JPS5832629B2 - Suspension flocculation treatment method - Google Patents

Suspension flocculation treatment method

Info

Publication number
JPS5832629B2
JPS5832629B2 JP4160076A JP4160076A JPS5832629B2 JP S5832629 B2 JPS5832629 B2 JP S5832629B2 JP 4160076 A JP4160076 A JP 4160076A JP 4160076 A JP4160076 A JP 4160076A JP S5832629 B2 JPS5832629 B2 JP S5832629B2
Authority
JP
Japan
Prior art keywords
flocculant
raw water
floc
inorganic flocculant
suspension
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP4160076A
Other languages
Japanese (ja)
Other versions
JPS52124463A (en
Inventor
省吾 角田
裕一 府中
克之 片岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Infilco Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Infilco Co Ltd filed Critical Ebara Infilco Co Ltd
Priority to JP4160076A priority Critical patent/JPS5832629B2/en
Publication of JPS52124463A publication Critical patent/JPS52124463A/en
Publication of JPS5832629B2 publication Critical patent/JPS5832629B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Separation Of Suspended Particles By Flocculating Agents (AREA)

Description

【発明の詳細な説明】 本発明は、懸濁液特に、し尿処理場放流水、下水、KP
(クラフトパルプ製造工程)廃水などの有機性懸濁液の
固−液分離において凝集剤を用いて凝集処理方法に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to suspensions, especially human waste treatment plant effluent, sewage, KP
(Kraft pulp production process) This invention relates to a flocculation treatment method using a flocculant in solid-liquid separation of organic suspensions such as wastewater.

一般に凝集処理には凝集剤の使用選択、操業条件の適否
は設備費、経費に大きな差異をもたらすことが知られて
おり、特にし尿処理場などの廃水の有機性懸濁液は有機
親水性コロイドが主体であるため、凝集処理を行う場合
効果的な凝集フロック形成をおこさせるためには河川水
など粘土質無機疎水性コロイド懸濁液を凝集処理する場
合に比べて硫酸パン土、ポリ塩化アルミニウム(PAO
)、塩化第2鉄など無機多価金属塩凝集剤の注入量をは
るかに多量に必要とする。
In general, it is known that the selection of coagulant used and the suitability of operating conditions in flocculation treatment bring about a large difference in equipment costs and expenses.In particular, organic suspensions of wastewater from human waste treatment plants, etc. Therefore, when performing flocculation treatment, it is necessary to use sulfuric acid bread soil, polyaluminum chloride, etc. in order to form an effective flocculation treatment, compared to when flocculating a clayey inorganic hydrophobic colloid suspension such as river water. (PAO
), require much larger injection amounts of inorganic polyvalent metal salt flocculants such as ferric chloride.

例えば発明者等の実験によればカオリン懸濁液(濁変1
00”i/ 1. pH7,1、水温15.2°C)で
はポリ塩化アルミニウム20〜30ppmで良好な凝集
フロック形成が生起するのに対し、生し尿の嫌気性消化
脱離液の10倍希釈活性汚泥処理水中の有機性コロイド
粒子を良好に凝集フロック形成させるには、塩化第2鉄
によるときは、200〜300 ppm1硫酸パン土を
用いる場合は400〜800ppm必要であった。
For example, according to experiments by the inventors, kaolin suspension (turbidity 1
00"i/ 1. At pH 7.1, water temperature 15.2°C), good coagulation floc formation occurs at 20-30 ppm of polyaluminum chloride, whereas a 10-fold dilution of the anaerobic digestion solution of raw human waste In order to properly coagulate the organic colloid particles in the activated sludge treated water to form flocs, 200 to 300 ppm is required when using ferric chloride, and 400 to 800 ppm when using 1 sulfate clay.

このように多量の無機凝集剤を用いて、原水の凝集沈殿
処理を行っても生成するフロックは非常に疎な結合をし
て内部に多量の水分を取り込んでいるため軽く、極めて
沈降性が悪い。
Even if raw water is coagulated and sedimented using a large amount of inorganic flocculant, the flocs that are generated are very loosely bonded and incorporate a large amount of water, so they are light and have extremely poor settling properties. .

