JPS5832334B2 - Flow velocity flow measuring device - Google Patents

Flow velocity flow measuring device

Info

Publication number
JPS5832334B2
JPS5832334B2 JP53069632A JP6963278A JPS5832334B2 JP S5832334 B2 JPS5832334 B2 JP S5832334B2 JP 53069632 A JP53069632 A JP 53069632A JP 6963278 A JP6963278 A JP 6963278A JP S5832334 B2 JPS5832334 B2 JP S5832334B2
Authority
JP
Japan
Prior art keywords
container
vortex generator
tube
measuring device
vortex
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53069632A
Other languages
Japanese (ja)
Other versions
JPS54161357A (en
Inventor
敏夫 阿賀
哲男 安藤
一造 伊藤
武弘 沢山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Electric Corp
Original Assignee
Yokogawa Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Electric Works Ltd filed Critical Yokogawa Electric Works Ltd
Priority to JP53069632A priority Critical patent/JPS5832334B2/en
Publication of JPS54161357A publication Critical patent/JPS54161357A/en
Publication of JPS5832334B2 publication Critical patent/JPS5832334B2/en
Expired legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/05Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects
    • G01F1/20Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by detection of dynamic effects of the flow
    • G01F1/32Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by detection of dynamic effects of the flow using swirl flowmeters
    • G01F1/325Means for detecting quantities used as proxy variables for swirl
    • G01F1/3259Means for detecting quantities used as proxy variables for swirl for detecting fluid pressure oscillations
    • G01F1/3266Means for detecting quantities used as proxy variables for swirl for detecting fluid pressure oscillations by sensing mechanical vibrations

Landscapes

  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)

Description

【発明の詳細な説明】 本発明はカルマン渦を利用した流速流量測定装置に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a flow rate measuring device using Karman vortices.

更に詳述すれば、カルマン渦により渦発生体に生ずる交
番力を検出して、渦信号として取り出し流速流量を測定
する流速流量測定装置に関するものである。
More specifically, the present invention relates to a flow rate measuring device that detects the alternating force generated in a vortex generating body by a Karman vortex and extracts it as a vortex signal to measure the flow rate.

従来より一般に使用されているカルマン渦を利用した流
速流量測定装置にむいては、管路に渦発生体を抜き差し
自在に固定するのが一般的である。
In conventional flow velocity measuring devices that utilize Karman vortices, which have been commonly used, it is common to fix a vortex generator to a pipe so that it can be inserted into and removed from the pipe.

而して、検出器を渦発生体、あるいは渦発生体の下流に
配置して渦発生体により発生した渦発生周波数を検出す
る。
Thus, a detector is placed at the vortex generator or downstream of the vortex generator to detect the vortex generation frequency generated by the vortex generator.

このようなものにおいては、管路に渦発生体を固定、支
持するための固定、支持機構が必要であり、抜き差し出
来るようにするための、たとえば、シール機構等の構成
が複雑になり、価格も高くiる。
In such a device, a fixing and supporting mechanism is required to fix and support the vortex generator in the pipe, and the structure of the sealing mechanism, etc. to enable insertion and removal becomes complicated and expensive. It's also expensive.

また頑丈さに欠け、小型化するにも釦のすと制約がある
It also lacks sturdiness, and there are limitations to the size of the button.

また、被測定流体に接する部分に釦いて、管路と渦発生
体との間に隙間や窪みが生ずるので、腐食性流体に対す
る耐食性がよくない。
Further, since a gap or depression is formed between the pipe line and the vortex generator at the part that comes into contact with the fluid to be measured, corrosion resistance against corrosive fluids is poor.

本発明はこれらの問題点を解決したものである。The present invention solves these problems.

本発明の目的はシンプルな構成により頑丈、安価で、小
型化、軽量化がはかれ、耐食性のよい流速流量測定装置
を提供するにある。
An object of the present invention is to provide a flow rate measuring device having a simple structure, being sturdy, inexpensive, compact, lightweight, and having good corrosion resistance.

