JPS5832156A - Sensor for concentration of specific substance - Google Patents

Sensor for concentration of specific substance

Info

Publication number
JPS5832156A
JPS5832156A JP56131100A JP13110081A JPS5832156A JP S5832156 A JPS5832156 A JP S5832156A JP 56131100 A JP56131100 A JP 56131100A JP 13110081 A JP13110081 A JP 13110081A JP S5832156 A JPS5832156 A JP S5832156A
Authority
JP
Japan
Prior art keywords
concentration
solid electrolyte
oxygen
film
specific substance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP56131100A
Other languages
Japanese (ja)
Other versions
JPS64659B2 (en
Inventor
Shotaro Oka
正太郎 岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Shimazu Seisakusho KK
Original Assignee
Shimadzu Corp
Shimazu Seisakusho KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp, Shimazu Seisakusho KK filed Critical Shimadzu Corp
Priority to JP56131100A priority Critical patent/JPS5832156A/en
Publication of JPS5832156A publication Critical patent/JPS5832156A/en
Publication of JPS64659B2 publication Critical patent/JPS64659B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • G01N27/417Systems using cells, i.e. more than one cell and probes with solid electrolytes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Molecular Biology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Measuring Oxygen Concentration In Cells (AREA)

Abstract

PURPOSE:To measure oxygen concentration accurately, by forming a closed space with two sheets of solid electrolyte film and an insulating layer and generating the oxygen to be used as the standard gas in said space by pumping theory. CONSTITUTION:A stabilized zircnia film 1 using for the first solid electrolyte film and a stabilized zirconia film 2 using for the second solid electrolyte film, are positioned face to face at interval of (d) and a rectangular-shaped closed space 5 is formed by an insulation layer 3. The first film 1 is provided a direct electric current power source 6 for carrying out an electrolytic movement of oxygen forcibly from the outside to the space 5 through a porous electrode 4. The second film 2 is provided a control circuit detecting the difference of oxygen concentration between the inner and outer surfaces through the electrode 4 and moving the oxygen by turning on a negative feedback electric current If so as to be the potential difference basing on this concentration difference at a constant set point. This current If corresponds to the concentration of the outside sample and is measured by an ammeter 22.

Description

【発明の詳細な説明】 この発明は特定物質の濃度センサーに関する。[Detailed description of the invention] The present invention relates to a concentration sensor for a specific substance.

更に詳しくは固体電解質を利用した流体状の特定物質の
濃度センサーであって、標準ガスを必要とせず、高精度
、高正確度でかつ広い測寓範囲を有し、長寿会である特
定物質の濃度センサーに関する。
More specifically, it is a fluid concentration sensor for specific substances that uses a solid electrolyte, does not require standard gas, has high precision, high accuracy, and has a wide measuring range. Regarding concentration sensors.

近年、ある種の固体電解質が高温雰囲気下において特定
物質を選択的にイオンとして伝導又は透過させる性質を
示すことが見出され、この性質を利用した種々の分析機
器、燃料電池等が知られている。ことに酸化ジルコニウ
ムに異原子価の酸化物を固溶した安定化ジルコニアを固
体電解質として用いた酸素の濃度センサーや酸素ポンプ
が実用化されている。これらのうち酸素濃度センサーは
、安定化ジルコニア膜の両面に白金や銀の多孔性電極を
設け、500〜1000℃の高温下で両面をそれぞれ異
なる酸素濃度(PO,とPO2)の酸素を含む気体に接
触させると両電極間に (式中、又は気体定数、Fはファラデ一定数、Tは測定
温度をそれぞれ示す) からなる電位差Eが生じ、従っていずれかの濃度を一定
にしておけば酸素濃度の計測ができるという原理に基づ
いている。また、酸素ポンプ等は、上記電極間に電流を
外部から強制的に流せば電解により酸素を一方の面から
他力の面に移動できかつ移動量が電量に比例するという
原理に基づいている。他の固体電解質を用いた特定物質
の濃度センサーやポンプも同様な原理に基づいている。
In recent years, it has been discovered that certain solid electrolytes exhibit the property of selectively conducting or permeating specific substances as ions in high-temperature atmospheres, and various analytical instruments, fuel cells, etc. that utilize this property have become known. There is. In particular, oxygen concentration sensors and oxygen pumps using stabilized zirconia, which is a solid solution of oxides of different valences in zirconium oxide, as solid electrolytes have been put into practical use. Among these, the oxygen concentration sensor has porous electrodes of platinum or silver on both sides of a stabilized zirconia membrane, and at high temperatures of 500 to 1000°C, each side is exposed to gas containing oxygen with different oxygen concentrations (PO, and PO2). When brought into contact with It is based on the principle that it is possible to measure Further, oxygen pumps and the like are based on the principle that if a current is forced to flow between the electrodes from the outside, oxygen can be moved from one side to the other side by electrolysis, and the amount of movement is proportional to the amount of electricity. Concentration sensors and pumps for specific substances that use other solid electrolytes are based on similar principles.