このため従来法として有機高分子凝集剤の併用による沈
降促進が検討され、ある程度の効果が認められている。
For this reason, as a conventional method, the use of organic polymer flocculants in combination to promote sedimentation has been investigated, and some effects have been recognized.

しかしながらこの従来の単なる無機凝集剤と有機高分子
凝集剤(以下ポリマーと略記する)との併用の凝集剤の
選択のみでは沈降促進効果が十分でなく、事後処理もや
っかいで不経済となる不利益な点がまだあった。
However, the conventional selection of a flocculant using a combination of an inorganic flocculant and an organic polymer flocculant (hereinafter abbreviated as "polymer") is not enough to promote sedimentation, and post-treatment is also troublesome and uneconomical. There were still some points.

本発明では、これら下水処理工程などのネックとなって
いた問題点を適確に除去し凝集剤の性能と共に操業条件
について併せて検討され有機親水性懸濁液処理に価値あ
る寄与をはたし得る効果的な処理を可能とする方法を提
供することを目的としたものである。
The present invention accurately eliminates these problems that have been a bottleneck in sewage treatment processes, examines the performance of flocculants and the operating conditions, and makes a valuable contribution to the treatment of organic hydrophilic suspensions. The purpose of this invention is to provide a method that enables effective processing of the results.

本発明は、フロックブランケット型凝集沈殿装置を使用
した有機性懸濁液の凝集処理において、まず原水水質に
対応する無機凝集剤所要量即ち、ジャーテストと呼ばれ
る回分式凝集試験から決定される全使用量の一部例えば
通常50〜90条程変が好ましく、原水水質に応じて適
宜変化させた無機凝集剤を原水に注入し、フロック形成
攪拌を行ったのちに、前記無機凝集剤の残部と有機高分
子凝集剤とを併用添加し、該ポリマーによるフロツタ成
長効果が実質的に完了する以前に原水をフロックブラン
ケットに流入させることを特徴とする方法である。
In the flocculation treatment of an organic suspension using a flocculation-blanket type coagulation-sedimentation device, the present invention first detects the required amount of inorganic flocculant corresponding to the raw water quality, that is, the total amount used, which is determined from a batch flocculation test called a jar test. A portion of the inorganic flocculant, which is preferably varied by 50 to 90 degrees, is injected into the raw water, and the inorganic flocculant is suitably changed depending on the quality of the raw water, and after stirring to form flocs, the remainder of the inorganic flocculant and the organic flocculant are injected into the raw water. This method is characterized in that a polymer flocculant is added in combination, and raw water is allowed to flow into the floc blanket before the flocculation growth effect by the polymer is substantially completed.

本発明方法において用いられる無機凝集剤としでは塩化
第2鉄、硫酸第1鉄、硫酸第2鉄、塩化コツバラス、硫
酸パン土、ポリ塩化アルミニウム酸化マグネシウムの群
から選ばれる少くとも一つを用いその使用量はジャーテ
ストによって決定される量を使用する。
As the inorganic flocculant used in the method of the present invention, at least one selected from the group of ferric chloride, ferrous sulfate, ferric sulfate, Kotbarasu chloride, bread earth sulfate, and polyaluminum magnesium oxide is used. The amount to be used is determined by a jar test.

そして無機凝集剤の注入量の分割比はジャーテスト所要
全量の10〜90俤好ましくは50〜70係を第1段階
に注入するのが良く、第1段階の注入率分割比が極端に
小さい例えば−1石以下の場合では水沫の効果が減少し
、特に処理水質の悪化をもたらすので注意する必要があ
る。
As for the division ratio of the injection amount of the inorganic flocculant, it is better to inject 10 to 90 units, preferably 50 to 70 units, of the total amount required for the jar test in the first stage. - If the amount is less than 1 koku, the effect of water droplets will be reduced and the quality of treated water will deteriorate, so care must be taken.