第1図A、B、Cは本発明の一実施例の構成説明図で、
Aは縦断面図、Bは側断面図、Cは要部構成説明図であ
る。
FIGS. 1A, B, and C are configuration explanatory diagrams of an embodiment of the present invention,
A is a longitudinal cross-sectional view, B is a side cross-sectional view, and C is an explanatory diagram of the main part configuration.

図に訃いて、1は円筒状の管体、2は管体1に直角に挿
入された、この場合は台形柱状の渦発生体である。
In the figure, 1 is a cylindrical tube, and 2 is a trapezoidal columnar vortex generator inserted at right angles to the tube 1.

3は力検出部で、検出センサ部31、封着体32と底を
有する円筒状の容器33よりなり、一端は渦発生体2に
接続された他端は管体1に固定されている。
Reference numeral 3 denotes a force detection section, which is composed of a detection sensor section 31, a sealing body 32, and a cylindrical container 33 having a bottom, one end of which is connected to the vortex generator 2 and the other end fixed to the tube body 1.

而して、管体1、渦発生体2と容器33は一体的に構成
されている。
Thus, the tube body 1, the vortex generator 2, and the container 33 are integrally constructed.

検出、センサ部31はこの場合はC図に示す如く、円板
状の素子本体311と電極312,313,314より
なる。
In this case, the detection and sensor section 31 consists of a disk-shaped element body 311 and electrodes 312, 313, and 314, as shown in Figure C.

電極312は薄円板状をなし、素子本体311の一面側
に設けられている。
The electrode 312 has a thin disk shape and is provided on one side of the element body 311.

一方、電極313.314はほぼ弓形をなし、素子本体
311の他面側に素子本体311の中心を挾んで、対称
形に設けられ、渦発生体2の軸心をはさんで流路方向と
直角方向に対称になるように配置されている。
On the other hand, the electrodes 313 and 314 have a substantially arcuate shape, and are provided symmetrically on the other side of the element body 311, sandwiching the center of the element body 311, and facing the flow path direction across the axis of the vortex generator 2. They are arranged symmetrically in the right angle direction.

素子本体311はこの場合はニオブ酸リチウム(LiN
b03)よりなる圧電素子が使用されている。
In this case, the element body 311 is made of lithium niobate (LiN
A piezoelectric element made of b03) is used.

封着体32は絶縁材よりなり、検出センサ部31を容器
33内に容器33より絶縁して封着する封着体で、この
場合はガラス材が用いられている。
The sealing body 32 is made of an insulating material, and is a sealing body that seals the detection sensor section 31 inside the container 33 while being insulated from the container 33. In this case, a glass material is used.

以上の構成において、管体1内に被測定流体が流れると
渦発生体2にはカルマン渦により第1図Bに示す矢印X
のよう々交番力が作用する。
In the above configuration, when the fluid to be measured flows in the tube body 1, the vortex generating body 2 is caused by the Karman vortex, which is indicated by the arrow X shown in FIG. 1B.
An alternating force acts like this.

この交番力は容器33、封着体32を介して検出センサ
部31に伝達される。
This alternating force is transmitted to the detection sensor section 31 via the container 33 and the sealed body 32.

この場合、渦発生体2には第1図Bに示す如く、渦発生
体2の中心軸をはさんで逆方向の応力変化が発生する。
In this case, stress changes occur in the vortex generator 2 in opposite directions across the central axis of the vortex generator 2, as shown in FIG. 1B.

而して、検出センサ部31の電極312−電極313、
電極312−電極314間にはこの応力変化に対応した
電気信号(たとえば電圧の変化)が生ずる。
Thus, the electrode 312-electrode 313 of the detection sensor section 31,
An electrical signal (for example, a voltage change) corresponding to this stress change is generated between the electrode 312 and the electrode 314.

この変化の回数を検出することにより渦発生周波数が検
出できる。
By detecting the number of times this change occurs, the vortex generation frequency can be detected.

