appropriately controlled so as to maintain the temperature inside the furnace at 700 to 1100°C, preferably 800 to 1000°C. .

本発明方法における流動層ガス改質炉(4)では、還元
鉄流動床を形成したため、流動床の特性と還元鉄の触媒
作用とによって分解ガス中の炭化水素の殆んどが効率良
く還元ガスに変性改質されることは、本発明の大きな利
截である。即ち、還元炉(3)において、CH4を多量
に含有する還元ガス(00+H2)を用いて酸化鉄の還
元を行なうと、高温になる程、還元反応速度は大となる
が、重量減少率で示した還元率が70〜80%にお吟て OH,→C+2H2 の反応による炭素析出が著しく、以後重量減少は停滞す
る。その現象をOH4含有率の低いミドレックス(Mi
drθX)ガスの場合と対比して第3図に示す。
In the fluidized bed gas reforming furnace (4) in the method of the present invention, since a reduced iron fluidized bed is formed, most of the hydrocarbons in the cracked gas are efficiently converted into reduced gas due to the characteristics of the fluidized bed and the catalytic action of the reduced iron. It is a great advantage of the present invention to be modified to That is, when iron oxide is reduced in the reduction furnace (3) using reducing gas (00+H2) containing a large amount of CH4, the reduction reaction rate increases as the temperature increases, but the rate of reduction in weight increases. When the reduction rate reaches 70 to 80%, carbon precipitation due to the reaction of OH,→C+2H2 becomes significant, and the weight decrease stagnates thereafter. This phenomenon can be explained by using Midrex (MiDR), which has a low OH4 content.
FIG. 3 shows a comparison with the case of drθX) gas.

同図は酸化鉄中の還元前の酸素の量を100とした場合
、失なわれる酸素の量を縦軸にとり、還元反応時間(分
)を横軸として表わした線図であり、破線はCo、36
%;82155%; 002.5%;CH,、4%なる
組成のミドレックス(MidrθX)ガス中で860℃
にて還元した場合、実線はCH4゜40%;H2,20
%;N2,40%の組成のガス中で950℃にて還元し
た場合である。この図から明らかなようにCH,含量の
少ない還元ガスによる場合は比較的低温でも急速に還元
反応が進行し、95%程度の還元率が達成され、製品と
して満足すべき金属鉄が得られる一方、CH4含量が大
なる場合は更に高温雰囲気としても、70〜80%の還
元率で停頓し、高温還元に限界がある。
The figure is a diagram in which the amount of oxygen lost in iron oxide before reduction is 100, the vertical axis represents the amount of oxygen lost, and the horizontal axis represents the reduction reaction time (minutes), and the broken line represents Co , 36
%; 82155%; 002.5%; CH, 860°C in MidrθX gas with a composition of 4%
When reduced at , the solid line is CH4°40%; H2,20
%: This is the case of reduction at 950° C. in a gas with a composition of 40% N2. As is clear from this figure, when using a reducing gas with a low CH content, the reduction reaction proceeds rapidly even at a relatively low temperature, achieving a reduction rate of about 95%, and producing metallic iron that is satisfactory as a product. When the CH4 content is large, the reduction rate stops at 70 to 80% even in a high-temperature atmosphere, and there is a limit to high-temperature reduction.

この様に本発明方法によシガス改質炉(4)で処理され
た熱分解炉排ガス及び還元炉排ガスは、それらに含まれ
る炭化水素の殆んどが還元ガスに転化するのみならす、
Co、 、 B20等も触媒金属鉄との反応により還元
ガスの生成を扶ける為、炭化水素含量の小さい還元ガス
に改質され、流動層還元炉(3)で頗る効率よく良質の
還元鉄を生成することができる。
As described above, most of the hydrocarbons contained in the pyrolysis furnace exhaust gas and reduction furnace exhaust gas treated in the gas reforming furnace (4) according to the method of the present invention are converted into reducing gas.
Co, , B20, etc. also assist in the production of reducing gas through reaction with catalytic metal iron, so they are reformed into reducing gas with a low hydrocarbon content, and high-quality reduced iron can be produced with high efficiency in the fluidized bed reduction furnace (3). can be generated.

