JPS5832224B2 - Microcrystalline sintered body for tools and its manufacturing method - Google Patents

Microcrystalline sintered body for tools and its manufacturing method

Info

Publication number
JPS5832224B2
JPS5832224B2 JP53119685A JP11968578A JPS5832224B2 JP S5832224 B2 JPS5832224 B2 JP S5832224B2 JP 53119685 A JP53119685 A JP 53119685A JP 11968578 A JP11968578 A JP 11968578A JP S5832224 B2 JPS5832224 B2 JP S5832224B2
Authority
JP
Japan
Prior art keywords
diamond
sintered body
powder
binder
metals
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53119685A
Other languages
Japanese (ja)
Other versions
JPS5547363A (en
Inventor
昭夫 原
修示 矢津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP53119685A priority Critical patent/JPS5832224B2/en
Priority to CA000334154A priority patent/CA1149619A/en
Priority to FR7921331A priority patent/FR2434130A1/en
Priority to SE7907095A priority patent/SE442962B/en
Priority to US06/069,575 priority patent/US4303442A/en
Priority to GB7929649A priority patent/GB2029389B/en
Priority to DE19792934567 priority patent/DE2934567A1/en
Priority to AU50323/79A priority patent/AU531126B2/en
Publication of JPS5547363A publication Critical patent/JPS5547363A/en
Publication of JPS5832224B2 publication Critical patent/JPS5832224B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Description

【発明の詳細な説明】 現在非鉄合金やプラスチック、セラミックの切削に、ダ
イヤモンドが70容量φを越し結合材としてCoを主成
分とする金属が用いられた焼結体部が超硬合金母材上に
接合された工具材が市販されている。
Detailed Description of the Invention Currently, when cutting non-ferrous alloys, plastics, and ceramics, a sintered body part in which diamond exceeds a capacity of 70 φ and a metal mainly composed of Co is used as a bonding material is used to cut non-ferrous alloys, plastics, and ceramics. Tool materials joined to are commercially available.

この工具材は価格が高いにもかかわらずSiを多く含む
A1合金や銅合金などの切削工具として一部好評を博し
ている。
Although this tool material is expensive, it has gained some popularity as a cutting tool for materials such as A1 alloy and copper alloy, which contain a large amount of Si.

本発明者らはこの工具材についてその特性などを種々調
査した。
The present inventors conducted various investigations into the characteristics of this tool material.

この工具材で切削加工用のバイトを作威し、前記したよ
うな材料を実際に切削してみると、確かに耐磨耗性の点
においては従来用いられてきた超硬合金製のバイトに比
較してはるかに優れており、また衝撃に対しては天然ダ
イヤモンドの単石から加工されたバイトに比較して強靭
である特徴を有している。
When we created a cutting tool using this tool material and actually cut the materials mentioned above, we found that it was indeed superior to the conventionally used cemented carbide tool in terms of wear resistance. It is far superior in comparison, and it also has the characteristic of being stronger against impact than a tool bit machined from a single natural diamond stone.

しかしこのような特徴を持つ反面、例えば非鉄合金を切
削した場合の被加工面を観察すると、天然ダイヤモンド
単石工具に比較して面粗度が粗く、鏡面と呼ばれる美麗
な仕上面は得られないことが判った。
However, although it has these characteristics, when observing the workpiece surface when cutting nonferrous alloys, for example, the surface roughness is rougher than that of natural diamond single stone tools, and a beautiful finished surface called a mirror surface cannot be obtained. It turned out that.

また時計部品等の小物、薄肉の被加工物を切削加工する
場合、切削抵抗が大きく加工物が変形したり、寸法精度
が維持できないといった問題点がある。
Furthermore, when cutting small or thin workpieces such as watch parts, there are problems in that the cutting resistance is large and the workpiece may be deformed and dimensional accuracy cannot be maintained.

この理由について検討した結果次のことが判明した。As a result of examining the reason for this, the following was found.

市販のダイヤモンド焼結体の組織を観察するとダイヤモ
ンド結晶の粒度が3〜10μであり、粒子間には結合材
として金属Coが存在する。
Observation of the structure of a commercially available diamond sintered body reveals that the grain size of diamond crystals is 3 to 10 microns, and metal Co is present as a binder between the grains.