而して、電極312−電極313、電極312−電極3
14間の電気出力を差動的に処理すれば、2倍の電気出
力を得ることができる。
Therefore, electrode 312-electrode 313, electrode 312-electrode 3
If the electrical output between the 14 is processed differentially, twice the electrical output can be obtained.

この場合、管体1、渦発生体2と容器33は一体構造に
作られているので、構造がシンプルになり、頑丈で、小
型軽量に作ることができ、安価なものが得られる。
In this case, since the tube body 1, the vortex generator 2, and the container 33 are made in one piece, the structure is simple, strong, small and lightweight, and an inexpensive product can be obtained.

特に、本実施例の場合は、管体1、渦発生体2と容器3
4を一体に、たとえば精密鋳造等により作り、その後、
封着体32でもって、検出センサ部31を封着して力検
出部5を構成することができ、第2図に示すごとく、管
体1と渦発生体2千力検出部3を別体で作り、溶接34
等により一体的に構成したものに比して、更に安価で頑
丈なものが得られる。
In particular, in the case of this embodiment, the pipe body 1, the vortex generator 2 and the container 3
4 are made integrally, for example, by precision casting, and then,
The force detection unit 5 can be constructed by sealing the detection sensor unit 31 with the sealing body 32, and as shown in FIG. Made with and welded 34
It is possible to obtain a product that is cheaper and more durable than an integrally constructed product.

而も、被測定流体に接する部分にネ・いては、構成部品
間に隙間や窪みがないので、腐食性流体に対して、耐食
性のよいものが得られる。
Moreover, since there are no gaps or depressions between the component parts in the part that comes into contact with the fluid to be measured, a product with good corrosion resistance against corrosive fluids can be obtained.

また、硬質プラスチック等の高分子材料で、管体1と渦
発生体2と封着体32を構成すれば、検出センサ部31
を封着して、一体成形で作ることができ、製作が更にき
わめて容易なものが得られる。
Furthermore, if the tube body 1, vortex generator 2, and sealing body 32 are made of a polymeric material such as hard plastic, the detection sensor section 31
It can be made by sealing and integrally molding, and it can be made very easily.

また、プラスチック等の高分子材料を用いると、被測定
流体と接する部分の表面あらさを金属材料の場合に比し
て、更になめらかなものが得られ、食品等の流速流量の
計測に好適iものが得られる。
In addition, when using a polymeric material such as plastic, the surface roughness of the part that comes into contact with the fluid to be measured can be made smoother than when using a metal material, making it suitable for measuring the flow velocity of foods, etc. is obtained.

しかも、高分子材料は一般に耐食性にすぐれ、特に、4
ふつ化エチレン樹脂等を用いれば、金属材料では得られ
ない高耐食性を有するものが得られる。
Moreover, polymeric materials generally have excellent corrosion resistance, especially 4
If fluorinated ethylene resin or the like is used, a material with high corrosion resistance that cannot be obtained with metal materials can be obtained.

更に、本実施例に釦いては、図に示す如く、円筒状の容
器を、被測定流体の流れる管体1内に渦発生体による渦
発生を乱さない程度に突出させた。
Furthermore, in this embodiment, as shown in the figure, the cylindrical container was made to protrude into the tube body 1 through which the fluid to be measured flows, to the extent that it does not disturb the vortex generation by the vortex generator.

一般に、カルマン渦を利用した流速流量測定装置におい
ては、管路内にカルマン渦を効率よく発生させるために
は、最も適した一様断面形状の柱状の渦発生体を管路に
挿入するのが一般的であり、渦発生体と異なる断面形状
を有する、たとえば第1図実施例の容器の如き、突出部
分を設けることは、むしろ避ける事が従来は一般的であ
った。
Generally, in a flow rate measuring device that uses Karman vortices, in order to efficiently generate Karman vortices in the pipe, it is recommended to insert a columnar vortex generator with the most suitable uniform cross-sectional shape into the pipe. Conventionally, it has been common practice to avoid providing a protruding portion, such as in the case of the container shown in FIG. 1, which has a cross-sectional shape different from that of the vortex generator.