また前記篩分イ凝集剤としては、有機高分子凝集剤とア
ニオン性、カチオン性、非イオン性のものが選んで用い
られるが例えばアクリルアマイド系のポリアクリルアマ
イド、ポリアクリルアミドポリアクリルアミド部分加水
分解物(塩)やアクリル酸系のポリアクリル酸ナトリウ
ム、ポリメタアクリル酸、ポリアクリル酸ソーダやポリ
ビニルピクジン塩酸塩、ビニルピクジン共重合物塩、ポ
リエキシエチレンなどが用いられ、使用量は前記篩分イ
凝集剤と無機凝集剤の比率を1:10乃至1:1500
の割合で有効に使用される。
As the sieving flocculant, an organic polymer flocculant and an anionic, cationic, or nonionic flocculant can be selected and used, such as acrylamide-based polyacrylamide, polyacrylamide partially hydrolyzed polyacrylamide, etc. (salt), acrylic acid-based polysodium acrylate, polymethacrylic acid, polysodium acrylate, polyvinylpicdin hydrochloride, vinylpicdin copolymer salt, polyexyethylene, etc. The ratio of flocculant and inorganic flocculant is 1:10 to 1:1500.
is used effectively at a rate of

さらに無機凝集剤を用いるのに際し凝集助剤例えは消石
灰、生石灰、ソーダ灰、なども適宜選んで用いられうる
Further, when an inorganic flocculant is used, a flocculating aid such as slaked lime, quicklime, soda ash, etc. may be appropriately selected and used.

なお前記無機凝集剤の残部と有機高分子凝集剤との併用
添加操作は同時に添加するのが有効であるが若干の時間
的ずれがあってもよく、この場合その時間的ずれは短時
であることが好ましくさらに無機凝集剤の添加の後翁機
高分子凝集剤を添加しても、また有機高分子凝集剤を先
に添加することもでき、いずれにしてもフロック成長が
効果的に行われる態様下で操作するこaヌ考慮されてい
る。
Although it is effective to add the remainder of the inorganic flocculant and the organic polymer flocculant at the same time, there may be a slight time lag; in this case, the time lag is short. It is preferable that the organic polymer flocculant be added after the addition of the inorganic flocculant, or the organic polymer flocculant can be added first; in either case, floc growth will be effective. It is considered that this method operates under certain conditions.

さらに操作上重要な点は、原水をフロックプランケット
ゾーンに流入させる時期である。
A further important point in operation is the timing at which the raw water flows into the floc-plunket zone.

即ち前記有機高分子凝集剤によるフロック成長効果が実
質的に完了しない状態例えば有機高分子凝集剤添加後5
〜180秒以内に原水をフロックブランケットゾーンに
流入させることである。
That is, a state in which the floc growth effect due to the organic polymer flocculant is not substantially completed, for example, after addition of the organic polymer flocculant.
The raw water is to flow into the floc blanket zone within ~180 seconds.

これは180秒以上であるとフロック成長効果が完了し
てしまい完了後にブランケットゾーンに流入しても生成
フロックの沈降性は悪く、沈降分離速度は大きくできな
いし、5秒以下であるとフロック成長が実質的に行われ
ず有機高分子凝集剤の性能が低下するし、大量の使用を
余儀なくされる結果となるからである。
If the time is longer than 180 seconds, the floc growth effect will be completed, and even if the flocs flow into the blanket zone after completion, the sedimentation properties of the generated flocs will be poor and the sedimentation separation rate cannot be increased, and if the time is less than 5 seconds, the floc growth will not occur. This is because if this is not done, the performance of the organic polymer flocculant will deteriorate and a large amount will have to be used.