この焼結体を用いたバイトの刃先を見ると結晶粒子の大
きさにほぼ近い凹凸が見られ、天然ダイヤモンド工具の
如く鋭い刃先ではない0このことが美麗な仕上加工面が
得られ難い一つの理由と考えられる。
If you look at the cutting edge of a cutting tool made of this sintered body, you will see unevenness that is almost the same size as the crystal grains, and the cutting edge is not as sharp as a natural diamond tool.This is one of the reasons why it is difficult to obtain a beautiful finished surface. This is considered to be the reason.

またダイヤモンド粒子間に存在する金属C。結合相は被
削材金属との凝着を起すことがあり、これも鏡面のよう
な仕上加工面が要求される場合には問題となる。
Also, metal C exists between diamond particles. The bonding phase may cause adhesion with the workpiece metal, which is also a problem when a mirror-like finished surface is required.

市販のダイヤモンド焼結体工具で線引きダイス用途のも
のは約30〜60μの粗粒のダイヤモンド結晶の焼結体
である。
Commercially available diamond sintered tools for wire drawing dies are sintered diamond crystals with coarse grains of about 30 to 60 microns.

線引きダイスには従来から天然ダイヤモンド単層を用い
たダイヤモンドダイスが使用されているが、市販の焼結
体を用いたダイスはこれと比較すると、寿命が永い、割
れ難いといった特徴はあるもののやはり切削工具の場合
と同様に線引きされた線材表面に結晶粒子程度のスジが
つくといったような問題があり、美麗な仕上面が要求さ
れる用途には適さない。
Diamond dies that use a single layer of natural diamond have traditionally been used as wire drawing dies, but compared to dies that use commercially available sintered bodies, they have longer lifespans and are less likely to break, but they are still difficult to cut. As in the case of tools, there are problems such as streaks on the surface of the drawn wire, which are comparable to crystal grains, and it is not suitable for applications that require a beautiful finished surface.

本発明者等はこのような従来のダイヤモンド焼結体工具
材の欠点を克服するべく研究した結果、本発明に到達し
た。
The present inventors conducted research to overcome such drawbacks of conventional diamond sintered tool materials, and as a result, they arrived at the present invention.

即ちダイヤモンド焼結体の結晶粒度を1μ以下の極めて
微細なものとすることによって前記した市販ダイヤモン
ド焼結体の欠点を解消し得たものである。
That is, by making the crystal grain size of the diamond sintered body extremely fine, 1 μm or less, the above-mentioned drawbacks of the commercially available diamond sintered body can be overcome.

ダイヤモンドの粉末を用いて焼結体を作成する方法とし
ては例えば特公昭39−20483号に示されているよ
うにダイヤモンドの粉末とこれを高圧高温下で溶解する
鉄族金属の粉末を混合しておき、ダイヤモンドが安定な
圧力、温度条件でこの金属を溶解せしめてこれをダイヤ
モンドの結合材とする方法がある。
A method of creating a sintered body using diamond powder is, for example, as shown in Japanese Patent Publication No. 39-20483, by mixing diamond powder with iron group metal powder, which is melted under high pressure and high temperature. There is a method of melting this metal under pressure and temperature conditions where the diamond is stable and using it as a bonding material for the diamond.

現在市販されているダイヤモンド焼結体の製法は特公昭
52−12126号に述べられているようにWC−Co
超硬合金に接してダイヤモンド粉末を置き、超高圧下で
超硬合金中のCoが溶解する温度以上に加熱してこのC
The manufacturing method of diamond sintered bodies currently on the market is WC-Co as described in Japanese Patent Publication No. 12126/1983.
Diamond powder is placed in contact with the cemented carbide and heated under ultra-high pressure to a temperature above which the Co in the cemented carbide melts.
.

ダイヤモンド粉末層中に溶浸せしめる方法がとられてい
る。
A method of infiltration into a layer of diamond powder has been adopted.

発明者等は前記した従来の市販ダイヤモンド焼結体の欠
点を解消する為に極めて微細なダイヤモンド結晶の緻密
な焼結体を得るべく、これ等の方法を用いて種々焼結体
を試作してみたが、満足な結果は得られなかった。
In order to eliminate the drawbacks of the conventional commercially available diamond sintered bodies mentioned above, the inventors have prototyped various sintered bodies using these methods in order to obtain dense sintered bodies with extremely fine diamond crystals. I tried that, but I couldn't get a satisfactory result.