しかしながら上記のごとき特定物質の濃度センサーにお
いては、式(I)から明らかなように 出力電圧信号が
特定物質の濃度に対して対数目盛となり測定のダイナミ
ックレンジを広くできないのみならず濃度の大きい部分
で精度が悪いという欠点があった。さらに固体電解質の
片面には標準ガスを測定中連続して流しておく必要があ
り、例えば−素濃度を測定する際標準ガスとして空気を
用いると信頼性が乏しく、信頼できる標準ガスは測定中
多量に消費されるという欠点があった。
However, in the above concentration sensor for a specific substance, as is clear from equation (I), the output voltage signal is on a logarithmic scale with respect to the concentration of the specific substance, which not only makes it impossible to widen the dynamic range of measurement, but also makes it impossible to widen the dynamic range of measurement. It had the disadvantage of poor accuracy. Furthermore, it is necessary to continuously flow a standard gas through one side of the solid electrolyte during measurement. The disadvantage was that it was consumed by

これに対し、酸化パラジウムを濃度センサー内に詰めて
標準ガスの代わりに用いた酸素濃度センサーが提案され
ている(米国特許第4045119号明細書)。しかし
この場合は確かに標準ガスは不要であるが、標準酸素濃
度を変化させることができず測定可能範囲が限定され、
酸化パラジウム自体の寿命にも問題がある。そしてやは
り出力信号が濃度に対して対数目盛となる欠点を有して
いる。
On the other hand, an oxygen concentration sensor has been proposed in which palladium oxide is packed inside the sensor and used instead of the standard gas (US Pat. No. 4,045,119). However, in this case, although the standard gas is certainly unnecessary, the measurable range is limited because the standard oxygen concentration cannot be changed.
There is also a problem with the lifespan of palladium oxide itself. Again, this method has the disadvantage that the output signal is on a logarithmic scale with respect to concentration.

一方、これらの問題点に鑑み、細孔を有する2枚の固体
電解質を対向させて閉鎖空間を設け、一方の固体電解的
で内外面の電位差を検出し、この電位差に対抗する負帰
還電流を他方の固体電解質に供給して電解移動させ該負
帰還電流を測定して閉鎖室外面の特定物質(酸素)の濃
度を測定するセンサーが提案されている( Appl、
 Phys 、 Lett、。
On the other hand, in view of these problems, a closed space is created by placing two solid electrolytes with pores facing each other, and the potential difference between the inner and outer surfaces of one solid electrolyte is detected, and a negative feedback current is generated to counter this potential difference. A sensor has been proposed that measures the concentration of a specific substance (oxygen) on the outer surface of a closed chamber by supplying it to the other solid electrolyte and electrolytically moving it to measure the negative feedback current (Appl.
Phys, Lett.

p、p、 89←892. Voj、 8g、tlh 
6 、 I March(1981)1この提案によれ
ば、出力信号が特定物質の濃度に直線的に比例するため
測定範囲が広くとれ、さらに標準ガスを必裂としない利
点がある。しかし閉鎖空間から細孔を通して酸素と共存
ガスとを拡散によって排出しているため、共存するガス
の種類、m成によって拡散速度が異なり」存ガスによる
酸素濃度測定値への影響が大で高精度、高正確度の測定
は困難である。そして、閉鎖空間は密閉されていないた
め汚染されかつそれによる誤差を生じる恐れがある。さ
らに、固定電解質に設けられた細孔の孔径は厳密を要し
、燃焼排ガス中等の酸素濃度測定において該細孔を詰め
てしまう恐れがあり賽用上の難点を有している。
p, p, 89←892. Voj, 8g, tlh
6, I March (1981) 1 According to this proposal, since the output signal is linearly proportional to the concentration of the specific substance, the measurement range can be widened, and there is also the advantage that the standard gas is not necessarily required. However, since oxygen and coexisting gases are exhausted from a closed space through pores by diffusion, the diffusion rate varies depending on the type and composition of coexisting gases. , measurement with high accuracy is difficult. Furthermore, since the closed space is not sealed, there is a risk of contamination and resulting errors. Furthermore, the diameter of the pores provided in the fixed electrolyte must be exact, and there is a risk that the pores will be clogged when measuring the oxygen concentration of combustion exhaust gas, etc., which poses a practical problem.

この発明はこのような従来の濃度センサーの多くの欠点
を解消すべくなされたものであり、高精度、高正確度で
実用に適する特定物質の濃度セン量−を提供するもので
ある。この発明の発明者は鋭意研究の結果、二枚の固体
電解質膜と絶縁層により、特定物質の流動可能な密閉空
間を形成し、これら固体電解質Hti従来と異なる特定
の機能を与えることにより所望の濃度センサーを得、こ
の発明に到達した。
The present invention has been made in order to eliminate many of the drawbacks of such conventional concentration sensors, and provides a highly accurate and highly accurate concentration sensor of a specific substance suitable for practical use. As a result of intensive research, the inventor of this invention formed a sealed space in which a specific substance can flow using two solid electrolyte membranes and an insulating layer, and by giving these solid electrolytes Hti specific functions different from conventional ones, the desired effect can be achieved. We obtained a concentration sensor and arrived at this invention.

かくしてこの発明によれば、対向する第1及び第2の固
体電解質膜と絶縁層により密閉された特定物質の流動可
能な空間を形成する本体、第1の固体電解質膜に設けら
れた特定物質を該i!解質膜を通して継続的に電解移動
させる手段、第2の固体電解質膜に設けられた該固体電
解質膜の内外両面に接触する特定物質の濃度差に対応す
る電位差を検出し該電位差が一定の設定値となるように
負帰還電流を流して特定物質を電解移動させる制御手段
、及び上記負帰還電流の測定手段を備え、負帰還電流に
基づいて密閉された空間外の特定物質の濃度を測定でき
るよう構成してなる特定物質の濃度センサーが提供され
る。
Thus, according to the present invention, the main body forms a space in which a specific substance can flow, which is sealed by the first and second solid electrolyte membranes facing each other and an insulating layer, and the specific substance provided in the first solid electrolyte membrane. That i! A means for continuously electrolytically moving through the electrolyte membrane, a means for detecting a potential difference corresponding to a concentration difference of a specific substance provided in a second solid electrolyte membrane that contacts both the inner and outer surfaces of the solid electrolyte membrane, and setting the potential difference to be constant. A control means for electrolytically moving a specific substance by flowing a negative feedback current so as to reach a certain value, and a means for measuring the negative feedback current, and the concentration of the specific substance outside the sealed space can be measured based on the negative feedback current. A concentration sensor for a specific substance configured as described above is provided.