本発明方法の工程は以上の通りであるが、ここで本発明
方法の適用される原料重質油としては、熱分解工程にお
いて炭素の副生の抑制を本質的に必要としないところか
ら、フルードコーキング法に用いるような劣質の減圧蒸
溜残渣油も使用可能であり、その他、重質油として溶剤
脱水機抽出残油、熱分解残油、接触分解残油1重質ガス
油、減田ガス油、その他フルードフーキンク°法並びに
FOa法で用いる原料油はすべて利用でき、更に石炭、
オイルサンド、頁岩等から得られる油状物質も同様に適
用可能である。
The steps of the method of the present invention are as described above, and the raw material heavy oil to which the method of the present invention is applied is fluid, which essentially does not require suppression of carbon by-products in the pyrolysis step. Poor-quality vacuum distillation residue oil used in the coking method can also be used, and other heavy oils include solvent dehydrator extraction residue, pyrolysis residue, catalytic cracking residue 1 heavy gas oil, and Masuda gas oil. , and other feedstock oils used in the Fluid Fukink° process and the FOa process, as well as coal,
Oily substances obtained from oil sands, shale, etc. are also applicable.

また、本発明方法に用いる鉄鉱石としては、通常の製鉄
原料としての各種鉄鉱石カニ含まれ、構成鉱物で云えば
磁鉄鉱、赤鉄鉱、黄鉄鉱、磁が鉱。
Further, the iron ore used in the method of the present invention includes various iron ores used as ordinary raw materials for iron making, and the constituent minerals include magnetite, hematite, pyrite, and magnetite.

褐鉄鉱、菱鉄鉱等を例示することができ、また他の分類
によれば、Kiruna型、 ’raberg型、 M
agnitnaya型、 B11bao型、 I+at
erite型、 A1goma型。
Limonite, siderite, etc. can be exemplified, and according to other classifications, Kiruna type, 'raberg type, M
agnitnaya type, B11bao type, I+at
Elite type, A1goma type.

Lake 5uperior型、 01inton型、
 Minette型等を挙げることができ、何れのもの
を用いても、成分的に多少変化はあるが、本発明に適用
可能であることは云う迄もない0 次に本発明方法の具体的実施の1例を示す。
Lake 5upper type, 01inton type,
The Minette type can be mentioned, and it goes without saying that any of them can be applied to the present invention, although there may be some changes in composition. An example is shown.

実施例 TFe (鉄分) 、 64.57%;FeO,O,1
3%;5in2.4.98%で残部がFe2O3の組成
からなり、その65%が一105μの粒度である鉄鉱石
粒子を使用し、大慶減圧残油を使用重質油として下2C
熱分解条件で流動層熱分解を行なった。
Example TFe (iron content), 64.57%; FeO,O,1
3%; 5in2.4.98%, the balance is composed of Fe2O3, 65% of which uses iron ore particles with a particle size of -1105μ, and Daqing vacuum residual oil is used as heavy oil.
Fluidized bed pyrolysis was carried out under pyrolysis conditions.

反応温度     550℃ 重質油供給量   8 久 鉄鉱石供給量   33ゝ丸 この結果得られた鉄鉱石粒子断面を偏光顕微鏡で観察し
たところ、鉱石粒子表面を明らかに炭素が被覆していた
Reaction temperature: 550°C Heavy oil supply amount: 8 Kutetsu ore supply amount: 33゜ circles When the cross section of the resulting iron ore particles was observed with a polarizing microscope, the surface of the ore particles was clearly coated with carbon.

次に上記炭素被覆鉄鉱石粒子と、一方、比較のため、被
覆前の鉄鉱石粒子とを採り、両者を夫々状の条件で還元
した。
Next, the above carbon-coated iron ore particles and, for comparison, iron ore particles before coating were taken, and both were reduced under the respective conditions.