例えば、原料ダイヤモンド粉末として約0.3μの微粒
を用い、金属Co粉と混合してこれを容器に詰めダイY
モンド合成に用いられる超高圧装置で圧力55Kb1温
度1450’Cで焼結したところ、緻密な焼結体は得ら
れたが、焼結体中のダイヤモンド粒子は約300μの大
きさに粒成長しており、目的とした微細結晶の焼結体は
得られなかった。
For example, using fine particles of about 0.3μ as raw material diamond powder, mixing it with metal Co powder and putting it in a container, die Y
When sintering was carried out at a pressure of 55 Kb and a temperature of 1450'C using an ultra-high pressure device used for Mondo synthesis, a dense sintered body was obtained, but the diamond particles in the sintered body grew to a size of approximately 300 μ. Therefore, the desired sintered body with fine crystals could not be obtained.

このようにダイヤモンド結晶はダイヤモンドが安定な高
温、高圧下でこれを溶解する鉄族金属の液相が存在する
場合は溶解析出現象により粒成長する。
In this way, diamond crystals grow by the dissolution precipitation phenomenon when there is a liquid phase of iron group metal that dissolves diamond under high temperature and high pressure conditions at which diamond is stable.

原料ダイヤモンド結晶の粒度を種々変えて同様の実験を
行なった結果、粒度が3μ以上の場合は顕著な粒成長は
生じないことが分った。
Similar experiments were conducted using various grain sizes of raw diamond crystals, and it was found that no significant grain growth occurred when the grain size was 3 μm or more.

これは現在市販されているダイヤモンド焼結体の最も微
細な粒度に相当する。
This corresponds to the finest grain size of diamond sintered bodies currently on the market.

発明者等は目的とする1μ以下の微細結晶焼結体を製造
する方法を種々検討した結果、原料ダイヤモンド粉末に
周期律表第4a族(Ti 、Zr 、Hf)、第5a族
(V、Nb、Ta)、第6a族(Cr、Mo。
The inventors investigated various methods for producing the desired microcrystalline sintered body of 1μ or less, and found that the raw material diamond powder contains Group 4a (Ti, Zr, Hf) and Group 5a (V, Nb) of the periodic table. , Ta), Group 6a (Cr, Mo.

W)の炭化物、窒化物、硼化物の微細な粉末を混入する
と、鉄族金属融液と共存した状態でもダイヤモンドの粒
成長が抑制されることを見出した。
It has been found that when fine powders of carbides, nitrides, and borides (W) are mixed in, diamond grain growth is suppressed even when they coexist with an iron group metal melt.

その理由としては微細なダイヤモンド結晶粒子の間にこ
れ等の化合物粒子が存在することによってこれが結晶成
長に対しては不純物として作用することで成長が抑制さ
れるか、またはこれ等の化合物が高温下で一部鉄族金属
融液に溶解し、ダイヤモンド結晶表面に炭化物として析
出することで粒成長が抑制されることが考えられる。
The reason for this is that the presence of these compound particles between the fine diamond crystal particles acts as an impurity on crystal growth and inhibits the growth, or that these compounds are present at high temperatures. It is thought that grain growth is suppressed by partially dissolving into the iron group metal melt and precipitating as carbides on the diamond crystal surface.

このような作用を有するものとしては微細なダイヤモン
ド結晶粒子間に介在していることが必要であり、これ等
化合物粉末も予めダイヤモンド結晶と同等かそれ以下の
粒度まで粉砕されており、ダイヤモンド結晶粉末と均一
に混合されていることが必要である。
For something to have this effect, it must be present between fine diamond crystal particles, and these compound powders are also ground in advance to a particle size equal to or smaller than that of diamond crystals. It is necessary that it is evenly mixed.

実験の結果によると化合物としては周期律表第4a、5
a、6a族金属の炭化物が最も粒成長抑制効果が顕著で
あった。
According to the results of the experiment, compounds in the periodic table 4a and 5
The carbides of group a and group 6a metals had the most remarkable effect of suppressing grain growth.

また焼結体の工具としての性能からみると、これ等の化
合物は鉄族金属と共にダイヤモンド結晶の結晶材として
焼結体中に残るものであり、このもの自身の強度・耐摩
耗性が優れていることが必要である。
In addition, in terms of the performance of the sintered body as a tool, these compounds remain in the sintered body as diamond crystal materials together with iron group metals, and these compounds themselves have excellent strength and wear resistance. It is necessary to be present.