而るに、本願発明者等による実験によれば、多少の突出
部は渦発生体2による渦発生の効果には大きな影響を及
ぼさないことが分った。
However, according to experiments conducted by the inventors of the present application, it has been found that a slight protrusion does not significantly affect the effect of vortex generation by the vortex generator 2.

この結果、力検出部3を突出部内に配置し管体1の直径
の範囲内に設置することができるので、流速流量測定装
置全体の構成を更に、コンパクトにできる。
As a result, the force detection section 3 can be disposed within the protrusion and installed within the diameter of the tube body 1, so that the overall configuration of the flow rate measuring device can be made more compact.

而も、検出感度を高くすることができる。Moreover, detection sensitivity can be increased.

第3図は本発明の他の実施例の構成説明図で、容器33
と同一の外形形状をなす突出部33aを渦発生体2をは
さんで、容器33と対称の位置に設けたもので、管体1
の内径内での突出部の形を対称形にして、容器33の突
出による、カルマン渦の発生の乱れをできるだけ少くす
るようにしたものである。
FIG. 3 is an explanatory diagram of the configuration of another embodiment of the present invention, in which a container 33
A protrusion 33a having the same external shape as the tube body 1 is provided at a position symmetrical to the container 33 with the vortex generator 2 in between.
The shape of the protrusion within the inner diameter of the container 33 is made symmetrical to minimize disturbance in the generation of Karman vortices due to the protrusion of the container 33.

第4図は本発明の別の実施例の構成説明図で、本実施例
に釦いては、力検出部3を渦発生体2をはさんで管体壁
側に2個対称に設けたもので、検出器の重畳化或は両刃
検出部3からの信号を演算、たとえば加算等を自由に行
えるようにしたものである。
FIG. 4 is a configuration explanatory diagram of another embodiment of the present invention. In this embodiment, two force detection units 3 are provided symmetrically on the tube wall side with the vortex generator 2 in between. In this embodiment, the detectors can be superimposed or the signals from the double-edged detector 3 can be freely calculated, for example, added.

第5図A、B、Cは本発明の他の実施例の構成説明図で
、Aは正面図、BはAの要部平面図、CはBの要部構成
説明図である。
5A, B, and C are diagrams illustrating the configuration of another embodiment of the present invention, in which A is a front view, B is a plan view of the main part of A, and C is a diagram illustrating the configuration of the main part of B. FIG.

本実施例に釦いては、容器33bの外形を渦発生体2と
同一形状とし、検出センサ部31bも相似合形とし、容
器33bに同心台形状に配置し、封着体32、この場合
はエポキシ樹脂で封着したものである。
In this embodiment, the outer shape of the container 33b is the same as that of the vortex generator 2, the detection sensor part 31b is also of a similar shape, and is arranged in a concentric trapezoidal shape on the container 33b. It is sealed with epoxy resin.

な釦、検出センサ部31bはC図に示すごとく、台形状
の、この場合はジルコン・チタン酸鉛PZTよりなる素
子本体311bと電極312b 。
As shown in Figure C, the button detection sensor section 31b has a trapezoidal element body 311b made of zircon-lead titanate PZT in this case, and an electrode 312b.

313b、314bよりなる。It consists of 313b and 314b.

電極312bは蓮台形板状を々し、素子本体311bの
一面側に設けられている。
The electrode 312b has a lotus trapezoidal plate shape and is provided on one side of the element body 311b.

一方、電極313b、314bはそれぞれ第5図Cに示
すごとく、梯形をなし、素子本体311bの他面側に、
渦発生体2の軸心をはさんで流路方向と直角方向に対称
に配置されている。
On the other hand, the electrodes 313b and 314b each have a trapezoidal shape as shown in FIG.
They are arranged symmetrically across the axis of the vortex generator 2 in a direction perpendicular to the flow path direction.

