JPS5831566B2 - low-order mode optical fiber - Google Patents

low-order mode optical fiber

Info

Publication number
JPS5831566B2
JPS5831566B2 JP55106527A JP10652780A JPS5831566B2 JP S5831566 B2 JPS5831566 B2 JP S5831566B2 JP 55106527 A JP55106527 A JP 55106527A JP 10652780 A JP10652780 A JP 10652780A JP S5831566 B2 JPS5831566 B2 JP S5831566B2
Authority
JP
Japan
Prior art keywords
refractive index
core
optical fiber
value
cladding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55106527A
Other languages
Japanese (ja)
Other versions
JPS5732404A (en
Inventor
康之 加藤
恵之 青海
研一 北山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP55106527A priority Critical patent/JPS5831566B2/en
Publication of JPS5732404A publication Critical patent/JPS5732404A/en
Publication of JPS5831566B2 publication Critical patent/JPS5831566B2/en
Expired legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/036Optical fibres with cladding with or without a coating core or cladding comprising multiple layers
    • G02B6/03616Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference
    • G02B6/03622Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference having 2 layers only
    • G02B6/03627Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference having 2 layers only arranged - +
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/028Optical fibres with cladding with or without a coating with core or cladding having graded refractive index
    • G02B6/0288Multimode fibre, e.g. graded index core for compensating modal dispersion

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
  • Waveguides (AREA)

Description

【発明の詳細な説明】 この発明は低次モードLPo1.LP1、を伝搬モード
とし、広帯域伝送路として使用可能な低次モード光ファ
イバに関するものである。
DETAILED DESCRIPTION OF THE INVENTION This invention provides low-order mode LPo1. This invention relates to a low-order mode optical fiber that has LP1 as its propagation mode and can be used as a broadband transmission line.

従来この種の光ファイバは実質的にLP。Conventionally, this type of optical fiber is essentially an LP.

1とLP11モードを伝搬モードとして耘り、このモー
ド間の群遅延時間差△τが等しいか、また著しく小さい
領域を使用している。
1 and LP11 modes are used as propagation modes, and a region in which the group delay time difference Δτ between these modes is equal or extremely small is used.

その光ファイバの屈折率分布は第1図に示すような形状
をしていた。
The refractive index distribution of the optical fiber had a shape as shown in FIG.

第1図に釦いて横軸は光ファイバの中心から半径方向に
於ける距離を、縦軸は屈折率をそれぞれ示す。
In FIG. 1, the horizontal axis shows the distance in the radial direction from the center of the optical fiber, and the vertical axis shows the refractive index.

屈折率はコアの中心で最大値n1であり中心から離れる
に従って小さくなりクラッド n(r)−n、 (1−2△p (r/a ) )
A (0≦r≦a)の屈折率n2は一定となっている
The refractive index has a maximum value n1 at the center of the core, and decreases as it moves away from the center.
The refractive index n2 of A (0≦r≦a) is constant.

このコアの屈折率分布n (r)は次式で表わされる。The refractive index distribution n (r) of this core is expressed by the following equation.

rはコア中心から半径方向の距離、△は比屈折率で であった。r is the radial distance from the core center, △ is the relative refractive index Met.

一般に光ファイバの使用領域を表わすのに規格化周波数
V(V−2πa nl iΣア])(λは波長)が用い
られており、最適規格化周波数■。
Generally, the normalized frequency V (V-2πa nl iΣa]) (λ is the wavelength) is used to express the usage area of an optical fiber, and the optimal normalized frequency .

Ptは第3次モード群の遮断規格化周波数■。Pt is the cutoff normalized frequency of the third mode group.

2□により制限される。Limited by 2□.

従来の屈折率分布形では最適V値、即ち■。In the conventional refractive index distribution type, the optimum V value, that is, ■.

Ptは4.6、最適αは4.5とし、又は■を4.38
〜4.46、αを5.02〜5.54としていた。
Pt is 4.6, optimal α is 4.5, or ■ is 4.38
~4.46, and α was 5.02 to 5.54.

従来の最適V、最適αでの群遅延時間差△τを第4図に
曲線1に示す。
Curve 1 in FIG. 4 shows the group delay time difference Δτ at the conventional optimum V and optimum α.