この面からみても炭化物を用いた方が高強度で耐摩耗性
に優れた焼結体が得られる。
From this point of view, a sintered body with higher strength and better wear resistance can be obtained by using carbide.

本発明の焼結体に使用するダイヤモンド原料粉末として
は1μ以下好ましくは0.5μ以下のミクロンパウダー
である。
The diamond raw material powder used in the sintered body of the present invention is a micron powder of 1 μm or less, preferably 0.5 μm or less.

合成ダイヤモンド、天然ダイヤモンドのいずれでも良い
Either synthetic diamond or natural diamond may be used.

このダイヤモンド粉末と前記化合物粉末の一種又は2種
以上及びFe、Co、Niの鉄族金族粉末を均一にボー
ルミル等の手段を用いて混合する。
This diamond powder, one or more of the above compound powders, and iron group metal powders of Fe, Co, and Ni are uniformly mixed using a means such as a ball mill.

この鉄族金族は予め混合せずに焼結時に溶浸せしめても
良い。
This iron group metal may be infiltrated during sintering without being mixed in advance.

また発明者等の先願特願昭52−51381号の如くボ
ールミル時のポットとボールを混入する炭化物等の化合
物と鉄族金属の焼結体で作成しておき、ダイヤモンド粉
末をボールミル粉砕すると同時にポットとボールから炭
化物等の化合物と鉄族金属の焼結体の微細粉末を混入せ
しめる方法もある。
In addition, as disclosed in the inventor's earlier patent application No. 52-51381, the pot and balls used in a ball mill are made of a sintered body of a compound such as a carbide and an iron group metal, and the diamond powder is ground at the same time as the ball mill. There is also a method in which a compound such as a carbide and fine powder of a sintered body of an iron group metal are mixed in from a pot and a ball.

混合した粉末を超高圧装置に入れ、第1図に示したダイ
ヤモンドが安定な条件下で;圧力45Kb〜80Kb1
温度1200’C〜2000℃の領域内で焼結する。
The mixed powder was placed in an ultra-high pressure device under the conditions shown in Figure 1 where the diamond was stable; the pressure was 45Kb to 80Kb1.
Sintering is carried out within a temperature range of 1200'C to 2000C.

このとき使用した鉄族金族と炭化物等の化合物間に生じ
る共晶液相の出現温度以上で焼結する必要がある。
It is necessary to sinter at a temperature higher than the temperature at which a eutectic liquid phase appears between the iron group metal used at this time and compounds such as carbides.

例えば化合物としてTiCを用い、鉄族金属としてCo
を用いた場合は常圧下では約1260℃で液相が生じる
For example, TiC is used as the compound and Co as the iron group metal.
When using this method, a liquid phase occurs at about 1260° C. under normal pressure.

高圧下ではこの共晶温度は数十℃程度上昇するものと考
えられている。
It is believed that this eutectic temperature increases by several tens of degrees Celsius under high pressure.

従ってこの場合は1300’C以上の温度で焼結される
Therefore, in this case, sintering is performed at a temperature of 1300'C or higher.

本発明のダイヤモンド焼結体の組成はダイヤモンド含有
量が容量で95〜30%の範囲である。
The composition of the diamond sintered body of the present invention has a diamond content in the range of 95 to 30% by volume.

95饅以上のダイヤモンド含有量では介在する化合物の
量が充分でなく、焼結中にダイヤモンドの粒成長を抑制
する効果がうすれる。
When the diamond content is 95 or more, the amount of intervening compounds is insufficient, and the effect of suppressing diamond grain growth during sintering is diminished.

又ダイヤモンド含有量が30饅未満では工具としての耐
摩耗性が劣り、目的とする天然ダイヤモンドに匹敵する
性能は得られない。
Furthermore, if the diamond content is less than 30 yen, the wear resistance as a tool is poor, and the intended performance comparable to natural diamond cannot be obtained.

焼結体中のダイヤモンドの結合材となる炭化物等の化合
物と鉄族金属の割合は一義的には定められないが、少く
とも焼結時に化合物が固体として存在するだけの量は必
要であり、例えばWCを化合物として用いCoを結合金
属とした場合はWCとCoの量的割合は前者を重量で5
0饅以上含む必要がある。
Although the ratio of compounds such as carbides and iron group metals that serve as binding materials for diamond in the sintered body cannot be unambiguously determined, it is necessary that the amount is at least sufficient for the compound to exist as a solid during sintering. For example, when WC is used as a compound and Co is used as a binding metal, the quantitative ratio of WC and Co is 5 by weight.
Must include 0 or more rice cakes.