還元ガス; 組成  QQ      36% H255% Co、       5% OH64% 圧力  常用 量     8 Nm”/Kf We この結果、被覆前の鉄鉱石粒子の場合には、840℃前
後よりシンタリング現象が起こり、流動不能となったが
、本発明による炭素付着のものは990℃においてもな
おシンタリング現象は見られなかった。しかも、得られ
た還元鉄の性状は次の如く満足すべき品質を具えており
、本発明方法が優れた方法であることが立証された。
Reducing gas; Composition QQ 36% H255% Co, 5% OH64% Pressure Regular amount 8 Nm"/Kf We As a result, in the case of iron ore particles before coating, a sintering phenomenon occurs from around 840°C, making it impossible to flow. However, the carbon-adhered product according to the present invention showed no sintering phenomenon even at 990°C.Moreover, the properties of the obtained reduced iron had satisfactory quality as shown below, and the present invention The invented method was proven to be a superior method.

還元鉄の性状; 組成  TFe(鉄分)   88.1%MIPe (
金属鉄−)   83.7%C2,4% 金属比率         95.0%次に前記重質油
の熱分解物より分離した分解ガスは次の組成を有してい
た。
Properties of reduced iron; Composition TFe (iron content) 88.1% MIPe (
Metallic iron-) 83.7% C2.4% Metal ratio 95.0% Next, the cracked gas separated from the thermal decomposition product of the heavy oil had the following composition.

OH2,,60% B20      20% 0028% H212% この分解ガスと、次の組成の還元廃ガスとを適量混合し
た。
OH2,,60% B20 20% 0028% H212% This cracked gas was mixed with an appropriate amount of reduced waste gas having the following composition.

Co、      15I% B20     22.0% 00      20.8% H235,6% この混合ガスを、上記還元操作によって得られた還元鉄
粒子が流動床を形成しているガス改質炉中に950℃の
温度で供給したところ、得られた還元ガスは次の組成を
有していた。
Co, 15I% B20 22.0% 00 20.8% H235.6% This mixed gas was heated at 950°C in a gas reforming furnace in which the reduced iron particles obtained by the above reduction operation formed a fluidized bed. When supplied at this temperature, the resulting reducing gas had the following composition:

00      34 % H257% 0、〜04     4% 又、比較のため、流動床を未還元の鉄鉱石粒子で形成し
たところ、還元ガスへの転化率は約4%にすぎなかった
00 34% H257% 0, ~04 4% For comparison, when a fluidized bed was formed with unreduced iron ore particles, the conversion rate to reducing gas was only about 4%.

以上の説明から明らかな通り、本発明方法は重質油の流
動層接触熱分解によってナフサ、軽油。
As is clear from the above explanation, the method of the present invention produces naphtha and light oil by fluidized bed catalytic pyrolysis of heavy oil.

重油等の有用な各種石油製品を得る方法と、それによっ
て得られた副生炭素により鉄鉱石の還元を合理的に行な
う方法とを巧妙に結合すると共に、更に重質油の分解ガ
ス及び還元廃ガスを、還元鉄の触媒作用によって効率的
に還元ガスに転イ仁せしめて鉄鉱石の還元工程に利用す
るガス循環回路を組込んだ方法であり、重質油と鉄鉱石
とを一貫して大量に処理することができ、中間において
付加価値の低い副産物の生成を伴なわずに有用な軽質油
部分乃至分解ガスと高品位の還元鉄とを高い効率で製造
することができる外に、炭素付着鉄鉱石粒子を流動層に
て還元することにより従来の流動還元のネックとされて
いた高温下でのシンタリング現象を防止し、高温操作を
可能ならしめ、高温下における流動層還元の利点を享受
し、更に又、還元鉄を流動層ガス改質炉における流動触
媒として利用することにより、重質油の分解ガス及び還
元廃ガスの還元ガスへの転化改質を極めて効率良く達成
することが可能となり、かくして反応速度の迅速化と、
これによる生産性の向上を促進する等、種々の優れた効
果をもたらすことができる。
In addition to skillfully combining a method for obtaining various useful petroleum products such as heavy oil with a method for rationally reducing iron ore using the by-product carbon obtained by the method, it also produces cracked gas and reduced waste from heavy oil. This method incorporates a gas circulation circuit that efficiently converts gas into reducing gas through the catalytic action of reduced iron and uses it in the iron ore reduction process. Carbon By reducing adhering iron ore particles in a fluidized bed, we can prevent the sintering phenomenon at high temperatures, which was considered a bottleneck in conventional fluidized reduction, and enable high temperature operation, realizing the advantages of fluidized bed reduction at high temperatures. Furthermore, by using reduced iron as a fluidized catalyst in a fluidized bed gas reforming furnace, it is possible to extremely efficiently convert and reform heavy oil cracked gas and reduced waste gas into reducing gas. possible, thus speeding up the reaction rate and
This can bring about various excellent effects such as promoting improvement in productivity.