この発明の濃度センサーは出力信号が測定対象の特定物
質の濃度に直線的に比例するため高精度、高正確度であ
り、測定範囲が大きくとれ有利である。そして標準ガス
を全く必要としない。さらに密閉空間内には純粋な酸素
のみが固体電解質を通して出入りするため共存ガスの影
響がなく、燃焼ガス中の酸素計測のように粉粒や煤煙に
よる汚染条件下に右いてもその影響をほとんど無視でき
畏寿命である。従って特定物質の連続モニターに好′適
である。
The concentration sensor of the present invention has high precision and accuracy because the output signal is linearly proportional to the concentration of the specific substance to be measured, and is advantageous in that it has a wide measurement range. And no standard gas is required. Furthermore, since only pure oxygen enters and exits the sealed space through the solid electrolyte, there is no effect of coexisting gases, and even if the oxygen is measured in combustion gas under conditions of contamination with particles or soot, the effects are almost ignored. It has a long lifespan. Therefore, it is suitable for continuous monitoring of specific substances.

以下、添付の図面に従いこの発明の詳細な説明する。第
1図は、この発明の特定物質の濃度センサーの一具体例
である酸素濃度センサーの断面図を含む機能説明図であ
る。第1図において、@1の固体電解質膜である安定化
ジルコニア膜(1)と第2の固体電解質膜である安定化
ジルコニア膜(2)は間隔((至)で対向して位置して
おり、濃度センサ一本体はこれらと絶縁層(3)および
紙面の手前と奥に位置する絶縁層によって長方体状の密
閉空間(5)を形成している。それぞれの安定化ジルコ
ニア膜の内外両面には、白金からなる多孔性電極(4)
が密接して設けられている。第1の安定化ジルコニア膜
(1)には多孔性電極を通じて、特定物質である酸素を
強制的に電解移動させるための電解用直流電源(6)を
備えた回路が付設されている。、一方、第2の安定化ジ
ルコニア膜(2)には多孔性電極を通じて、内外両面の
酸素濃度差を検出し該電位差が一定の設定値となるよう
に自動的に負+I!1還電流を流して酸素を電解移動さ
せる負帰還増幅器(7)、補助加電圧電源(8)、電極
電位差測定器(9)、I Rドロップ検出器aO1負帰
還回路抵抗■、右よび等価抵抗調整用の可変抵抗(2)
からなる制御回路が付設されている。
The present invention will now be described in detail with reference to the accompanying drawings. FIG. 1 is a functional explanatory diagram including a sectional view of an oxygen concentration sensor, which is a specific example of the specific substance concentration sensor of the present invention. In Figure 1, the stabilized zirconia membrane (1), which is the solid electrolyte membrane @1, and the stabilized zirconia membrane (2), which is the second solid electrolyte membrane, are located facing each other with an interval ((to)). , the concentration sensor body forms a rectangular closed space (5) with these, an insulating layer (3), and insulating layers located in the front and back of the page.The inner and outer surfaces of each stabilized zirconia film includes a porous electrode (4) made of platinum.
are placed closely together. The first stabilized zirconia membrane (1) is attached with a circuit equipped with an electrolytic DC power source (6) for forcibly electrolytically transferring oxygen, which is a specific substance, through a porous electrode. , on the other hand, the second stabilized zirconia membrane (2) uses a porous electrode to detect the difference in oxygen concentration between the inner and outer surfaces, and automatically adjusts the potential difference to a constant set value (negative +I!). Negative feedback amplifier (7) that electrolytically transfers oxygen by flowing a return current (7), auxiliary voltage supply (8), electrode potential difference measuring device (9), I R drop detector aO1 negative feedback circuit resistance ■, right and equivalent resistance Variable resistance for adjustment (2)
A control circuit consisting of is attached.

上記構成において、充分過料な定電流が電源(6)によ
り@lの安定化ジルコニア膜(1)に供給され密閉空間
内のm累は該摸を通して電解移動され密閉空間外へ排出
される。
In the above configuration, a sufficiently high constant current is supplied to the stabilized zirconia film (1) by the power supply (6), and the m particles in the closed space are electrolytically moved through the film and discharged out of the closed space.

W2図に密閉空間内での酸素濃度分布の種々のパターン
を示す。このように第1の安定化ジルコニア膜の内表面
濃度Coは電解によってゼロであり、第2の安定化ジル
コニア膜の内表面濃度をCi(〆0)とするとある瞬間
(tO)では(A)のような濃度勾配を生じる。第1の
安定化ジルコニア膜での電解だけを行なっている場合、
時間がt(1→t1−”t2”tsと進行するとこれに
対応して濃度勾配は■−■−C)−(D)と変化し、時
間が無限大twとなると(E)となって密閉空間内の酸
素は完全に排出される。一方、第2の安定化ジルコニア
膜にセいては、外面(測定対象)の酸素濃度Csに対応
する表面電位、tsと密閉空間内表面の酸素濃度Ciに
対応する表面電位t/iとの差(、If、−、/i)を
検出し、これを一定の設定値〔補助加電圧電源(6)の
電圧!、に対応する〕に保持するため負帰還電流I(を
1752の安定化ジルコニア膜に流して酸素を電解移動
させる自動制御が行なわれている。
Figure W2 shows various patterns of oxygen concentration distribution in a closed space. In this way, the inner surface concentration Co of the first stabilized zirconia film is zero due to electrolysis, and if the inner surface concentration of the second stabilized zirconia film is Ci (〆0), then at a certain moment (tO), (A) This results in a concentration gradient such as When only electrolysis is performed on the first stabilized zirconia membrane,
When time progresses as t(1→t1-"t2"ts), the concentration gradient changes as ■-■-C)-(D), and when time becomes infinite tw, it becomes (E). Oxygen in the closed space is completely exhausted. On the other hand, for the second stabilized zirconia film, there is a difference between the surface potential ts corresponding to the oxygen concentration Cs on the outer surface (measurement target) and the surface potential t/i corresponding to the oxygen concentration Ci on the inner surface of the closed space. (, If, -, /i) and set this to a certain set value [voltage of auxiliary voltage power supply (6)! In order to maintain a negative feedback current I (corresponding to