本発明方法の実施例を第1図を参照して説明すると、原
水供給管1に無機凝集剤供給部2が備えられ使用される
無機凝集剤所要量の一部(全体の50〜90%)が原水
に添加されたのち、上下迂流式管路3が設けられている
フロック形成装置4に流入されフロック形成攪拌作用が
与えられてフロック形成を行ったのち配管5を経てフロ
ックブランケット型凝集沈殿装置6に流入される。
An embodiment of the method of the present invention will be described with reference to FIG. 1. A raw water supply pipe 1 is equipped with an inorganic flocculant supply section 2, and a portion (50 to 90% of the total) of the required amount of inorganic flocculant is used. After being added to the raw water, it flows into a flocculation device 4 equipped with an up-and-down detour type pipe 3, where it is given a floc-forming agitation action to form flocs, and then passes through a piping 5 to form a floc-blanket type coagulation sedimentation. into the device 6.

この際該配管5中に前記無機凝集剤の残部と有機高分子
凝集剤とが供給部7から注入混合され管路攪拌を5〜1
80秒行って前記凝集沈殿装置6のブランケットゾーン
8に流入させ、清澄水分離ゾーン9を経て清澄な処理水
として流出管10より糸外に導出しうるものである。
At this time, the remainder of the inorganic flocculant and the organic polymer flocculant are injected into the pipe 5 from the supply section 7 and mixed, and the pipe is agitated for 5 to 1 hour.
The treated water is allowed to flow into the blanket zone 8 of the coagulation-sedimentation device 6 for 80 seconds, passes through the clear water separation zone 9, and can be led out of the yarn through the outflow pipe 10 as clear treated water.

なお前記凝集剤の残部としては同種の無機凝集剤を用い
であるが異種無機凝集剤を使用することも十分効果的改
良が実現されうるものである。
Although the remaining part of the flocculant is the same type of inorganic flocculant, it is also possible to use a different type of inorganic flocculant to achieve a sufficiently effective improvement.

本発明方法によれば、従来法と同一の無機凝集剤、ポリ
マ一種類、注入量において、2倍以上の沈降分離速度が
得られる。
According to the method of the present invention, with the same inorganic flocculant, one type of polymer, and injection amount as in the conventional method, a sedimentation separation rate more than twice as high as that of the conventional method can be obtained.

即ち、第2図はM市し尿処理場放流水の脱色を目的とし
た凝集沈殿処理における塩化第2鉄注入率と処理水質の
関係をジャーテストによって求めタモのである。
That is, Figure 2 shows the relationship between the ferric chloride injection rate and the quality of treated water in coagulation and precipitation treatment for the purpose of decolorizing the effluent from the M City human waste treatment plant, determined by a jar test.

原水水質は下表のとおりであった。第2図から良好な凝
集フロック生成が生じ、処理水色度2001!、以下を
満足するための無機凝集剤所要量は、塩化第2鉄200
〜300ppmが必要であった。
The raw water quality was as shown in the table below. As shown in Fig. 2, good cohesive floc formation occurred, and the chromaticity of the treated water was 2001! , the required amount of inorganic flocculant to satisfy the following is ferric chloride 200
~300 ppm was required.

この凝集テストの結果をもとにして第1図のような装置
を用いて次のような連続テストを行い本発明の優れた効
果を比較例と対照させて確認した。
Based on the results of this agglomeration test, the following continuous test was carried out using the apparatus shown in FIG. 1, and the excellent effects of the present invention were confirmed in comparison with comparative examples.

本発明方法では次の結果が得られた。The following results were obtained using the method of the present invention.

原水(し尿処理場放流水)に塩化第2鉄所要量300p
pmのうち、まず1/2量の150ppmを添加し、上
下迂流式管路攪拌フロック形成装置内で10分間フロッ
ク形成を行ったのち、残部の塩化第2鉄150ppmと
アニオン性高分イ凝集剤(サンポリ−A520三共化成
■製品)1.5ppmを添加し10秒間管路攪拌を行い
、原水をプランゲットゾーンに流入させた結果、沈降分
離速度400顧/minが得られ、ブランケットゾーン
スラリー濃度は3.5g/lと高濃度であった。
Required amount of ferric chloride in raw water (sewage treatment plant discharge water): 300p
First, 1/2 amount of 150 ppm of PM was added, and floc formation was performed for 10 minutes in an up-and-down bypass pipe agitation floc formation device, and then the remaining 150 ppm of ferric chloride and anionic polymer agglomerated. As a result of adding 1.5 ppm of agent (Sunpoly-A520 Sankyo Kasei product), stirring the pipe for 10 seconds, and letting the raw water flow into the plunget zone, a sedimentation separation rate of 400 min/min was obtained, and the blanket zone slurry concentration The concentration was as high as 3.5 g/l.