第4図で横軸は■、縦軸は1△τ1である。In FIG. 4, the horizontal axis is ■ and the vertical axis is 1Δτ1.

広帯域な伝送路としては△τの小さな領域がV値に対し
て広い程設計上有利となる。
As a broadband transmission line, it is advantageous in terms of design that the region where Δτ is small is wider than the V value.

この評価として△τが20 psec/Km以下となる
V値の幅を、△τが最小となるV値で割った値Bvを用
いると、従来の屈折率分布形では第4図に示した曲線1
の最適値でもBv=0.01ときわめて狭く、わずかな
V値の変動に対しても大きな△τの変動となり、製造及
び設計において実際上かなり難しい問題があった。
For this evaluation, if we use the value Bv, which is the width of the V value where △τ is 20 psec/Km or less, divided by the V value where △τ is the minimum, the curve shown in Figure 4 is obtained for the conventional refractive index distribution type. 1
Even the optimum value of Bv=0.01 is extremely narrow, and even a slight variation in V value results in a large variation in Δτ, which poses a practical problem in manufacturing and design.

なz−煽1□)1は第3次モード群の遮断波長である。1) 1 is the cutoff wavelength of the third-order mode group.

この発明の目的はLPol及びLPl、モード間の群遅
延時間差△τが規格化周波数■の変化に対して大きく変
動しない■の範囲があり、製造及び設計が容易な低次モ
ード光ファイバを提供することにある。
An object of the present invention is to provide a low-order mode optical fiber that has a range of ■ in which the group delay time difference Δτ between LPol and LPl modes does not vary significantly with respect to changes in the normalized frequency ■, and is easy to manufacture and design. There is a particular thing.

この発明の他の目的はコアの外側の屈折率をクラッドの
屈折率よりも下げたり、またコアとクラッドの間に屈折
率の低い領域を設けることによってモード間の群遅延時
間差が小さいV値の領域を著しく拡大した低次モード光
ファイバを提供することにある。
Another object of the present invention is to lower the refractive index of the outside of the core than the refractive index of the cladding, and to provide a region with a low refractive index between the core and the cladding, thereby reducing the V value so that the difference in group delay time between modes is small. The object of the present invention is to provide a low-order mode optical fiber with a significantly expanded area.

この発明によればρを1以上3以下にする。According to this invention, ρ is set to 1 or more and 3 or less.

第2図はこの発明の第1の実施例にも−ける径方向の屈
折率分布を示したものである。
FIG. 2 shows the radial refractive index distribution in the first embodiment of the present invention.

縦軸は屈折率n、横軸はコア中心からの距離r、nlは
コア中心0の屈折率、n2はクラッドの屈折率、aはコ
ア半径である。
The vertical axis is the refractive index n, the horizontal axis is the distance r from the core center, nl is the refractive index at the core center 0, n2 is the refractive index of the cladding, and a is the core radius.

コア中心0からrの位置における屈折率n (r)は、
△を比屈折率差、λを波長、α。
The refractive index n (r) at the position r from the core center 0 is
△ is the relative refractive index difference, λ is the wavelength, and α.

ρを定数とする次の式で表わされる。It is expressed by the following equation where ρ is a constant.

つ1り屈折率はコア中心から離れるに従ってnlより漸
次減少し、n2 より小さくなってクラッドの位置aで
n2に急に大きくなる。
The refractive index gradually decreases from nl as it moves away from the core center, becomes smaller than n2, and suddenly increases to n2 at position a of the cladding.

この屈折率分布形(ρ〉1)を有し、LPolおよびL
P11モードのみが伝搬可能な光ファイバの一例として
λ=1.3μm、α−2,03、ρ=2.0としたもの
によって2モ一ド間の群遅延時間差△τとV値との関係
を第4図の曲線2に示す。
Having this refractive index distribution shape (ρ〉1), LPol and L
As an example of an optical fiber in which only the P11 mode can propagate, the relationship between the group delay time difference △τ between two modes and the V value using λ = 1.3 μm, α - 2,03, and ρ = 2.0. is shown in curve 2 in FIG.