一般には焼結時のダイヤモンドの粒成長抑制効果が認め
られるのは結合材中の炭化物含有量が20重量多以上の
場合であり、また結合材中の炭化物量が95重量多を越
えると焼結体の強度が低下する。
In general, the effect of suppressing diamond grain growth during sintering is observed when the carbide content in the binder is 20% by weight or more, and when the carbide content in the binder exceeds 95% by weight, sintering Body strength decreases.

本発明の焼結体の用途としては特に美麗な仕上加工面が
要求される線引きダイスやA1合金やCu合金の切削加
工用バイトなどがある。
Applications of the sintered body of the present invention include wire drawing dies that require particularly beautiful finishing surfaces, cutting tools for cutting A1 alloys and Cu alloys, and the like.

以下実施例により具体的に説明する。This will be explained in detail below using examples.

実施例 1 粒度0.5μの合成ダイヤモンド粉末とWC及びCo粉
末をW C−Co超硬合金製のポット、ボールを用いて
粉砕混合した。
Example 1 Synthetic diamond powder with a particle size of 0.5μ, WC and Co powder were ground and mixed using a pot and ball made of WC-Co cemented carbide.

作成した混合粉末の組成は次の通りである。The composition of the prepared mixed powder is as follows.

この混合粉末をTa製の8器に詰め超高圧装置を用いて
先ず圧力を55Kb加え、引続いて1450℃に加熱し
、20分間保持して焼結した。
This mixed powder was packed in eight containers made of Ta and first applied a pressure of 55 Kb using an ultra-high pressure device, then heated to 1450° C. and held for 20 minutes to sinter.

焼結体を取出して組織観察したところ/i6.A、Bの
ものは約300μの粗大なダイヤモンド結晶が生成して
おり均一な組織の焼結体は得られなかった。
When the sintered body was taken out and the structure was observed/i6. In samples A and B, coarse diamond crystals of about 300 μm were formed, and a sintered body with a uniform structure could not be obtained.

AC−Gのものはいずれも1μ以下のダイヤモンドと1
μ以下のWCを含む微細結晶焼結体であった。
All AC-G items contain diamonds of 1 μ or less and 1
It was a fine crystal sintered body containing WC of μ or less.

焼結体のビッカース硬度は表1に記した通りである。The Vickers hardness of the sintered body is as shown in Table 1.

ACの焼結体を切断して切削加工用のチップを作成した
The AC sintered body was cut to create a chip for cutting.

これを用いてA1合金の切削テストを行なった。Using this, a cutting test of A1 alloy was conducted.

被削材は直径60gg+のA1合金丸棒で、切削速度2
50m/分、送り0.02rnm/回転、切込み0.0
7mmで切削した。
The work material is an A1 alloy round bar with a diameter of 60 gg+, and the cutting speed is 2.
50m/min, feed 0.02rnm/rotation, depth of cut 0.0
It was cut to 7mm.

天然ダイヤモンド工具と同じ切削条件で比較したが被削
材の表面状態は殆んど差がなく美麗な鏡面に近い仕上げ
面が得られた。
When compared under the same cutting conditions as a natural diamond tool, there was almost no difference in the surface condition of the workpiece, and a beautiful mirror-like finished surface was obtained.

実施例 2 実施例1のACの組成の混合粉末を用いて、内径5腓、
深さ5朋、肉厚50μのTa製容器に充てんした。
Example 2 Using a mixed powder having the composition of AC in Example 1, an inner diameter of 5 mm,
A Ta container with a depth of 5 mm and a wall thickness of 50 μm was filled.

これを予め焼結したWC−10%Co・*合金の外径1
5朋、内径5.21n11L、高さ5關のリングに装入
した。
The outer diameter of the WC-10%Co*alloy that has been sintered in advance is 1
It was charged into a ring with a diameter of 5.21 mm, an inner diameter of 5.21 mm, and a height of 5 mm.

この組合せ体を超高圧装置に入れ、実施例1と同一条件
で焼結した。
This combination was placed in an ultra-high pressure device and sintered under the same conditions as in Example 1.