このためブランケット層は極めて安定で、キャリオーバ
もなく処理水質は濁1i5.5ppm、SS8 T)p
m、色度140妾と良好であった。
Therefore, the blanket layer is extremely stable, and there is no carryover, and the treated water quality is turbid 1i5.5ppm, SS8 T)p
The color was good, with a chromaticity of 140 m and a chromaticity of 140.

次に従来例では以下の結果となった。Next, in the conventional example, the following results were obtained.

本発明方法の場合と同一原水に塩化第2鉄300 pp
m全量を一変に加え本発明方法と同一のフロック形成攪
拌装置内で10分間フロック形成を行ったのち、前記サ
ンポIJ−A520.1.5Dpmを注入し、10秒間
管路攪拌を行った原水をブランケットゾーンに流入させ
た結果、本発明方法に比べ生成フロックの沈降性は、は
るかに劣り沈降分離速度1207/a/m i nにす
ぎず、本発明方法と同一の沈降分離速度400 vm/
m i nでは、フロックは処理水中に大量にキャリオ
ーバーし、処理不能であった。
300 pp of ferric chloride was added to the same raw water as in the case of the method of the present invention.
After adding the entire amount of m to 100 ml and forming flocs for 10 minutes in the same floc-forming stirring device as in the method of the present invention, the raw water was injected with the Sanpo IJ-A520.1.5 Dpm and stirred in the pipe for 10 seconds. As a result of flowing into the blanket zone, the sedimentation property of the produced flocs was much inferior to that of the method of the present invention, with a sedimentation separation rate of only 1207/a/min, which was the same as the sedimentation separation rate of 400 vm/min as in the method of the present invention.
At min, a large amount of flocs carried over into the treatment water, making it impossible to treat.

さらにまた前例と同一の原水に塩化第2鉄300ppm
全量一度に加え、フロック形成攪拌装置内で10分間フ
ロック形成を行ったのち、ポリマーサンポリ−A520
.1.5ppmを加え、さらに3分間攪拌を続け、ポリ
マー添加によるフロック成長が最大限に達した時点で、
原水をブランケットゾーンに流入させた結果、生成フロ
ックの沈降性は最も悪く沈降分離速度70 H1ll/
m i n Lかとれなかった。
Furthermore, 300 ppm of ferric chloride was added to the same raw water as in the previous example.
After adding the entire amount at once and forming flocs for 10 minutes in a flocculation stirrer, add Polymer Sunpoly-A520.
.. Add 1.5 ppm and continue stirring for an additional 3 minutes. When the floc growth due to polymer addition reaches the maximum,
As a result of flowing the raw water into the blanket zone, the sedimentation property of the generated flocs was the worst, and the sedimentation separation rate was 70 H1ll/
I couldn't take min L.

しかもブランケットスラリー濃度は1.5g/lと前記
本発明法と比べはるかに少く、ブランケットゾーンが不
安定になりやすかった。
Moreover, the blanket slurry concentration was 1.5 g/l, which was much lower than that of the method of the present invention, and the blanket zone was likely to become unstable.