第4図中の焔1□)1は第3次モード群の遮断V値であ
る。
Flame 1□)1 in FIG. 4 is the cutoff V value of the third mode group.

また△τが20 psec/Km以下となるV値の幅を
、△τが最小となるV値■。
Also, the width of the V value where Δτ is 20 psec/Km or less is the V value ■ where Δτ is the minimum.

で割った値Bv(dBv= 0.08であり、曲線1に
示した従来の場合のBv=0.01の8倍にもなってい
る。
The value Bv (dBv = 0.08) divided by Bv = 0.08 is eight times as large as Bv = 0.01 in the conventional case shown in curve 1.

このようにρ〉1とすることで容易にBvを拡大するこ
とが可能である。
By setting ρ>1 in this way, Bv can be easily expanded.

次に実際の広帯域伝送路としてこの発明を適用した場合
にα、ρおよび■がどのような値をとるかについて説明
する。
Next, the values α, ρ, and ■ will be explained when this invention is applied to an actual broadband transmission line.

1ず一般に光通信には光源として半導体レーザが用いら
れてむり、これを用いた場合変調特性を考慮すると1.
6 G bit/seeの伝送速度が限界と考えられる
1. In general, a semiconductor laser is used as a light source for optical communication, and when considering the modulation characteristics when using this, 1.
A transmission speed of 6 Gbit/see is considered to be the limit.

広帯域光ファイバの適用は主に長距離伝送方式であり市
外局間の無中継伝送が目的とされる。
Broadband optical fiber is mainly applied to long-distance transmission systems, and is intended for non-repeater transmission between long-distance offices.

市外局間距離が50kmJg内となるのは、日本に督い
ては全体の90優である。
There are only 90 stations in Japan where the distance between local stations is within 50kmJg.

従って一つの基準として50kmの距離にち・いて1.
6 G bit/seeの伝送を可能とするには現状の
技術レベルで800MH2(3dB帯域幅)の帯域を必
要とする。
Therefore, as a standard, 1.
To enable transmission of 6 Gbit/see, a band of 800 MH2 (3 dB bandwidth) is required at the current technological level.

これを△τに換算すると約・20 psec/i<mと
なる。
When this is converted into Δτ, it becomes approximately 20 psec/i<m.

従ってI△τ1≦20(psec/km)となる領域に
むいて光フアイバパラメータを定めればよい。
Therefore, the optical fiber parameters may be determined in the region where IΔτ1≦20 (psec/km).

第5図にはV値と△τの関係を示し、横軸はV値、縦軸
は△τであり、ρ=2.0の場合の種々のαについて示
し、点線の範囲は1△τ1≦20psec/kmとなる
■の範囲を示している。
Figure 5 shows the relationship between V value and △τ, the horizontal axis is V value, the vertical axis is △τ, and the range of the dotted line is 1△τ1. The range of ■ is ≦20 psec/km.

ここで△τ1≦20 psec/ kmとなるV値の範
囲の△■をV。
Here, △■ in the range of V values where △τ1≦20 psec/km is V.

で割った値Bv=△v/■oを用いて種種のρ釦よびα
を評価する。
Using the value Bv=△v/■o divided by
Evaluate.

このBvとαとの関係を示したのが第6図である。FIG. 6 shows the relationship between Bv and α.

その横軸はαであり、縦軸はBvであってρ、■、Bv
の関係がわかりやすいようにρを適当に選んで示しであ
る。
The horizontal axis is α, the vertical axis is Bv, and ρ, ■, Bv
ρ is chosen appropriately to make the relationship easier to understand.

BvはV。Bv is V.

からのずれの許容度を表わして釦り光ファイバの製造性
と密接に関係する。
It represents the tolerance for deviation from the button and is closely related to the manufacturability of the optical fiber.

そのためここではBvをBv≧0,05なるように〜の
下限を定める。
Therefore, here, the lower limit of ~ is determined so that Bv≧0.05.

・これを第6図中に破線で示す。またクラッドの屈折率
よりも低い領域がコア内にある場合(1)> 1 )
LP21 t LPO2モードが■。
- This is shown by the broken line in Figure 6. Also, if there is a region in the core that has a lower refractive index than the cladding (1) > 1)
LP21 t LPO2 mode is ■.