しかも、本発明方法によれば、系内において生ずる分解
ガスを改質して還元ガスとして利用することにより、特
別な還元剤あるいけ還元ガス原料を要することなく、省
資源、省エネルギープロセスとなっており、又、還元ガ
ス製造のためのり7オーマーを設備する必要がなく、通
常、リフオーマ−に必要とされる高価な耐熱鋼チューブ
や多量の触媒等はすべて不要となるため、設備投資や運
転経費が著しく少なくて済む等、経済的にも頗る有利で
あり、今−後における赤用化が期待される。
Moreover, according to the method of the present invention, by reforming the cracked gas generated in the system and using it as a reducing gas, it becomes a resource-saving and energy-saving process without requiring any special reducing agent or reducing gas raw material. In addition, there is no need to install a 7-ohmer glue for producing reducing gas, and the expensive heat-resistant steel tubes and large amounts of catalysts that are normally required for reheating are all unnecessary, so equipment investment and operating costs are reduced. It is economically advantageous as it requires significantly less water, and is expected to be used in red in the future.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明方法の一例を示す70−シート7゛− であり、第2図は各酸化鉄及び還元鉄と、メタンガスの
還元ガスへの変性率との関係を示す線図であり、又、第
3図は、酸化鉄の還元反応において還元ガスに含有され
る炭化水素濃度が還元率に及ぼす影響を示す線図である
。 (1)・・・・・鉱石加熱器、(2)・・・・・・・流
動層熱分解炉。 (3)・・・・−・・流動層還元炉、(4)・・・・・
・・流動層ガス改質炉。 (5)・・・・・・・予熱炉、(7)〜Cυ、231・
・・・・・・配 管。 (2渇・・・・・・・端部分離系、   c24)・・
・・・・・脱硫装置。 #z口 友人時間c分) 華3m 壇元時間c分)
FIG. 1 is a 70-sheet 7'' showing an example of the method of the present invention, and FIG. 2 is a diagram showing the relationship between each iron oxide and reduced iron and the rate of modification of methane gas to reducing gas. Further, FIG. 3 is a diagram showing the influence of the hydrocarbon concentration contained in the reducing gas on the reduction rate in the reduction reaction of iron oxide. (1)...Ore heater, (2)...Fluidized bed pyrolysis furnace. (3)...Fluidized bed reduction furnace, (4)...
...Fluidized bed gas reformer. (5)・・・・・・Preheating furnace, (7)~Cυ, 231・
······Piping. (2) End-separated system, c24)
...Desulfurization equipment. #Z mouth friend time c minutes) Hana 3m Dangen time c minutes)

Claims (1)