本発明では使用される無機凝集剤の注入量を分割使用し
、有機高分子凝集剤との併用とあわせてその特殊な操業
条件下で凝集削の効果的な使用を可能とし凝集速度が大
きく例えば従来法と同一の無機凝集剤、ポリマ一種類、
注入量においてすら2倍以上の沈降分離速度が得られる
し、しかも沈殿容積も著しく小さくでき、下水その他の
有機性コロイドを主とする懸濁液の処理に価値ある寄与
をはたしうることとなり、凝集剤の使用の大量の添加を
避けたいときに有効な処理となし、硫酸パン士、ポリ塩
化アルミニウム、塩化第2鉄などの無機凝集剤が50p
pm以上好ましくは1100ppの使用量で有効で且つ
沈降促進効力は従来法に比してはるかに優れていて、分
離液の清澄も改善され得ると共に、無機凝集剤注入率を
かなり多量に必要とする懸濁液について、特にその効果
が著しいものであり、ブランケットゾーンの安定化にも
役文ち処理水質の向上も容易であり、凝集削に要する費
用をも低減させることも確実化し、操作も部属で経済的
な処理をも可能とするものである。
In the present invention, the injection amount of the inorganic flocculant used is divided and used in combination with an organic polymer flocculant, making it possible to effectively use flocculation under special operating conditions. The same inorganic flocculant as the conventional method, one type of polymer,
Even at the injection rate, the sedimentation separation rate can be more than doubled, and the sedimentation volume can also be significantly reduced, making it possible to make a valuable contribution to the treatment of sewage and other suspensions containing mainly organic colloids. , It is an effective treatment when you want to avoid adding large amounts of flocculants, and inorganic flocculants such as sulfuric acid, polyaluminum chloride, ferric chloride, etc.
It is effective at a usage amount of pm or more, preferably 1100 pp, and the sedimentation promoting effect is far superior to that of the conventional method, and the separation liquid can be improved in clarity, and a considerably large amount of inorganic flocculant is required to be injected. The effect of suspension is particularly remarkable; it is easy to stabilize the blanket zone, improve the quality of treated water, reduce the cost required for cohesive cutting, and the operation is easy. This also makes economical processing possible.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明方法のフローシート、第2図はジャーテ
ストによる無機凝集剤注入率と処理水質との関係を示す
特性線図である。 1・・・・・・原水供給管、2・・・・・・無機凝集剤
供給部、3・・・・・・上下迂流式管路、4・・・・・
・フロック形成装置、5・・・・・・配管、6・・・・
・・フロックブランケット型凝集沈殿装置、7・・・・
・・供給部、8・・・・・・ブランケットゾーン、9・
・・・・・清澄水分離ゾーン、10・・・・・・流出管
FIG. 1 is a flow sheet of the method of the present invention, and FIG. 2 is a characteristic diagram showing the relationship between the inorganic flocculant injection rate and the quality of treated water by a jar test. 1... Raw water supply pipe, 2... Inorganic flocculant supply section, 3... Up and down detour type pipe, 4...
- Flock forming device, 5... Piping, 6...
... Flock blanket type coagulation sedimentation device, 7...
... Supply section, 8 ... Blanket zone, 9.
... Clear water separation zone, 10 ... Outflow pipe.

Claims (1)