21付近においてもρ−1の場合と異なり、曲がりに対
する損失が小さくなりその影響が無視できなくなる。
Also in the vicinity of 21, unlike the case of ρ-1, the loss due to bending becomes small and its influence cannot be ignored.

そのため動作V値はLP1□モードの遮断■値■。Therefore, the operating V value is the cutoff ■ value ■ of LP1□ mode.

1、と、LP21モードの遮断V値V。1, and the cutoff V value V in LP21 mode.

21 との間になるように定める必要がある。21.

第5図の関係を多くのαについて求め、また第6図の関
係を多くのρについて求め、これらからBy≧0.05
となるαとρの範囲を示したのが第7図である。
The relationship shown in Figure 5 is obtained for many α, and the relationship shown in Figure 6 is obtained for many ρ, and from these, By≧0.05
FIG. 7 shows the range of α and ρ.

第7図で横軸はα、縦軸はρであり、1△τ1≦20
(psec/km ) t Bv≧0.05となるα、
ρの範囲は第7図よりρ≧i、so、α≦2.082と
なることがわかる。
In Figure 7, the horizontal axis is α, the vertical axis is ρ, and 1△τ1≦20
(psec/km) t α such that Bv≧0.05,
It can be seen from FIG. 7 that the range of ρ is ρ≧i, so, and α≦2.082.

一方ρの値は任意に大きくできるものではなく屈折率を
下げるドーパント(屈折率制御用注入材)としてフッ素
、ホウ素を用いた場合比較的実現できる値はクラッドの
5i02屈折率に対して比屈折率差で0.3〜0.6φ
である。
On the other hand, the value of ρ cannot be arbitrarily increased, and when fluorine or boron is used as a dopant (implanted material for controlling the refractive index) to lower the refractive index, the value that can be achieved is a relative refractive index relative to the 5i02 refractive index of the cladding. The difference is 0.3 to 0.6φ
It is.

従って△を0.3%附近とするとρは3以下となり、第
7図の斜線領域が全ての条件を含む領域となる。
Therefore, if Δ is set around 0.3%, ρ becomes 3 or less, and the shaded area in FIG. 7 is the area that includes all the conditions.

この図より第2図に示した実施例では1.97≦α≦2
.082 。
From this figure, in the embodiment shown in FIG. 2, 1.97≦α≦2
.. 082.

1.80≦ρ≦3.V ≦■≦■o2.となる。1.80≦ρ≦3. V≦■≦■o2. becomes.

ll 第3図はこの発明第2の実施例にかける径方向の屈折率
分布を表わしたものである。
FIG. 3 shows the radial refractive index distribution of the second embodiment of the present invention.

この例ではコアの中心0から離れるに従って屈折率はn
、より漸次減少し、n2 より更に小さくなり、r−a
で第1クラツドに達しその時の屈折率n3に第1クラツ
ドは保持され、r=bの第2クラツドになると屈折率は
n2に急に大きくなり第2クラツドの屈折率はn2 に
保持される。
In this example, the refractive index increases as you move away from the core center 0.
, decreases more gradually and becomes even smaller than n2, r-a
When reaching the first cladding, the first cladding is maintained at the refractive index n3 at that time, and when reaching the second cladding, where r=b, the refractive index suddenly increases to n2 and the refractive index of the second cladding is maintained at n2.

コア中心からrの位置における屈折率n (r)は次式
で表わされる。
The refractive index n (r) at a position r from the center of the core is expressed by the following equation.

n(r)= n 1(]−2△ρ(r/a):]/20
≦r≦aここでは一例としてb / a = 0.8の
場合について説明する。
n(r)=n 1(]-2Δρ(r/a):]/20
≦r≦a Here, the case where b/a = 0.8 will be explained as an example.

この場合も先に述べた第1の実施例と同様にl△τ1≦
20 (psec/km) B、≧0.05となる領域
でパラメータの範囲を検討する。
In this case, as in the first embodiment described above, l△τ1≦
20 (psec/km) B, consider the range of parameters in the region where ≧0.05.