【特許請求の範囲】 1 鉄鉱石粒子を流動゛状態に保持した流動層熱分解炉
(2)で重質油”を熱分解して軽質油並びに分解ガスを
製造すると共に、分解ガスを利用して鉄鉱石を還元し還
元鉄を製造するに当り、次の工程を有することを特徴と
する重質油の熱分解と共に還元鉄を製造する方法。 (イ)重質油の熱分解と共に眩石粒子を部分還元し同時
に該熱分解によって副生ずる炭素を該鉄鉱石粒子に付着
させる工程。 (ロ)前記炭素付着鉄鉱石粒子を流動層還元炉(3)に
供給し、流動状態で高温還元ガスと接触させて還元鉄を
製造し、排出ガスを流動層ガス改質炉(4)に供給する
工程。 (ハ)前記流動層熱分解炉(2)で生成した熱分解生成
′物より分解ガスを分離し、分・解ガスを加熱して流動
層□ガス改質炉(4)に供給する工程′。 に) 前記(ロ)の工程て製造された一還元鉄の一部・
を流動層ガス改質炉(4)に供給し、これを流動状態に
保持しつつ前記分解ガス及び流動層還元炉(3)からの
排出ガスと接触させてこれらのガスをH2及びCOを主
成分とする還元ガスに改質する工程、及び (ホ) 前記に)の工程で生成する還元ガス及びに)の
工程から排出される一部酸化された還元鉄を流動層還元
炉(3)に供給する工程。    、   ・t2# 
 流動馳分解炉(2)に供給する鉄鉱石粒子を鉱石加熱
器(1)で予め加熱すると共に、前記熱分解炉(2)か
ら取り出された炭素付着鉄鉱石粒子の一部を前記鉱石加
熱器(1)に帰還させて再加熱する特許請求の範囲第1
項記載の重質油の熱分解と共に還元鉄を製造する方法。     ゛ 8、 鉱石加熱器(1)で充分に加、熱・された鉄鉱石
粒子の一部を流動層還元炉(3)に・供給する特許請求
の範囲第2項記載の重質油の熱分解と共に還元鉄を製造
する方法。 4、・鉱石加熱器に空気を供給し、鉄鉱石′粒子に付着
した炭素の一部を燃焼させて加熱に利用する特許請求の
範囲第2項又は第3項記載の重質油の熱分解と共に還元
鉄を製造する方法。 5、 鉱石加熱器が、鉄鉱石粒子を流動状態に保持して
加熱する流動層加熱器である特許請求の範囲第2項乃至
第4項のいずれかに記載の重質油の熱分解と共に還元鉄
を製造する方法。 6、 前記(ロ)の工程における流動層還元炉(3)か
らの排出ガスを流動層ガス改質炉に供給するに当り、該
排出ガスをガス浄化装張均を通して余剰不要成分を除去
した後、該ガス改質炉(4)に供給する特許請求の範囲
第1項乃至第5項のいずれかに記載の重質油の熱分解と
共に還元鉄を製造する方法。 7 流動層熱分解炉内温度が500〜600℃。 流動層還元炉内温度が700〜1200℃及び流動層ガ
ス改質炉内温度が800〜1000℃であ名特許請求の
範囲第1項乃至第6項のいずれかに記載の重質油の熱分
解と共に還元□鉄を製造する方法。 8、 流動層ガス改質炉(4)からの還元ガスを昇温し
て流動層還元炉(3)に供給する特許請求の範囲第1項
乃至第7項のいずれかに記載の重質油の熱分解と共に還
元鉄を製造する方法。
[Claims] 1. A fluidized bed pyrolysis furnace (2) in which iron ore particles are kept in a fluidized state to thermally decompose "heavy oil" to produce light oil and cracked gas, and to utilize the cracked gas. A method for producing reduced iron through thermal decomposition of heavy oil, which is characterized by having the following steps: (a) A method for producing reduced iron through thermal decomposition of heavy oil. A step of partially reducing the particles and at the same time attaching carbon by-produced by the thermal decomposition to the iron ore particles. (b) The carbon-attached iron ore particles are supplied to a fluidized bed reduction furnace (3), and in a fluidized state, high-temperature reducing gas is added to the iron ore particles. A process of producing reduced iron by contacting with the fluidized bed gas reforming furnace (4) and supplying the exhaust gas to the fluidized bed gas reforming furnace (4). A step in which the decomposed and decomposed gas is heated and supplied to the fluidized bed □ gas reforming furnace (4)'.) Part of the mono-reduced iron produced in the step (b) above.
is supplied to the fluidized bed gas reforming furnace (4), and is brought into contact with the cracked gas and the exhaust gas from the fluidized bed reduction furnace (3) while being maintained in a fluidized state to convert these gases into mainly H2 and CO. The process of reforming into the reducing gas as a component, and (e) the reducing gas generated in the process of (a) above and the partially oxidized reduced iron discharged from the process of (b) are sent to a fluidized bed reduction furnace (3). Supply process. , ・t2#
The iron ore particles to be supplied to the fluidized cracking furnace (2) are preheated in the ore heater (1), and a part of the carbon-attached iron ore particles taken out from the pyrolysis furnace (2) is heated in the ore heater. Claim 1 of returning to (1) and reheating