このようにすれば、管体1の内径内に突出部のないもの
を得ることができ、而も、力検出部3は管体1の直径範
囲内に配置することができる。
In this way, it is possible to obtain a tube 1 without any protrusion within its inner diameter, and the force detection section 3 can be arranged within the diameter range of the tube 1.

なか、前述の実施例に釦いては、素子本体311.31
1bはニオブ酸リチウム或はジルコン・チタン酸鉛PZ
Tよりなる圧電素子と説明したが、ニオブ酸リチウムや
水晶等の圧電性結晶、或は、ジルコン・チタン酸鉛PZ
Tやチタン酸鉛等のセラミック系圧電磁器或は感圧素子
でもよく、要するに圧力を電気信号に変換するものであ
ればよい。
Among them, in the above-mentioned embodiment, the element body 311.31
1b is lithium niobate or zircon lead titanate PZ
Although the piezoelectric element was explained as a piezoelectric element made of T, piezoelectric crystals such as lithium niobate and quartz, or zircon lead titanate PZ
It may be a ceramic piezoelectric ceramic such as T or lead titanate, or a pressure sensitive element, as long as it converts pressure into an electrical signal.

渣た、封着体31はガラスやエポキシ系のものでなく、
セメント系やセラミック系、或は、マイカ等の封着材で
もよく、要するに、渦発生体2に作用する力を検出セン
サ部31に確実に感厳よく伝達し、電気的に絶縁し、化
学的に安定iものであればよい。
However, the sealing body 31 is not made of glass or epoxy.
A cement-based, ceramic-based, or mica-based sealing material may be used.In short, the force acting on the vortex generator 2 is reliably and sensitively transmitted to the detection sensor section 31, electrically insulated, and chemically insulated. It is sufficient if it is stable.

以上説明したように、本発明に釦いては、管体と渦発生
体と容器を一体構造として、力検出部3を管体1の直径
範囲内に配置するようにした。
As explained above, according to the present invention, the tube body, the vortex generator, and the container are made into an integral structure, and the force detection section 3 is arranged within the diameter range of the tube body 1.

この結果、構成はシンプルにiす、頑丈、安価で、小型
化、軽量化がはかれ、耐食性のよい流速流量測定装置を
実現することができる。
As a result, it is possible to realize a flow rate measuring device that has a simple configuration, is sturdy, inexpensive, compact, lightweight, and has good corrosion resistance.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図A、B、Cは本発明の一実施例の構成説明図で、
Aは縦断面図、Bは側断面図、Cは要部構成説明図であ
る。 第2〜4図は本発明の他の実施例の構成説明図で、第5
図A 、B 、Cは本発明の他の実施例の構成説明図で
、Aは正面図、BはAの要部平面図、CはBの要部構成
説明図である。 1・・・管体、2・・・渦発生体、3・・・力検出部、
31・・・検出センサ部、32・・・封着体、33・・
・容器。
FIGS. 1A, B, and C are configuration explanatory diagrams of an embodiment of the present invention,
A is a longitudinal cross-sectional view, B is a side cross-sectional view, and C is an explanatory diagram of the main part configuration. 2 to 4 are configuration explanatory diagrams of other embodiments of the present invention.
Figures A, B, and C are diagrams illustrating the configuration of other embodiments of the present invention, in which A is a front view, B is a plan view of the main part of A, and C is a diagram illustrating the configuration of the main part of B. DESCRIPTION OF SYMBOLS 1... Pipe body, 2... Vortex generator, 3... Force detection part,
31... Detection sensor section, 32... Sealing body, 33...
·container.