【特許請求の範囲】 1 有機性コロイドを主とする懸濁液のフロックブラン
ケット型凝集沈殿による固液分離法において、原水水質
に対応して用いられる無機凝集剤所要量の全量のうちの
一部を原水に添加し、フロック形成攪拌を行なったのち
に、前記無機凝集剤の残部と有機高分子凝集剤を添加し
、有機高分子凝集剤によるフロック成長効果が実質的に
完了しない状態で原水をフロックブランケットに流入さ
せることを特徴とする懸濁液の凝集処理方法。 2 使用される無機凝集剤の全量の50〜90%を添加
し、その残部を有機高分子凝集剤と併用して用いる特許
請求の範囲第1項記載の懸濁液の凝集処理方法。 3 無機凝集剤が50〜300ppmの範囲内で用いら
れる特許請求の範囲第1項又は第2項記載の懸濁液の凝
集処理方法。 4 前記無機凝集剤の残部及び有機高分子凝集剤を添加
したのち5〜150秒内でフロックプランゲットに流入
させて処理する特許請求の範囲第2項又は第3項記載の
懸濁液の凝集処理方法。
[Scope of Claims] 1. A portion of the total amount of inorganic flocculant used in accordance with the quality of raw water in a solid-liquid separation method using floc-blanket coagulation-sedimentation of a suspension containing mainly organic colloids. is added to the raw water and stirred to form flocs, then the remainder of the inorganic flocculant and the organic polymer flocculant are added to the raw water, and the raw water is mixed with the organic polymer flocculant before the floc growth effect is substantially completed. A method for flocculating a suspension, characterized by flowing the suspension into a floc blanket. 2. The method for flocculating a suspension according to claim 1, in which 50 to 90% of the total amount of the inorganic flocculant used is added and the remainder is used in combination with an organic polymer flocculant. 3. The method for flocculating a suspension according to claim 1 or 2, wherein the inorganic flocculant is used within a range of 50 to 300 ppm. 4. Agglomeration of the suspension according to claim 2 or 3, which is carried out by flowing into a floc plunget within 5 to 150 seconds after adding the remainder of the inorganic flocculant and the organic polymer flocculant. Processing method.
JP4160076A 1976-04-13 1976-04-13 Suspension flocculation treatment method Expired JPS5832629B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4160076A JPS5832629B2 (en) 1976-04-13 1976-04-13 Suspension flocculation treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4160076A JPS5832629B2 (en) 1976-04-13 1976-04-13 Suspension flocculation treatment method

Publications (2)

Publication Number Publication Date
JPS52124463A JPS52124463A (en) 1977-10-19
JPS5832629B2 true JPS5832629B2 (en) 1983-07-14

Family

ID=12612873

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4160076A Expired JPS5832629B2 (en) 1976-04-13 1976-04-13 Suspension flocculation treatment method

Country Status (1)

Country Link
JP (1) JPS5832629B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01307492A (en) * 1988-06-07 1989-12-12 Iseki Tory Tech Inc Treatment of mud water
JP5425523B2 (en) * 2009-05-18 2014-02-26 株式会社西原環境 Centrifuge
JP5490442B2 (en) * 2009-05-18 2014-05-14 株式会社西原環境 Centrifuge

Also Published As

Publication number Publication date
JPS52124463A (en) 1977-10-19

Similar Documents

Publication Publication Date Title
Ahmad et al. Improvement of alum and PACl coagulation by polyacrylamides (PAMs) for the treatment of pulp and paper mill wastewater
US2217466A (en) Composition of matter for water treatment
JPH1057967A (en) Treatment of discharge water by coagulation settling method
CN110182994A (en) A kind of silicon removing method of coal-water slurry gasification efflux wastewater
JP2012045441A (en) Method and apparatus for dewatering organic sludge
JP4523731B2 (en) Water treatment equipment
JP4272122B2 (en) Coagulated water treatment method and apparatus
JP2018153729A (en) Water treatment agent, water treatment method, and water treatment device
JP3509169B2 (en) Dewatering method by sludge granulation and concentration
JPS5832629B2 (en) Suspension flocculation treatment method
CA1334543C (en) Method for the treatment of sewage and other impure water
JP2019198806A (en) Water treatment method, and water treatment device
JP3168608B2 (en) Sludge treatment equipment
CN108793360A (en) The composite flocculation agent of organics removal
JP2002079004A (en) Aggregation method
JP3412641B2 (en) Coagulation treatment of low turbidity wastewater from power plants
US4043910A (en) Removal of phosphorous from waste water
JP2002066209A (en) Method for controlling injection of flocculant in water treatment
CN111977767B (en) Application method of xanthan gum and acacia gum mixed as water treatment coagulant aid
JP2005007246A (en) Treatment method for organic waste water
JP2000015007A (en) Flocculating method and flocculant
JPH10137767A (en) Treatment of waste water
JPS6329599B2 (en)
JPH08206699A (en) Dehydrating method for anaerobic digestion sludge
JPH07136409A (en) Flocculant for wastewater treatment