第8図は第5図と対応しb / a = 0.8に耘け
るV値と△τとの関係を示してむり、同時に種々の屈折
率分布形について1△τ1≦20 (psec/km)
となるVの範囲を示す。
Fig. 8 corresponds to Fig. 5 and shows the relationship between the V value and △τ that satisfies b/a = 0.8, and at the same time shows the relationship between 1△τ1≦20 (psec/km) for various refractive index distribution shapes. )
The range of V is shown below.

■値の範囲もVcl、<i<3.21としてBvO値を
種々のρ、αについて求めえものを第6図と対応して第
9図に示す。
(2) The value range is Vcl, <i<3.21, and the BvO values obtained for various ρ and α are shown in FIG. 9 in correspondence with FIG. 6.

第10図は第7図と同様にBv≧0.05の条件よりρ
とαの関係を求めたものである。
Figure 10 shows ρ from the condition of Bv≧0.05, similar to Figure 7.
This is to find the relationship between and α.

さらに第1の実施例にち−けるρの条件ρ≦3を考慮す
るとb/a=0.8でl△τ1≦20 (psec/k
m)となるαとρの関係は第10図の斜線で示した領域
となる。
Furthermore, considering the condition of ρ≦3 in the first embodiment, b/a=0.8 and l△τ1≦20 (psec/k
The relationship between α and ρ resulting in m) corresponds to the shaded area in FIG.

第2の実施例に釦ける第1クラツドの効果はb / a
≦0.8のときに顕著に現われるため、■o11≦V≦
’C21、b / B≦0.8 、1.43≦ρ≦3が
条件となる。
The effect of the first cladding in the second embodiment is b/a
It appears prominently when ≦0.8, so ■o11≦V≦
'C21, b/B≦0.8, 1.43≦ρ≦3 are the conditions.

以上説明したように従来の屈折率分布形では最適なファ
イバパラメータを設定してもBv=O,OIであり、B
vをこれ以上拡大することは不呵能であった。
As explained above, in the conventional refractive index distribution type, even if the optimal fiber parameters are set, Bv = O, OI, and B
It was impractical to expand v any further.

これに対しこの発明では第6図からもわかるようにρ=
2.5.α−2,01で従来のBvの21倍となり、B
v=0.214で拡大できるという大きな利点を持つ。
On the other hand, in this invention, as can be seen from Fig. 6, ρ=
2.5. α-2.01 is 21 times the conventional Bv, and B
It has the great advantage of being able to be expanded with v=0.214.

さらに第2の実施例では第9図よりρ−2,0゜α−2
,01で従来の2,6倍のBv値を、第1の実施例のρ
よりも小さい値で得ることができる。
Furthermore, in the second embodiment, from FIG. 9, ρ-2,0°α-2
, 01, the Bv value is 2.6 times that of the conventional one, and the ρ of the first embodiment is
can be obtained with a smaller value.

これはb≦r≦a VC$”ける第1クラツドの効果に
よるものであり、第10図の斜線部分が第1の実施例と
比較してかなり広くなっており、第1クラツドを有する
利点はきわめて太きい。
This is due to the effect of the first cladding, where b≦r≦a VC$”, and the shaded area in FIG. 10 is considerably wider compared to the first embodiment, and the advantage of having the first cladding is Extremely thick.

また最適V値が大きい程光ファイバの接続損失が小さく
なる傾向にあり、この点について比較すると第1実施例
、第2実施例とも従来のV値の2倍以上大きくでき接続
に釦いても有利である。
In addition, the larger the optimal V value, the smaller the optical fiber splice loss tends to be. Comparing this point, both the first and second embodiments can be more than twice as large as the conventional V value, which is advantageous even when splicing. It is.