得られた焼結体はWC−10φCo超硬合金製のリング
にダイヤモンド焼結体が内接した複合体となっていた。
The obtained sintered body was a composite body in which a diamond sintered body was inscribed in a ring made of WC-10φCo cemented carbide.

界面は50μ厚みのTa容器が残存しておりこの一部は
ダイヤモンド又は超硬合金と反応してTaCなっていた
A Ta container with a thickness of 50 μm remained at the interface, and a portion of this reacted with diamond or cemented carbide to become TaC.

この界面の存在により焼結時に超硬合金製リングよりの
Co液相の浸入はなく、ダイヤモンド焼結体は粒度lμ
以下の極めて微細な組織を呈していた。
Due to the existence of this interface, there is no intrusion of the Co liquid phase from the cemented carbide ring during sintering, and the diamond sintered body has a particle size of lμ
It had the following extremely fine structure.

この焼結体を更にステンレス製のリングに通常の天然ダ
イヤモンドダイスの製法と同様の方法でマウントし、ダ
イヤモンド焼結体部を孔加工して線引きダイスを作成し
た。
This sintered body was further mounted on a stainless steel ring in the same manner as a normal natural diamond die manufacturing method, and a hole was formed in the diamond sintered body to create a wire drawing die.

これを用いて従来天然ダイヤモンドダイスが使用されて
いた直径1朋のステンレス線の線引きに用いたところ天
然ダイヤモンドダイスの3倍の寿命が得られ、被加工線
材の表面も従来と変らぬ状態であった。
When this was used to draw stainless steel wire with a diameter of 1 mm, which conventionally used natural diamond dies, the lifespan was three times longer than that of natural diamond dies, and the surface of the wire to be processed remained in the same condition as before. Ta.

実施例 3 粒度1μ以下のダイヤモンド粉末を用いて表2の組成の
混合粉末を作成した。
Example 3 A mixed powder having the composition shown in Table 2 was prepared using diamond powder having a particle size of 1 μm or less.

焼結条件は全て実施例1と同様にして焼結体を得た。A sintered body was obtained under all the same sintering conditions as in Example 1.

いず不しもダイヤモンドは1μ以下の微細な組織の焼結
体であったが特にAJ、にの焼結体は焼結体に層状のヒ
ビ割れが生じており、他のものに比較して強度が劣って
いた。
Although diamond was a sintered body with a fine structure of less than 1 μm, the sintered body of AJ and Ni in particular had layered cracks in the sintered body, and compared to other diamonds. The strength was inferior.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の焼結体の製造条件を説明する為のもの
でダイヤモンドの圧力、 安定域を示したものである。 温度相図上での
Figure 1 is for explaining the manufacturing conditions of the sintered body of the present invention, and shows the pressure and stability range of diamond. on the temperature phase diagram

Claims (1)

