JPS5831312A - Formation of optical sensor zone of parallel light system - Google Patents

Formation of optical sensor zone of parallel light system

Info

Publication number
JPS5831312A
JPS5831312A JP56130418A JP13041881A JPS5831312A JP S5831312 A JPS5831312 A JP S5831312A JP 56130418 A JP56130418 A JP 56130418A JP 13041881 A JP13041881 A JP 13041881A JP S5831312 A JPS5831312 A JP S5831312A
Authority
JP
Japan
Prior art keywords
optical sensor
light
elements
parallel
beam system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP56130418A
Other languages
Japanese (ja)
Other versions
JPH0148482B2 (en
Inventor
Munekazu Takada
高田 宗和
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Unitika Ltd
Original Assignee
Unitika Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Unitika Ltd filed Critical Unitika Ltd
Priority to JP56130418A priority Critical patent/JPS5831312A/en
Publication of JPS5831312A publication Critical patent/JPS5831312A/en
Publication of JPH0148482B2 publication Critical patent/JPH0148482B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V8/00Prospecting or detecting by optical means
    • G01V8/10Detecting, e.g. by using light barriers
    • G01V8/20Detecting, e.g. by using light barriers using multiple transmitters or receivers

Landscapes

  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Geophysics (AREA)
  • Geophysics And Detection Of Objects (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

PURPOSE:To eliminate the influence of adjacent element upon each other to secure a sensing space due to the parallel light system, by dividing a material, where optical sensor devices consisting of pairs of light emitting elements and photodetectors are gathered, into plural groups and driving them in time series in case of the detection due to the parallel light system of this material. CONSTITUTION:A light projector 6 consisting of 400 light emitting elements 15-1-15-400 which are divided into 8 groups and a photodetector 7 consisting of 400 photodetecting elements 16-1-16-400 which are divided into 8 groups face to each other and are arranged in the vertical direction, and they are scanned vertically through movable frames holding them to detect the shade pattern of a human body between the light projector 6 and the photodetector 7. These elements are divided into a group consisting of light projecting elements and light receiving elements having 1 as the final number, a group consisting of both elements having 2 as the final number,-a group consisting of both elements having 0 as the final number, and these groups are driven in time series, thereby eliminating the influence of light between adjacent elements to secure the sensing space due to the parallel light system.

Description

【発明の詳細な説明】 本発明は発光素子と受光素子との対からなる光センサ装
置を集合させて平行光線系の光センサゾーンを形成する
方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method of assembling a photosensor device consisting of a pair of a light emitting element and a light receiving element to form a parallel beam system photosensor zone.

本発明による平行光線系の光センサゾーンは例えば立体
的な物体のある一側からの平行光線による実寸法の陰影
を認知し、この情報に基づいて計測を行なうためのもの
である。さらには、レンズ系を通して得られるような平
行光線ではなく、もっと巨視鈎なもので、現在市販され
ている発光素子と受光素子の個別素子を用いて平行光#
l系の感知空間を形成させ、素子の大きさに相当する程
度の絶体誤差をもっ九計測精度で物体の実寸法の険影を
検知できるものである。
The parallel light system optical sensor zone according to the present invention is used, for example, to recognize shadows of actual dimensions caused by parallel light beams from one side of a three-dimensional object, and to perform measurements based on this information. Furthermore, instead of parallel rays that can be obtained through a lens system, it is possible to obtain parallel rays using macroscopic rays, such as parallel rays obtained through a lens system.
By forming a sensing space of the L system, it is possible to detect the shadow of the actual size of an object with measurement precision and an absolute error corresponding to the size of the element.

−flkK発光素子は放射特性を、受光素子は入射特性
をそれぞれ1有しており、これらの性質は発光素子1個
と受光素子1個とによる対の光センサ装置に関する限り
においては致命的な支障は見られないが、光センプ装置
が複数個集合した場合には、発光素子と受光素子のそれ
ぞれの特性が近隣の素子に悪い影響を及ぼすようになる
。つまり、光センサ装置を高密度に配置して形成した光
センサゾーンでは同時発光−同時受光方式をとる構成は
不可能である。
-flkK The light-emitting element has a radiation characteristic and the light-receiving element has an incidence characteristic of 1, and these characteristics are a fatal hindrance as far as a paired optical sensor device consisting of one light-emitting element and one light-receiving element is concerned. However, when a plurality of optical sensing devices are assembled, the characteristics of each of the light-emitting element and the light-receiving element will adversely affect neighboring elements. In other words, in an optical sensor zone formed by arranging optical sensor devices at a high density, a configuration in which simultaneous light emission and simultaneous light reception are adopted is impossible.