従って第1の安定化ジルコニア膜での電解移動によって
CIが低下すると!五が低下するので)、−()i+J
!i)の値に差を生じ、Ifが流れCsの酸素がCiに
供給される。そしてL/S! −(、/M+Ll!り4
Poで平衡しHは動的平衡吠餓で一定となる。
Therefore, if the CI decreases due to electrolytic migration in the first stabilized zirconia film! 5 decreases), -()i+J
! A difference occurs in the value of i), If flows and oxygen from Cs is supplied to Ci. And L/S! -(,/M+Ll!ri4
Equilibrium is established at Po, and H becomes constant due to dynamic equilibrium pressure.

この状譜で試料の酸素濃度C3が+aだけ増加すると、
L/、〉)i十!1となりIfが増加゛し、Ll!iが
増加して第2の安定化ジルコニア膜の内面C1はCl+
a’となって平衡する。このときの密閉室内の濃度勾配
は(A5のようになる。そしてCB +cfの濃度を保
つために電流1(が流れ、この値はこのときのC,に対
応する。逆にCsが−αだけ濃度低下すると前述と逆に
なってC1はC4−g  となりIfは減少して平衡す
る(濃度勾配(A#))。
In this situation, when the oxygen concentration C3 of the sample increases by +a,
L/,〉)i ten! 1, If increases, and Ll! As i increases, the inner surface C1 of the second stabilized zirconia film becomes Cl+
a' and is in equilibrium. At this time, the concentration gradient in the sealed chamber is as shown in (A5). In order to maintain the concentration of CB When the concentration decreases, C1 becomes C4-g, which is the opposite of the above, and If decreases to reach equilibrium (concentration gradient (A#)).

すなわちIfは試料の酸素濃度Csに直線的に比例し、
IIを電流計翰によって測定することによりCsを簡便
に検出することができる。な忽、制御回路中に設定した
電圧!、は、連続測定時に極端に低い濃度の試料が接触
した際、密閉室内の酸素濃度が極端に低下して測定不能
となることをさけるために組み入れたちのてあり%寮際
上の測定範囲を設定す葛ためのものである。従って電圧
J1を除去しても勿論測定可能である。そして、密閉室
内の酸素濃度が極端に低下した場合に右いては、適当な
切替えスイッチによって電解用直流電源の方向を逆に設
定し、第1の安定化ジルコニア膜を通して酸素を密閉空
間内へ導入する電解移動を行ない、これに対応するI(
を同様に電流計(支)で測定することによって試料濃度
を測定することができる。すt【わち、第1の固体電解
質膜における電解移動は排出反応であっても導入反応て
あっても測定可能であり、測定対象によって適宜9J替
えることも可能である。
That is, If is linearly proportional to the oxygen concentration Cs of the sample,
Cs can be easily detected by measuring II with an ammeter. By the way, the voltage set in the control circuit! , has been incorporated to prevent the oxygen concentration in the closed room from extremely decreasing and making measurements impossible when a sample with an extremely low concentration comes into contact with the sample during continuous measurement. The setting is for kudzu. Therefore, it is of course possible to perform measurements even if the voltage J1 is removed. If the oxygen concentration in the sealed chamber is extremely low, the direction of the electrolytic DC power source is reversed using an appropriate changeover switch, and oxygen is introduced into the sealed space through the first stabilized zirconia membrane. The electrolytic transfer is carried out, and the corresponding I(
The sample concentration can be measured by similarly measuring with an ammeter (support). [That is, the electrolytic transfer in the first solid electrolyte membrane can be measured whether it is an exhaust reaction or an introduction reaction, and it is also possible to change 9 J as appropriate depending on the object to be measured.

なお、上記測定において可変抵抗亜は、予め第2の安定
化ジルコニア膜の内部抵抗Rと等価になるよう調整して
詔く必要がある。すなわち、第2の膜の内部抵抗Rがゼ
ロの場合はIRドロップ検出器QO及び可変抵抗(2)
は制御回路中下必要である。
In addition, in the above measurement, it is necessary to adjust the variable resistance in advance so that it becomes equivalent to the internal resistance R of the second stabilized zirconia film. That is, when the internal resistance R of the second film is zero, the IR drop detector QO and the variable resistor (2)
is required in the control circuit.

そして実際の安定化ジルコニウムの800℃における抵
抗は、厚み1〜2mmで約10〜60V−程度であり、
厚みを0.1 mm程度まで薄くすると1−6Ω程度と
なるので固体電解質膜の成形方法や材質によっては無視
できる程度小さくすることも可能である。しかし、10
0程度の抵抗があって負帰還電流■fが100mA程度
流れると1vの電圧が、71− (4i +J!、 )
に加えられIfの変化によって(9)及び(7)の入力
が変化することになり、高精度、高正確度の測定では小
さな内部抵抗も大きく影響することになるので、1!2
の固体電解質膜の抵抗RによるIRドロップは除去して
J!s −Ct4 +18)のみに関与するIfを求め
ることが好ましい。
The actual resistance of stabilized zirconium at 800°C is about 10 to 60 V- at a thickness of 1 to 2 mm.
When the thickness is reduced to about 0.1 mm, it becomes about 1-6 Ω, so depending on the molding method and material of the solid electrolyte membrane, it is possible to make it negligible. However, 10
If there is a resistance of about 0 and a negative feedback current f of about 100 mA flows, a voltage of 1 V will be 71- (4i + J!, )
The inputs of (9) and (7) will change due to the change in If added to , and even a small internal resistance will have a large effect on high-precision, high-accuracy measurements, so 1!2
The IR drop due to the resistance R of the solid electrolyte membrane is removed and J! It is preferable to find If that is related only to s - Ct4 +18).