【特許請求の範囲】 11μ以下のダイヤモンドが容量で95〜30係を占め
、残部が1μ以下の周期律表第4a 、 5a 。 6a族金属の炭化物、窒化物、硼化物及びこれ等の固溶
体または混合物結晶の1種または2種以上を20〜95
重量係と鉄族金属の結合材からなることを特徴とする工
具用微結晶焼結体。 2、特許請求の範囲第1項記載の焼結体において、結合
材が周期律表第4a 、5a 、6a族金属の炭化物と
鉄族金属からなり、これ等炭化物が結合材中で20重量
係以上95重量φ以下であることを特徴とする工具用微
結晶焼結体。 31μ以下のダイヤモンド粉末と1μ以下の周期律表第
4a 、5a 、6a族金属の炭化物、窒化物、硼化物
及びこれ等の固溶体粉末の1種又は2種以上と鉄族金属
粉末の混合粉末を作成し、これを粉状でもしくは型押成
型し、超高圧高温装置を用いてダイヤモンドが安定な、
圧力45Kb〜80Kb1温度1200°C〜2000
℃の条件下でホットプレスすることを特徴とする1μ以
下のダイヤモンドが容量で95〜30%占め、残部が1
μ以下の周期律表第4a 、5a 、6a族金属の炭化
物、窒化物、硼化物及びこれ等の固溶体または混合物結
晶の1種又は2種以上を20〜95重量係と鉄族金属の
結合材からなる工具用微結晶焼結体の製造方法。 4 特許請求の範囲第3項記載の方法において、結合材
形成粉末として周期律表第4 a 、 5a、6a族金
属の炭化物粉末と鉄族金属を用い、ダイヤモンド粉末と
この結合材粉末の混合粉末をダイヤモンドが安定な高温
・高圧下で圧力45Kb〜80Kb 。 温度1200〜2000℃の領域内で、ダイヤモンドの
粒成長を抑制して焼結することを特徴とし、結合材中の
炭化物が結合材中で20重量φ以上95重量φであるこ
とを特徴とする工具用微結晶焼結体の製造方法。
[Claims] Diamonds with a size of 11μ or less occupy the 95th to 30th rows in terms of capacity, and the remainder is 1μ or less, which are numbers 4a and 5a of the periodic table. 20 to 95% of one or more of carbides, nitrides, borides, and solid solutions or mixture crystals of group 6a metals.
A microcrystalline sintered body for tools, characterized by being made of a binding material of a weight bearing material and an iron group metal. 2. In the sintered body according to claim 1, the binder is composed of carbides of metals of groups 4a, 5a, and 6a of the periodic table and iron group metals, and these carbides have a weight coefficient of 20 in the binder. A microcrystalline sintered body for a tool, characterized in that it has a weight of at least 95 φ or less. A mixed powder of diamond powder of 31μ or less, one or more of carbides, nitrides, borides of group 4a, 5a, and 6a metals of the periodic table, solid solution powders of these, and iron group metal powder of 1μ or less. The diamond is made into a powder form or molded using an ultra-high pressure and high temperature equipment to make it stable.
Pressure 45Kb~80Kb1 Temperature 1200°C~2000
Diamonds with a diameter of 1μ or less account for 95-30% of the volume, with the remainder being 1.
A binder of 20 to 95% by weight of one or more carbides, nitrides, borides, and solid solutions or mixture crystals of metals of groups 4a, 5a, and 6a of the periodic table with a mass of 20 to 95 μm and iron group metals. A method for manufacturing a microcrystalline sintered body for tools comprising: 4. In the method according to claim 3, a carbide powder of metals in groups 4a, 5a, and 6a of the periodic table and an iron group metal are used as the binder-forming powder, and a mixed powder of diamond powder and this binder powder is used. The diamond is stable at high temperatures and pressures of 45Kb to 80Kb. It is characterized by sintering in a temperature range of 1200 to 2000°C while suppressing diamond grain growth, and characterized in that the carbide in the binder is 20 weight φ or more and 95 weight φ in the binder. A method for manufacturing a microcrystalline sintered body for tools.
JP53119685A 1978-08-26 1978-09-27 Microcrystalline sintered body for tools and its manufacturing method Expired JPS5832224B2 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP53119685A JPS5832224B2 (en) 1978-09-27 1978-09-27 Microcrystalline sintered body for tools and its manufacturing method
CA000334154A CA1149619A (en) 1978-08-26 1979-08-21 Diamond sintered body and the method for producing the same
FR7921331A FR2434130A1 (en) 1978-08-26 1979-08-24 SINTERED DIAMOND BODY AND ITS MANUFACTURING METHOD
SE7907095A SE442962B (en) 1978-08-26 1979-08-24 SINTRAD DIAMOND BODY AND PROCEDURE FOR ITS MANUFACTURING
US06/069,575 US4303442A (en) 1978-08-26 1979-08-24 Diamond sintered body and the method for producing the same
GB7929649A GB2029389B (en) 1978-08-26 1979-08-24 Diamond sintered body and a method for producing the same
DE19792934567 DE2934567A1 (en) 1978-08-26 1979-08-27 DIAMOND INTERMEDIATE AND METHOD FOR THE PRODUCTION THEREOF
AU50323/79A AU531126B2 (en) 1978-08-26 1979-08-27 Diamond sintered bodies

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP53119685A JPS5832224B2 (en) 1978-09-27 1978-09-27 Microcrystalline sintered body for tools and its manufacturing method

Publications (2)

Publication Number Publication Date
JPS5547363A JPS5547363A (en) 1980-04-03
JPS5832224B2 true JPS5832224B2 (en) 1983-07-12

Family

ID=14767507

Family Applications (1)

Application Number Title Priority Date Filing Date
JP53119685A Expired JPS5832224B2 (en) 1978-08-26 1978-09-27 Microcrystalline sintered body for tools and its manufacturing method