A method for producing reduced iron through thermal decomposition of heavy oil as described in Section 1.゛8. The heat of the heavy oil according to claim 2, in which a part of the iron ore particles sufficiently heated and heated in the ore heater (1) is supplied to the fluidized bed reduction furnace (3). A method for producing reduced iron through decomposition. 4. Pyrolysis of heavy oil according to claim 2 or 3, in which air is supplied to the ore heater and a part of the carbon attached to the iron ore particles is burned and used for heating. and a method for producing reduced iron. 5. The thermal decomposition and reduction of heavy oil according to any one of claims 2 to 4, wherein the ore heater is a fluidized bed heater that heats iron ore particles while keeping them in a fluidized state. A method of manufacturing iron. 6. When supplying the exhaust gas from the fluidized bed reduction furnace (3) to the fluidized bed gas reforming furnace in the step (b) above, the exhaust gas is passed through a gas purification system to remove excess unnecessary components. A method for producing reduced iron through thermal decomposition of heavy oil according to any one of claims 1 to 5, which is supplied to the gas reforming furnace (4). 7 The temperature inside the fluidized bed pyrolysis furnace is 500 to 600°C. The heat of heavy oil according to any one of claims 1 to 6, wherein the temperature inside the fluidized bed reduction furnace is 700 to 1200°C and the temperature inside the fluidized bed gas reforming furnace is 800 to 1000°C. A method of producing reduced □iron through decomposition. 8. The heavy oil according to any one of claims 1 to 7, wherein the reducing gas from the fluidized bed gas reforming furnace (4) is heated and supplied to the fluidized bed reduction furnace (3). A method for producing reduced iron through pyrolysis of iron.
JP13178481A 1980-12-22 1981-08-21 JUSHITSUYUNONETSUBUNKAITOTOMONIKANGENTETSUOSEIZOSURUHOHO Expired - Lifetime JPH0238627B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP13178481A JPH0238627B2 (en) 1981-08-21 1981-08-21 JUSHITSUYUNONETSUBUNKAITOTOMONIKANGENTETSUOSEIZOSURUHOHO
CA000392341A CA1164388A (en) 1980-12-22 1981-12-15 Process for the production of reduced iron and thermal cracking of heavy oils
DE8181110560T DE3171626D1 (en) 1980-12-22 1981-12-18 A process for the production of reduced iron and thermal cracking of heavy oils
EP81110560A EP0054926B1 (en) 1980-12-22 1981-12-18 A process for the production of reduced iron and thermal cracking of heavy oils
BR8108297A BR8108297A (en) 1980-12-22 1981-12-21 PROCESS TO CONCOMITANTLY PRODUCTION OF REDUCED IRON AND THERMAL CRACKING OF HEAVY OIL
ES508223A ES508223A0 (en) 1980-12-22 1981-12-21 PROCEDURE TO CONCURRENTLY PRACTICE THE PRODUCTION OF REDUCED IRON AND THERMAL FRACTION OF A HEAVY OIL.
MX19081082A MX157385A (en) 1980-12-22 1982-01-04 IMPROVED METHOD FOR THE PRODUCTION OF METALLIC IRON FROM A FINE IRON ORE AND A HEAVY OIL, WHICH REACT WITHIN A FLUIDIZED BED REACTOR AND A HIGH TEMPERATURE