第1図の具体例においては可変抵抗@によって適宜調整
できるIRドロップ補償回路が付設されている。すなわ
ち、内部抵抗Rは温度が一定ならばほぼ一定で予め計測
可能な量であるからRと等価な抵抗R′を可変抵抗υに
よって制御回路中に設け、Ifによる1fRドロップ分
の電圧を入力抵抗の充分大きいI【χロツプ検出装置帥
に供給する。その出力を負帰還増幅器(7)に差動的に
結合し、(7)の出力がL/s  Gj i +J!a
) + I rR) −I (R’に対応するようにf
f1ffされている。これによってIfは、7g −(
、J!t +、7a)にのみ対応して流れる制御回路が
得られる。なお、RとVは厳密に一致させる必要はない
。というのはわずかな差があっても設定電位が変化する
だけで出力の直線性には影響なく、既知濃度の標準ガス
で較正すれば計測上の誤差は除去できるからである。
In the specific example shown in FIG. 1, an IR drop compensation circuit is provided which can be appropriately adjusted using a variable resistor. In other words, since the internal resistance R is almost constant if the temperature is constant and can be measured in advance, a resistance R' equivalent to R is provided in the control circuit using a variable resistor υ, and the voltage corresponding to the 1fR drop due to If is applied to the input resistance. A sufficiently large I[chi] is supplied to the lop detector. Its output is differentially coupled to a negative feedback amplifier (7), and the output of (7) is L/s Gj i +J! a
) + I rR) −I (f to correspond to R'
It has been f1ff. As a result, If becomes 7g −(
, J! A control circuit is obtained which flows only in response to t +, 7a). Note that R and V do not need to exactly match. This is because even if there is a slight difference, it only changes the set potential and does not affect the linearity of the output, and measurement errors can be removed by calibrating with a standard gas of known concentration.

この発明の固体電解質膜に用いる固体電解質としては、
通常この分野で公知の種々の固体電解質が使用できる。
The solid electrolyte used in the solid electrolyte membrane of this invention is as follows:
A variety of solid electrolytes commonly known in the art can be used.

具体的な固体電解質としては、酸素イオン透過性の安定
化ジルコニア、トリア固溶体、セリア固溶体、酸化ビス
マス及びペロブスカイト型酸化物や、酸素イオン又は塩
素イオン透過性の塩化ストロンチウム/塩化カリウム/
ai2化ストロンチウム固溶体、プロトン透過性のパラ
ジウム化合物等が挙げられる。なお、これ以外にイオン
伝導性ポリマー膜やイオン交換膜で選択性を有するもの
が使用可能である。従って、特定物質として酸素、塩素
、水素等の種々のガス状物質を選択的に測定することが
できる。なお、固体電解質膜の厚みは0.2〜1Ono
n程度が適当である。
Specific solid electrolytes include oxygen ion permeable stabilized zirconia, thoria solid solution, ceria solid solution, bismuth oxide and perovskite type oxides, and oxygen ion or chloride ion permeable strontium chloride/potassium chloride/
Examples include strontium ai2 oxide solid solution and proton-permeable palladium compounds. In addition, ion-conducting polymer membranes and ion-exchange membranes having selectivity can be used in addition to these. Therefore, various gaseous substances such as oxygen, chlorine, and hydrogen can be selectively measured as specific substances. The thickness of the solid electrolyte membrane is 0.2 to 1 mm.
Approximately n is appropriate.

この発明における密閉された特定物質の流動可能な空間
は、第1図に示したごとき密閉室状の空間に限定される
ものではない。例えば第8図に示すように第1及び第2
の固体電解質の内面の多孔性電極を隣接一体化し、該多
孔性電極の外表面のみを絶縁層で覆い該電極内の多孔質
空間を密閉空間として構成してもよい。この場合密閉空
間内容積が小さくなり応答速度が速くなる等、好ましい
場合がある。いずれにせよ、If1と第2の固体電解質
膜の間隔(d)はせいぜいimm程度で充分である。
In the present invention, the sealed space in which the specific substance can flow is not limited to a sealed chamber-like space as shown in FIG. For example, as shown in FIG.
Porous electrodes on the inner surface of the solid electrolyte may be integrated adjacent to each other, and only the outer surface of the porous electrode may be covered with an insulating layer to form a porous space within the electrode as a closed space. In this case, the internal volume of the closed space becomes smaller and the response speed becomes faster, which may be preferable. In any case, it is sufficient for the distance (d) between If1 and the second solid electrolyte membrane to be approximately imm at most.

なお、密閉空間を固体電解質膜と共に構成する絶縁層と
しては耐熱鋼、酸化アルミニウム、白金等が挙げられる
The insulating layer constituting the closed space together with the solid electrolyte membrane may be made of heat-resistant steel, aluminum oxide, platinum, or the like.

第1の固体電解質膜に特定物質を継続的に電解移動させ
る手段としては一通常該膜の両面に白金や銀からなる多
孔性電極(通常厚み、0.5〜2.0m舅程度)を設は
両電極に電流を供給する回路が逝当であり、公知の種々
の回路が適用できる。なお、電解方向を適宜切替えるス
イッチを付設してもよい (以下余白次頁に続く) @2の固体電解質膜の制御手段としては、まず。
As a means for continuously electrolytically transferring a specific substance to the first solid electrolyte membrane, porous electrodes (usually about 0.5 to 2.0 m thick) made of platinum or silver are usually installed on both sides of the membrane. A circuit that supplies current to both electrodes is suitable, and various known circuits can be applied. Note that a switch may be provided to change the direction of electrolysis as appropriate (see below for margin). First, as a control means for the solid electrolyte membrane in @2.