Country Status (1)

Country Link
JP (1) JPS5832224B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007126329A (en) * 2005-11-04 2007-05-24 Sumitomo Electric Hardmetal Corp Diamond sintered body and its production method
JP2007126326A (en) * 2005-11-04 2007-05-24 Sumitomo Electric Hardmetal Corp Diamond sintered body
WO2008096400A1 (en) * 2007-02-02 2008-08-14 Sumitomo Electric Hardmetal Corp. Diamond sinter
WO2008096401A1 (en) * 2007-02-02 2008-08-14 Sumitomo Electric Hardmetal Corp. Diamond sinter and process for producing the same
WO2009041120A1 (en) * 2007-09-28 2009-04-02 Aisin Aw Co., Ltd. Cutting tool

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57100982A (en) * 1980-12-12 1982-06-23 Sumitomo Electric Industries Diamond sintered body for tool and manufacture
JPS59219445A (en) * 1983-05-25 1984-12-10 Sumitomo Electric Ind Ltd High-hardness sintered body for tool and its manufacture
US7553350B2 (en) 2005-07-26 2009-06-30 Sumitomo Electric Industries, Ltd. High-strength and highly-wear-resistant sintered diamond object and manufacturing method of the same
JP5067457B2 (en) * 2010-07-29 2012-11-07 三星ダイヤモンド工業株式会社 Scribing wheel, scribing device, and scribing method
US8865301B2 (en) 2012-01-26 2014-10-21 The United States Of America, As Represented By The Secretary Of The Navy Refractory metal boride ceramics and methods of making thereof
WO2013165538A1 (en) 2012-05-01 2013-11-07 The Government Of The Usa, As Represented By The Secretary Of The Navy Formation of boron carbide-boron nitride carbon compositions

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007126329A (en) * 2005-11-04 2007-05-24 Sumitomo Electric Hardmetal Corp Diamond sintered body and its production method
JP2007126326A (en) * 2005-11-04 2007-05-24 Sumitomo Electric Hardmetal Corp Diamond sintered body
WO2008096400A1 (en) * 2007-02-02 2008-08-14 Sumitomo Electric Hardmetal Corp. Diamond sinter
WO2008096401A1 (en) * 2007-02-02 2008-08-14 Sumitomo Electric Hardmetal Corp. Diamond sinter and process for producing the same
EP2107045A1 (en) * 2007-02-02 2009-10-07 Sumitomo Electric Hardmetal Corp. Diamond sinter and process for producing the same
EP2107045A4 (en) * 2007-02-02 2011-07-06 Sumitomo Elec Hardmetal Corp Diamond sinter and process for producing the same
WO2009041120A1 (en) * 2007-09-28 2009-04-02 Aisin Aw Co., Ltd. Cutting tool

Also Published As

Publication number Publication date
JPS5547363A (en) 1980-04-03

Similar Documents

Publication Publication Date Title
US4505746A (en) Diamond for a tool and a process for the production of the same
KR910006785B1 (en) A hard sintered compact for a tool
KR900002701B1 (en) Diamond sintered body for tools and method of manufacturing the same
US8597387B2 (en) Abrasive compact with improved machinability
US4009027A (en) Alloy for metallization and brazing of abrasive materials
US4303442A (en) Diamond sintered body and the method for producing the same
US20110020163A1 (en) Super-Hard Enhanced Hard Metals
US4370149A (en) Diamond compact for a wire drawing die and a process for the production of the same
WO2010002832A2 (en) Abrasive slicing tool for electronics industry
JPH09194978A (en) Superhard composite member and its production
JPS5832224B2 (en) Microcrystalline sintered body for tools and its manufacturing method
JPH0530897B2 (en)
JPS6350401B2 (en)
JPH0128094B2 (en)
JPS6158432B2 (en)
JPS6114107B2 (en)
JPS6411703B2 (en)
KR810001998B1 (en) Method producing a sintered diamond compact
JPS6137221B2 (en)
KR840001137B1 (en) Diamond fine sintered body
JPH1192852A (en) Intergranular metal dispersion strengthened wc-containing cemented carbide and its production
JPH0312123B2 (en)
JPS5896848A (en) High hardness sintered body for tool and its manufacture
JPS6310119B2 (en)
JPH0377151B2 (en)