従って広帯域でかつより低損失な伝送線路を設計する上
で著しい改善がこの発明によってなされることがわかる
Therefore, it can be seen that the present invention provides a significant improvement in designing a transmission line with a wider band and lower loss.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の光ファイバの半径方向にむける屈折率分
布形を示す図、第2図はこの発明の第1の実施例の半径
方向における屈折率分布形の一例を示す図、第3図はこ
の発明の第2の実施例の半径方向に釦ける屈折率分布形
の一例を示す図、第4図は従来の光ファイバの最適値で
の群遅延時間差とV値との関係及びこの発明の第1の実
施例の群遅延時間差とV値との関係をそれぞれ示す図、
第5図はこの発明の第1実施例における種々のαに対す
るv値と△τとの関係を示す図、第6図はこの発明の第
1実施例にむける種々のρに対するαとBvとの関係を
示す図、第7図はこの発明の第1実施例のαとρとの関
係を示す図、第8図はこの発明の第2実施例に釦けるα
lV1△τの関係を示す図、第9図はこの発明の第2実
施例Vc釦けるρ+ By )αの関係を示す図、第
10図はこの発明の第2実施例にち−けるb / a
= 0.8で1△τ≦20 psec /kmの領域を
示すα、ρの関係図である。
FIG. 1 is a diagram showing the refractive index distribution shape in the radial direction of a conventional optical fiber, FIG. 2 is a diagram showing an example of the refractive index distribution shape in the radial direction of the first embodiment of the present invention, and FIG. is a diagram showing an example of the refractive index profile buttoned in the radial direction according to the second embodiment of the present invention, and FIG. 4 is a diagram showing the relationship between the group delay time difference and the V value at the optimum value of a conventional optical fiber and the present invention Diagrams each showing the relationship between the group delay time difference and the V value of the first example,
FIG. 5 is a diagram showing the relationship between v values and Δτ for various α in the first embodiment of the invention, and FIG. 6 is a diagram showing the relationship between α and Bv for various ρ in the first embodiment of the invention. FIG. 7 is a diagram showing the relationship between α and ρ in the first embodiment of this invention, and FIG. 8 is a diagram showing the relationship between α and ρ in the second embodiment of this invention.
Figure 9 is a diagram showing the relationship between lV1△τ, Figure 9 is a diagram showing the relationship between Vc button (ρ+By)α, and Figure 10 is a diagram showing the relationship between ρ+By)α and b/ a
FIG. 2 is a relationship diagram of α and ρ showing a region where 1Δτ≦20 psec/km with = 0.8.

Claims (1)

【特許請求の範囲】 1 中心部から外側に向ってなだらかに屈折率が一様に
低下しているコアと、そのコアの外側に一定の屈折率の
クラッドをもつ二層構造の光ファイバに3いて、上記コ
ア中心の屈折率n、上記クラッドの屈折率n2 、比屈
折率差△、コア半径a、波長λ、定数α、ρとしてコア
中心からrの位置にむける屈折率n (r)か に選定されていることを特徴とする低次モード光ファイ
バ。 2 中心から外側に向ってなだらかに屈折率が一様に低
下しているコアと、そのコアの外側に設けられ屈折率の
最も低い一定の幅の第1クラツドと、その外側に設けら
れた一定の屈折率をもつ第2クラツドとからなる三層構
造の光ファイバにむいて、コア中心の屈折率nl 、第
2クラツドの屈折率n2 、コア半径a、第1クラツド
の外半径b、比屈折率差△、波長λ、定数α、ρとして
コア中心からrの位置に釦ける屈折率n (r)がとす
るときLP1□モードの遮断V値をV。 11゜LP2□モードの遮断V値を■。 2□ としての条件に選定されていることを特徴とする
低次モード光ファイバ。
[Claims] 1. An optical fiber with a two-layer structure having a core whose refractive index gradually and uniformly decreases from the center outward, and a cladding with a constant refractive index on the outside of the core. Then, the refractive index n (r) from the core center to the position r from the core center is the refractive index n at the core center, the refractive index n2 of the cladding, the relative refractive index difference Δ, the core radius a, the wavelength λ, constants α and ρ. A low-order mode optical fiber characterized by being selected for. 2. A core whose refractive index gradually and uniformly decreases from the center to the outside, a first cladding with a constant width provided outside the core and having the lowest refractive index, and a constant width provided outside the core. For an optical fiber with a three-layer structure consisting of a second cladding with a refractive index of When the index difference △, the wavelength λ, the constants α, and ρ are the refractive index n (r) at a position r from the core center, the cutoff V value of the LP1□ mode is V. 11゜The cutoff V value of LP2□ mode is ■. 2. A low-order mode optical fiber characterized by being selected under the following conditions.
JP55106527A 1980-08-01 1980-08-01 low-order mode optical fiber Expired JPS5831566B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP55106527A JPS5831566B2 (en) 1980-08-01 1980-08-01 low-order mode optical fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP55106527A JPS5831566B2 (en) 1980-08-01 1980-08-01 low-order mode optical fiber