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13178481A JPH0238627B2 (en) 1981-08-21 1981-08-21 JUSHITSUYUNONETSUBUNKAITOTOMONIKANGENTETSUOSEIZOSURUHOHO

Publications (2)

Publication Number Publication Date
JPS5832689A true JPS5832689A (en) 1983-02-25
JPH0238627B2 JPH0238627B2 (en) 1990-08-31

Family

ID=15066061

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13178481A Expired - Lifetime JPH0238627B2 (en) 1980-12-22 1981-08-21 JUSHITSUYUNONETSUBUNKAITOTOMONIKANGENTETSUOSEIZOSURUHOHO

Country Status (1)

Country Link
JP (1) JPH0238627B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6169910A (en) * 1984-09-12 1986-04-10 Kobe Steel Ltd Fluidized bed reducing method of iron ore
JPS61253309A (en) * 1985-05-01 1986-11-11 Kobe Steel Ltd Direct steel making method using vertical furnace
JPS62230918A (en) * 1986-03-31 1987-10-09 Kobe Steel Ltd Method for reducing iron ore
WO2023162389A1 (en) * 2022-02-24 2023-08-31 Jfeスチール株式会社 Method for reducing fine iron ore

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5498692B2 (en) * 2008-12-19 2014-05-21 出光興産株式会社 Process for producing modified coal and hydrocarbon oil

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6169910A (en) * 1984-09-12 1986-04-10 Kobe Steel Ltd Fluidized bed reducing method of iron ore
JPH0360884B2 (en) * 1984-09-12 1991-09-18 Kobe Steel Ltd
JPS61253309A (en) * 1985-05-01 1986-11-11 Kobe Steel Ltd Direct steel making method using vertical furnace
JPS62230918A (en) * 1986-03-31 1987-10-09 Kobe Steel Ltd Method for reducing iron ore
WO2023162389A1 (en) * 2022-02-24 2023-08-31 Jfeスチール株式会社 Method for reducing fine iron ore

Also Published As

Publication number Publication date
JPH0238627B2 (en) 1990-08-31

Similar Documents

Publication Publication Date Title
JPS5836034B2 (en) Method for producing reduced iron through pyrolysis of heavy oil
US2635947A (en) Hydrogen process
US4388218A (en) Regeneration of cracking catalyst in two successive zones
US4224140A (en) Process for producing cracked distillate and hydrogen from heavy oil
US5064467A (en) Method and apparatus for the direct reduction of iron
US7744753B2 (en) Coking apparatus and process for oil-containing solids
US3475160A (en) Method of producing reducing gases for the fluidized bed reduction of ores
CA2739577A1 (en) Process for production of direct reduced iron
JPS5835638B2 (en) Heavy oil pyrolysis and reduced iron production method
US3246978A (en) Fluid bed process
JPH0454601B2 (en)
CA2848250A1 (en) Method for obtaining olefins from furnace gases of steel works
EP0196359B1 (en) Method and apparatus for fluidized bed reduction of iron ore
US4600499A (en) Combination process for upgrading reduced crude
JPS5837353B2 (en) Decomposition of heavy oil to make it lighter and hydrogen production method
JPS5832689A (en) Process for making reduced iron as well as pyrolysis of heavy oil
CN111491892A (en) Calcium sulfide decomposition method
JPS60248793A (en) Thermal decomposition of heavy oil
US5078788A (en) Method for the direct reduction of iron
JP3342670B2 (en) Manufacturing method of iron carbide
JPS6247921B2 (en)
CA1164388A (en) Process for the production of reduced iron and thermal cracking of heavy oils
JPS6339521B2 (en)
JPS5832690A (en) Process for making reduced iron as well as pyrolysis of heavy oil
US3076702A (en) Iron oxide reduction in stages with varied gas streams