第1図の回路に示す如き自動制御回路が挙げられる。制
御回路においてはIRドロップを補償する必要がある。
An example is an automatic control circuit as shown in the circuit of FIG. It is necessary to compensate for IR drop in the control circuit.

IRドロップ補償機能を備えた制御回路の他の具体例を
第4図に示す。第4図に示す制御回路は、@1図にて示
したと同様に濃度センサーの本体における!!2の固体
電解質膜内外面(両端)の多孔性電極にそれぞれ(W)
 、 (G)点を介して接続されてhる。そして可変抵
抗R1α→、抵抗R1@、抵抗R3(至)及び第2の固
体電解質膜自体の内部抵抗Rによって4辺ブリッジが形
成されるよう構成されてhる。なお、抵抗R8(至)は
内部抵抗Rとほぼ等価に設定されている。また、Qlは
固体電解質膜の両端電圧増幅器sQ2は抵抗R8の両端
電圧増幅器%Q、HQ1及びQ2の各出力電圧差に比例
した電圧を出力する増幅器、Q4は第1図で示した制御
回路の補助加電圧電源(8)VC相当する電圧を設定す
る作動増#S器、Q、t−j位相反転回路ipそれぞれ
示し、2つのトランジスターからなる回路(至)は回路
作動用の電流源を示しQ、からのトランジスター出力に
よって制御される。
Another specific example of a control circuit equipped with an IR drop compensation function is shown in FIG. The control circuit shown in Fig. 4 is in the main body of the concentration sensor, similar to that shown in Fig. 1! ! (W) on the porous electrodes on the inner and outer surfaces (both ends) of the solid electrolyte membrane in No. 2, respectively.
, (G) connected via the point h. A four-sided bridge is formed by the variable resistor R1α→, the resistor R1@, the resistor R3 (to), and the internal resistance R of the second solid electrolyte membrane itself. Note that the resistance R8 (to) is set to be approximately equivalent to the internal resistance R. Ql is a voltage amplifier across the solid electrolyte membrane, sQ2 is a voltage amplifier across the resistor R8, %Q, an amplifier that outputs a voltage proportional to the output voltage difference between HQ1 and Q2, and Q4 is the control circuit shown in FIG. Auxiliary voltage supply power supply (8) shows an operation intensifier S, Q, and tj phase inversion circuits ip that set a voltage equivalent to VC, and a circuit (to) consisting of two transistors shows a current source for circuit operation. Q, controlled by the transistor output from Q.

上記のごときIRドロップと電圧分とを分離して制御す
るように構成された制御回路を用いることによってIf
RドロップをIfR,ドロップによって補償しなからI
f を流して電解を行なうことができ、同時にIfを測
定することができる。
By using a control circuit configured to separately control the IR drop and the voltage component as described above, If
If the R drop is compensated by the IfR drop, then I
Electrolysis can be performed by flowing f, and If can be measured at the same time.

なお、内部抵抗Rは温1it一定ならば固有な値を示し
、従って可変抵抗R1の調整によって除去できる。この
ようなIRドロップ補償回路を備えた制御回路を適用す
ることにより高精度、高正確度の測定を行なうことがで
きる。なお、第2の固体電解質膜のIR)’ロッゾを補
償する方法として上記以外に比較的周波数の高い交流を
重畳し、交流成分のみでIR)’ロッゾを補償すること
も可能である。また、gr、5図に示すように、第2の
固体電解質膜(2)を絶縁体071で分離して固体電解
質膜(2′)及びd′)とし、e″)で膜内・外面の電
位差を検出し! これに対する負帰還電流を(2)の膜に通じて電解させ
る制御回路を構成することによりIRドロップの電位差
に対する影響を除去してもよい。
Note that the internal resistance R exhibits a specific value if the temperature is constant, and can therefore be removed by adjusting the variable resistance R1. By applying a control circuit equipped with such an IR drop compensation circuit, highly precise and accurate measurements can be performed. In addition, as a method of compensating for the IR)'Rozzo of the second solid electrolyte membrane, it is also possible to superimpose an alternating current with a relatively high frequency in addition to the above, and compensate for the IR)'Rozzo using only the AC component. In addition, as shown in Figure 5, the second solid electrolyte membrane (2) is separated by an insulator 071 to form solid electrolyte membranes (2') and d'), and the inner and outer surfaces of the membrane are separated by e''). The influence of the IR drop on the potential difference may be removed by configuring a control circuit that detects the potential difference and electrolyzes the negative feedback current through the membrane (2).

なお、第2の固体電解質膜の内外両面に接触する特定物
質の濃度差に対応する電位差を検出するに当って、以上
に述べた装置rcおいで#′i、両面に設けた多孔性電
極を通して両表面の電位差を直接検出して−るが、対象
とする特定物質によってはこれ以外の検出方法が可能で
ある。その具体例を@6図に示す。図においては1g2
の固体電解質(2)の内表面付近の特定物質の吸光度を
測定する、光源α転入射光透過面(ト)、分光フィルタ
ー翰及び受光器a1Dからなる吸光度測定部が付設され
ている。
In addition, in detecting the potential difference corresponding to the concentration difference of a specific substance that is in contact with both the inner and outer surfaces of the second solid electrolyte membrane, the above-mentioned device rc is used to Although the surface potential difference is directly detected, other detection methods are possible depending on the specific substance of interest. A specific example is shown in Figure @6. In the figure, 1g2
An absorbance measuring section consisting of a light source α incoming light transmitting surface (g), a spectral filter window, and a light receiver a1D is attached to measure the absorbance of a specific substance near the inner surface of the solid electrolyte (2).