Publications (2)

Publication Number Publication Date
JPS5732404A JPS5732404A (en) 1982-02-22
JPS5831566B2 true JPS5831566B2 (en) 1983-07-07

Family

ID=14435861

Family Applications (1)

Application Number Title Priority Date Filing Date
JP55106527A Expired JPS5831566B2 (en) 1980-08-01 1980-08-01 low-order mode optical fiber

Country Status (1)

Country Link
JP (1) JPS5831566B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0725736Y2 (en) * 1987-07-22 1995-06-07 株式会社小田原機器 Coin detection sensor
KR100403736B1 (en) 2001-11-30 2003-10-30 삼성전자주식회사 Wide band dispersion-controlled fiber
JP5193398B2 (en) * 2011-02-09 2013-05-08 古河電気工業株式会社 Optical fiber and optical transmission system
US9823413B2 (en) * 2011-02-24 2017-11-21 Ofs Fitel, Llc Multicore fiber designs for spatial multiplexing
DE102011109838A1 (en) 2011-05-27 2012-11-29 J-Plasma Gmbh optical fiber

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4966146A (en) * 1972-09-11 1974-06-26
JPS50131535A (en) * 1974-04-03 1975-10-17
JPS5250246A (en) * 1975-10-20 1977-04-22 Hitachi Ltd Light transmitting line
JPS543553A (en) * 1977-06-10 1979-01-11 Nippon Telegr & Teleph Corp <Ntt> Optical line
JPS5443749A (en) * 1977-09-13 1979-04-06 Nippon Telegr & Teleph Corp <Ntt> Wide range oprical fiber

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4966146A (en) * 1972-09-11 1974-06-26
JPS50131535A (en) * 1974-04-03 1975-10-17
JPS5250246A (en) * 1975-10-20 1977-04-22 Hitachi Ltd Light transmitting line
JPS543553A (en) * 1977-06-10 1979-01-11 Nippon Telegr & Teleph Corp <Ntt> Optical line
JPS5443749A (en) * 1977-09-13 1979-04-06 Nippon Telegr & Teleph Corp <Ntt> Wide range oprical fiber

Also Published As

Publication number Publication date
JPS5732404A (en) 1982-02-22

Similar Documents

Publication Publication Date Title
JP3320745B2 (en) Dispersion flat optical fiber
US6999667B2 (en) Dispersion-controlled optical fiber
JPS6252508A (en) Optical fiber
USRE37457E1 (en) Dispersion-shifted monomode optical fiber
US7130514B1 (en) High SBS threshold optical fiber
US10459158B2 (en) Few-mode optical fiber
JP2002522812A (en) Dispersion shifted single mode optical fiber with outer ring
KR100342711B1 (en) Dispersion shifted fiber with triple clad
JP2004530938A (en) Optical fiber
JPS5831566B2 (en) low-order mode optical fiber
JP2002277668A (en) Dispersion compensating optical fiber, dispersion compensation module using the fiber and composite optical fiber transmission line
JPS58104040A (en) Light conductive fiber
JP2019120894A (en) Optical fiber, coated optical fiber, and optical transmission system
KR20040066643A (en) Wide-band dispersion controlled optical fiber
JPS6360411A (en) Optical fiber for maintaining plane of polarization
JP2014041338A (en) Optical fiber, and optical transmission line
JPH1172640A (en) Dispersion shift fiber
JPS583206B2 (en) Single mode optical fiber with intermediate layer
JPH10228040A (en) Optical fiber for light source
JPH11167038A (en) Dispersed shift optical fiber
JPH08160241A (en) Single-mode optical fiber
JPS61113007A (en) Optical fiber
JPH1138256A (en) Dispersion shift optical fiber
JPH1130725A (en) Lower-dispersion optical fiber
JP2000275461A (en) Dispersed shift optical fiber