本発明は上記不都合を解消するためのもので、発光素子
と受光素子との対からなる光センサ装置を集合させて平
行光I、TiLの光センサゾーンを形成するに際し、光
センナ装置の集合体を複数個の組に分割して各組を時系
列的に駆動し、平行光llA系による感知空間を確保す
る光センサゾーン形成方法を提供するものである。
The present invention is intended to solve the above-mentioned disadvantages, and when a photosensor device consisting of a pair of a light emitting element and a light receiving element is assembled to form a photosensor zone for parallel lights I and TiL, an assembly of photosensor devices is used. The present invention provides an optical sensor zone forming method in which a sensing space is secured by a parallel light 11A system by dividing the light into a plurality of groups and driving each group in time series.

さらに詳しくは、赤外線、可視光線、紫外線を所定の放
射特性をもって放射する発光素子とこれらの光線を検出
できる所定の入射特性をもった受光素子の対からなる光
センナ装置を集合させ、各光センプ装置間々隔を高密度
にした平行光線系の光センサゾーンを形成するに際し、
前記光センプ装置の集合体を、発光素子のもつ放射特性
と受光素子のもつ入射特性を考慮しながら、複数個の組
に分割して各組を時系列的に駆動し、平行光線系による
検出精度の高い感知空間を復保する光センサゾーン形成
方法を提供するものである。
More specifically, an optical sensor device consisting of a pair of a light-emitting element that emits infrared rays, visible light, and ultraviolet rays with predetermined radiation characteristics and a light-receiving element that has predetermined incident characteristics that can detect these rays is assembled, and each optical sensor is When forming a parallel beam system optical sensor zone with high density device spacing,
The assembly of optical sensing devices is divided into a plurality of sets, each set is driven in time series, taking into consideration the radiation characteristics of the light emitting element and the incident characteristics of the light receiving element, and detection is performed using a parallel beam system. The present invention provides a method for forming an optical sensor zone that restores a highly accurate sensing space.

以下本発明の一実施例を図面に基づいて説明する。第1
図は本発明方法を適用できる人体等の自動採寸方法を説
明するための図で、人体等に平行光線を照射して人体等
の実陰影パターンを検知することにより人体等の全体あ
るいは特定部分のサイズを計測するものであり、本発明
方法をこれに基づいて説明する。
An embodiment of the present invention will be described below based on the drawings. 1st
The figure is a diagram for explaining an automatic measuring method of a human body, etc., to which the method of the present invention can be applied.The figure is a diagram for explaining an automatic measurement method of a human body, etc., to which the method of the present invention can be applied. The size is measured, and the method of the present invention will be explained based on this.