そして該吸光度を測定し、これを対応する電位に変換し
内外表面の電位差に対応する外表面との電位差を検出し
てこれに対する負帰還電流を流すことにより前記と同様
に濃度を測定することが可能である。ことに、塩素のご
とき紫外域に吸収を有する特定物質のように、特定波長
の電磁波に吸収を有する物質を対象とする場合、上記装
置を適用することができる。なお、この装置においては
第2の固体電解質膜でDIRドロップを除外することが
できる利点を有してbる。
Then, the concentration can be measured in the same manner as above by measuring the absorbance, converting it into a corresponding potential, detecting the potential difference with the outer surface that corresponds to the potential difference between the inner and outer surfaces, and flowing a negative feedback current in response to this. It is possible. In particular, the above device can be applied to substances that absorb electromagnetic waves at specific wavelengths, such as specific substances such as chlorine that absorb in the ultraviolet region. Note that this device has the advantage of being able to eliminate DIR drops with the second solid electrolyte membrane.

この発明の濃度センサーは以上述べたように標章ガスを
全く必要とせず、連続測定に適している。
As described above, the concentration sensor of the present invention does not require any marking gas and is suitable for continuous measurement.

さらに、前述した種々の利点を兼ね備えており、広い測
定範囲での高精度、高正確度の副定か可能である。そし
て、その構造上小型化が可能であり、微小センサー(例
えば直径15φ酊、厚さ1餌程度)として使用すること
も容易に可能である。
Furthermore, it has the various advantages mentioned above, and can perform sub-determination with high precision and accuracy over a wide measurement range. Due to its structure, it can be miniaturized, and it can easily be used as a minute sensor (for example, diameter 15φ, thickness about 1 piece).

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、この発明の濃度センサーの一具体例を示す断
面図を含む機能説明図である。第2図は、wJ1図で示
した!3度センサーの密閉空間内の濃度分布の例を示す
グラフである。第3図は、濃度センサ一本体の他側を示
す@1図相当図である。第4図は、制御回路の他の具体
例を示す構成図である。第5図及び第6図は、それぞれ
この発明の濃度センサーの更に他の具体例を示−を第1
図相当図である。 (1)・・・@1の固tI1.電解質膜、(2)・・・
1g2の固体電解質膜、 (3)・・・絶縁層、(4)・・・多孔性電極、(5]
・・・密閉空間、(6)・・・電解用直流電源、(7)
・・・負帰還増幅器、(8)・・・補助加電圧電源、(
9)・・・電極電位差測定器、αQ・・・IRドロップ
検出器。 αB・・・負帰還回警抵抗、(6)、α◆・・・可変抵
抗(至)・・・電流源、    (ト)、αQ・・・抵
抗、Qf)・・・絶縁体、    (至)・・・入射光
透過面、α呻・・・光源、     翰・・・分光フィ
ルター、(2)・・・受光器、    翰・・・電流計
、P・・・電解移動手段及び制御手段、 Ql、Q2・・・両端電圧増幅器。 Q8・・・電圧差増幅器s  Q4・・・作動増幅器。 Q、・・・位相反転回路。 代理人 弁理士 野河信太゛9部巳 ・−=+[:、i’
FIG. 1 is a functional explanatory diagram including a sectional view showing a specific example of the concentration sensor of the present invention. Figure 2 is shown in wJ1 diagram! It is a graph showing an example of concentration distribution in a closed space of a 3-degree sensor. FIG. 3 is a view corresponding to FIG. 1 showing the other side of the concentration sensor main body. FIG. 4 is a configuration diagram showing another specific example of the control circuit. 5 and 6 respectively show still other specific examples of the concentration sensor of the present invention.
It is a figure equivalent figure. (1)...@1's fixed tI1. Electrolyte membrane, (2)...
1g2 solid electrolyte membrane, (3)...insulating layer, (4)...porous electrode, (5)
... Closed space, (6) ... DC power supply for electrolysis, (7)
... Negative feedback amplifier, (8) ... Auxiliary voltage supply power supply, (
9)...Electrode potential difference measuring device, αQ...IR drop detector. αB...Negative feedback loop resistance, (6), α◆...Variable resistance (To)...Current source, (G), αQ...Resistance, Qf)...Insulator, (To )... Incident light transmitting surface, α... light source, wire... spectral filter, (2)... light receiver, wire... ammeter, P... electrolysis moving means and control means, Ql, Q2...Both ends voltage amplifier. Q8... Voltage difference amplifier s Q4... Working amplifier. Q...Phase inversion circuit. Agent: Patent attorney Shinta Nogawa 9th grade -=+[:,i'

Claims (1)

【特許請求の範囲】[Claims] 1、対向する第1及び第2の固体電解質膜と絶縁層によ
り密閉された特定物質の流動可能な空間を形成する本体
、第1の固体電解質膜に設けられた特定物質を該電解質
膜を通して継続的に電解移動させる手段、第2の固体電
解質膜に設けられた該固体電解質膜の内外両面に接触す
る特定物質の濃度差に対応する電位差を検出し該電位差
が一定の設定値となるように負帰還電流を流して特定物
質を電解移動させる制御手段、及び上記負帰還電流の測
定手段を備え、負帰還電流に基づいて密閉された空間外
の特定物質の濃度を測定できるよう構成してなる特定物
質の濃度センサー。
1. A main body that forms a space in which a specific substance can flow, which is sealed by opposing first and second solid electrolyte membranes and an insulating layer, and the specific substance provided in the first solid electrolyte membrane is continued through the electrolyte membrane. means for electrolytically moving the second solid electrolyte membrane, detecting a potential difference corresponding to a concentration difference of a specific substance in contact with both the inner and outer surfaces of the solid electrolyte membrane, and adjusting the potential difference to a constant set value; It is equipped with a control means for electrolytically moving a specific substance by flowing a negative feedback current, and a measuring means for the negative feedback current, and configured to be able to measure the concentration of the specific substance outside the sealed space based on the negative feedback current. Concentration sensor for specific substances.
JP56131100A 1981-08-20 1981-08-20 Sensor for concentration of specific substance Granted JPS5832156A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56131100A JPS5832156A (en) 1981-08-20 1981-08-20 Sensor for concentration of specific substance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56131100A JPS5832156A (en) 1981-08-20 1981-08-20 Sensor for concentration of specific substance