Claims (1)

【特許請求の範囲】 1 カルマン渦により渦発生体に作用する交番力を検出
して流速流量を測定する流速流量測定装置に釦いて、管
路に挾持される管体と、該管体に直角に挿入され該管体
に一端が固定された渦発生体と、該渦発生体の他端に固
定され検出センサ部と該検出センサ部を内包する容器と
該容器に前記検出センサ部を封着固定する封着体とを具
える力検出部とを具備し該力検出部が前記管体の直径範
囲内に配置され、かつ、前記管体と渦発生体と容器とが
一体成形されたことを特徴とする流速流量測定装置。 2 管体と渦発生体と容器と封着体とが一体成形された
ことを特徴とする特許請求の範囲第1項記載の流速流量
測定装置。
[Claims] 1. A flow rate measuring device that measures the flow rate by detecting the alternating force acting on the vortex generating body due to the Karman vortex, is connected to a pipe body held in a pipe, and a pipe perpendicular to the pipe body. a vortex generator inserted into the tube and having one end fixed to the tube; a detection sensor unit fixed to the other end of the vortex generator; a container containing the detection sensor unit; and a container with the detection sensor unit sealed to the container. a force detecting section having a sealing body for fixing, the force detecting section being disposed within a diameter range of the tube, and the tube, the vortex generator, and the container being integrally molded. A flow rate measuring device characterized by: 2. The flow rate measuring device according to claim 1, wherein the tube, the vortex generator, the container, and the sealing body are integrally molded.
JP53069632A 1978-06-09 1978-06-09 Flow velocity flow measuring device Expired JPS5832334B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP53069632A JPS5832334B2 (en) 1978-06-09 1978-06-09 Flow velocity flow measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP53069632A JPS5832334B2 (en) 1978-06-09 1978-06-09 Flow velocity flow measuring device

Publications (2)

Publication Number Publication Date
JPS54161357A JPS54161357A (en) 1979-12-20
JPS5832334B2 true JPS5832334B2 (en) 1983-07-12

Family

ID=13408420

Family Applications (1)

Application Number Title Priority Date Filing Date
JP53069632A Expired JPS5832334B2 (en) 1978-06-09 1978-06-09 Flow velocity flow measuring device

Country Status (1)

Country Link
JP (1) JPS5832334B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0628657U (en) * 1992-08-28 1994-04-15 ヤン リ−シャン Weigh scale using hydraulic pressure transmission means

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0110321B1 (en) * 1982-11-25 1988-09-07 Oval Engineering Co., Ltd. Vortex flow meter
JPS61139422U (en) * 1985-02-20 1986-08-29

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0628657U (en) * 1992-08-28 1994-04-15 ヤン リ−シャン Weigh scale using hydraulic pressure transmission means

Also Published As

Publication number Publication date
JPS54161357A (en) 1979-12-20

Similar Documents

Publication Publication Date Title
US4550614A (en) Oscillatory flowmeter
US3587312A (en) Differential sensor bluff body flowmeter
JPS584763B2 (en) flow rate measuring device
US10066976B2 (en) Vortex flow meter with micromachined sensing elements
JP7364291B2 (en) Magnetoresistive sound wave sensor with high sensitivity and its array device
US4910994A (en) Impulse sensor with calibration means
JPS5832334B2 (en) Flow velocity flow measuring device
GB2084324A (en) Vortex Shedding Fluid Flowmeter
JPH07198434A (en) Current meter
JPS5832335B2 (en) Manufacturing method of flow rate measuring device
US5186056A (en) Vortex flowmeter with dual vortex sensors
JPS5953489B2 (en) Flow velocity flow measuring device
JPS592324B2 (en) Flow velocity flow measuring device
JPS6244337Y2 (en)
JPS6032809B2 (en) Flow velocity flow measuring device
JP3248840B2 (en) Karman vortex flowmeter
JPS5928342Y2 (en) force detector
JPS6130694B2 (en)
JPS584967B2 (en) Flow velocity flow measuring device
JPS6215811B2 (en)
KR830000453Y1 (en) Flow rate flow measuring device
JP2002054959A (en) Differential pressure type flow rate meter
CN112326992A (en) High accuracy velocity of flow detection device based on cantilever beam
JPS5829859B2 (en) force detector
JPS6025528Y2 (en) Flow velocity flow measuring device