Publications (2)

Publication Number Publication Date
JPS5832156A true JPS5832156A (en) 1983-02-25
JPS64659B2 JPS64659B2 (en) 1989-01-09

Family

ID=15049972

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56131100A Granted JPS5832156A (en) 1981-08-20 1981-08-20 Sensor for concentration of specific substance

Country Status (1)

Country Link
JP (1) JPS5832156A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59108951A (en) * 1982-12-15 1984-06-23 Hitachi Ltd Oxygen pump type air/fuel ratio sensor
EP0126590A2 (en) * 1983-05-11 1984-11-28 Mitsubishi Denki Kabushiki Kaisha Air-to-fuel ratio sensor for engine
EP0127964A2 (en) * 1983-05-11 1984-12-12 Mitsubishi Denki Kabushiki Kaisha Air-to-fuel ratio sensor for engine
JPS59224554A (en) * 1983-06-03 1984-12-17 Mitsubishi Electric Corp Element for gaseous oxygen concentration cell
EP0138170A2 (en) * 1983-10-14 1985-04-24 Mitsubishi Denki Kabushiki Kaisha Air-to-fuel ratio detector for engines
EP0148622A2 (en) * 1983-12-24 1985-07-17 Ngk Insulators, Ltd. Process of manufacturing electrochemical device
EP0152293A2 (en) * 1984-02-08 1985-08-21 Mitsubishi Denki Kabushiki Kaisha Engine air/fuel ratio sensing device
JPS6188138A (en) * 1985-09-21 1986-05-06 Ngk Insulators Ltd Electrochemical device
WO1993021521A1 (en) * 1992-04-13 1993-10-28 Hitachi, Ltd. Air-fuel ratio sensor for internal combustion
JP2015534081A (en) * 2012-11-12 2015-11-26 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツングRobert Bosch Gmbh Method for operating a solid electrolyte sensor element including a pump cell

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59108951A (en) * 1982-12-15 1984-06-23 Hitachi Ltd Oxygen pump type air/fuel ratio sensor
EP0126590A2 (en) * 1983-05-11 1984-11-28 Mitsubishi Denki Kabushiki Kaisha Air-to-fuel ratio sensor for engine
EP0127964A2 (en) * 1983-05-11 1984-12-12 Mitsubishi Denki Kabushiki Kaisha Air-to-fuel ratio sensor for engine
JPS59224554A (en) * 1983-06-03 1984-12-17 Mitsubishi Electric Corp Element for gaseous oxygen concentration cell
EP0138170A2 (en) * 1983-10-14 1985-04-24 Mitsubishi Denki Kabushiki Kaisha Air-to-fuel ratio detector for engines
EP0148622A2 (en) * 1983-12-24 1985-07-17 Ngk Insulators, Ltd. Process of manufacturing electrochemical device
US4610741A (en) * 1983-12-24 1986-09-09 Ngk Insulators, Ltd. Process of manufacturing electrochemical device
EP0152293A2 (en) * 1984-02-08 1985-08-21 Mitsubishi Denki Kabushiki Kaisha Engine air/fuel ratio sensing device
JPS6188138A (en) * 1985-09-21 1986-05-06 Ngk Insulators Ltd Electrochemical device
WO1993021521A1 (en) * 1992-04-13 1993-10-28 Hitachi, Ltd. Air-fuel ratio sensor for internal combustion
JP2015534081A (en) * 2012-11-12 2015-11-26 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツングRobert Bosch Gmbh Method for operating a solid electrolyte sensor element including a pump cell

Also Published As

Publication number Publication date
JPS64659B2 (en) 1989-01-09

Similar Documents

Publication Publication Date Title
US3691023A (en) Method for polarographic measurement of oxygen partial pressure
US4169779A (en) Electrochemical cell for the detection of hydrogen sulfide
US4839018A (en) Air/fuel ratio detector
US4851103A (en) Moisture measuring device for high temperature gas
JPS634660B2 (en)
JPS57192856A (en) Oxygen concentration detector
EP0078627B1 (en) Improved solid electrolyte gas sensing apparatus
US2939827A (en) Electrochemical determination of components in gas mixtures
JPS5832156A (en) Sensor for concentration of specific substance
US4591414A (en) Method of determining methane and electrochemical sensor therefor
US4391690A (en) Apparatus for monitoring SO2 concentrations
US5034107A (en) Method for sensing nitrous oxide
US4152233A (en) Apparatus for electrochemical gas detection and measurement
US6309534B1 (en) Apparatus and method for measuring the composition of gases using ionically conducting electrolytes
GB1073099A (en) Improvements in or relating to electro-chemical gas measuring system
Carey et al. Responses of oxygen electrodes to variables in construction, assembly, and use
Periaswami et al. Low-temperature zirconia oxygen gauges based on RuO2 electrode
Yu-Quan et al. An auto-calibrated miniature microhole cathode array sensor system for measuring dissolved oxygen
SU1138711A1 (en) Material for gas permeability determination method
RU2745082C1 (en) Gas analyzer
RU2235994C1 (en) Sensor for continuous determination of parameters of gaseous component of gas mixture
RU2094791C1 (en) Calibrated solid-electrolyte analyzer
JPH09127049A (en) Method and device for self-calibration-type oxygen analysis
SU1239582A1 (en) Device for measuring electrolytic oxygen stream flowing through solid oxide electrolyte
JP3468348B2 (en) Carbon monoxide sensor and carbon monoxide concentration measuring method