第1図において、キャビ、ン(1)の下方中央sKは人
が位置するための同定円板床(2)が設けられ、この−
窓用板床(2)の中央に人が立位の静止姿勢をとるため
の足形(2a)が記されている。固定円板床(2)の周
りには円環状の回転床(3)が固定円板床(2)と同一
平面になるように設けられている。この回転床(3)上
の画定円板床(2)を囲む位置K例えば4本のガイドレ
ールが立設され、このガイドレール(4)に沿って上下
方向に移動可能な可動フレーム(5)が設けられ、この
可動フレーム(5)の−側面は人が画定円板床(2)に
立入可能なように開口されている。また可動フレーム(
5)の同定円板床(2)を挾む相対向する位置には例え
ば8本の投光器(6)と8本の受光器(7)がそれぞれ
相対応してかつ相互に平行な投光向と受光面を形成する
ように上下方向に等間隔に並んで配設されており、人の
全体の実険影パターンを採取するように構成されている
。モータ(8)は回転床(3)を駆動させるためのもの
で、例えば減速機構およびジェネパ機構を介して回転床
(3)を15°づつ間欠的に回転させる。この回転床(
3) H−回の計測について180°回転せしめられる
ものであり、計測後はモータ(8)の反転回転により元
に戻る。エアシリンダ(9)は可動フレーム(5)を上
下方向に迅速に移動□させるためのもので、ガイドレー
ル(4)間に架設された横フレーム0Qと可動フレーム
(5)の間に介装され、コンプレツブ01Jにより駆動
される。可動フレーム(5)の上下移動により投光器(
6)と受光器(7)は投光器間々隔(受光器間々隔)だ
け上下方向に走査せしめられる。第1図ではエアシリン
ダ(9)は1個所だ叶が示されているが、vji数個所
に適宜設けられるものとする。
In FIG. 1, the lower center sK of the cabin (1) is provided with an identification disc floor (2) for people to sit on.
A footprint (2a) for a person to take a standing static posture is marked in the center of the window board (2). An annular rotating bed (3) is provided around the fixed disc bed (2) so as to be flush with the fixed disc bed (2). For example, four guide rails are erected at a position K surrounding the delimiting disk floor (2) on the rotating bed (3), and a movable frame (5) that can move vertically along the guide rails (4) is installed. The movable frame (5) is provided with an opening at one side so that a person can gain access to the defining disc floor (2). In addition, the movable frame (
For example, eight light projectors (6) and eight light receivers (7) are placed at mutually opposing positions sandwiching the identification disc floor (2) in step 5), with light emitting directions parallel to each other and parallel to each other. They are arranged vertically at equal intervals to form a light-receiving surface, and are configured to capture an actual shadow pattern of the entire person. The motor (8) is for driving the rotary bed (3), and intermittently rotates the rotary bed (3) by 15 degrees via, for example, a deceleration mechanism and a generator mechanism. This rotating bed (
3) It is rotated by 180 degrees for H-times of measurement, and after the measurement, it is returned to its original position by reverse rotation of the motor (8). The air cylinder (9) is for quickly moving the movable frame (5) in the vertical direction, and is interposed between the horizontal frame 0Q installed between the guide rails (4) and the movable frame (5). , compressor tube 01J. By moving the movable frame (5) up and down, the floodlight (
6) and the light receiver (7) are caused to scan in the vertical direction by the distance between the projectors (the distance between the light receivers). Although only one air cylinder (9) is shown in FIG. 1, it is assumed that the air cylinder (9) is provided at several locations as appropriate.

なお、(6)は7ツトスイツチで、これを踏むことによ
り自動採寸を開始する。(至)は例えば512にのバッ
クアメモリを内蔵したコンピュータで、回転床(3)の
15′@転毎に採取された実陰影パターンをディジタル
データとしてバックアメモリに格納し、格納されたディ
ジタルデータを自動解析し、立体的サイズを算出する。
Note that (6) is a 7-way switch, and by stepping on it, automatic measurement starts. (To) is a computer with a built-in backup memory, for example 512, which stores the actual shadow pattern taken every 15' rotation of the rotating bed (3) as digital data in the backup memory, and uses the stored digital data. Automatically analyze and calculate three-dimensional size.

04は出力装置としてのタイプライタ−で、前記算出さ
れた立体的サイズを出力する。
04 is a typewriter as an output device, which outputs the calculated three-dimensional size.

第2図は1つの投光器(6)とこれに対向する1つの受
光器(7)の詳細を示す斜視図であシ、それぞれ例えば
400個の発光素子(至)と400個の受光素子(至)
はそれぞれの素子列での素子間隔が例えば3Wの間隔に
なるように一直線上に配列されている。
FIG. 2 is a perspective view showing details of one light emitter (6) and one light receiver (7) facing it, each of which has, for example, 400 light emitting elements (up to 400) and 400 light receiving elements (up to 400). )
are arranged in a straight line so that the element spacing in each element row is, for example, 3W.

発光素子(ト)の放射特性と受光素子Qlの入射特性は
それぞれ第3図(a)(b)に示される。第3図(a)
は発光素子(ト)が一点から立体角で発光する放射特性
を示し、第3図(b)は受光素子μsが立体角で検知で
きる入射特性を示している。第3図(c)は発光素子(
イ)と受光素子(至)を距離lだけへだてて対向させ、
一対の発光素子に)と受光素子(至)よりなる光センサ
装置の放射特性と入射特性を重ねて示したものである。
The radiation characteristics of the light emitting element (g) and the incidence characteristics of the light receiving element Ql are shown in FIGS. 3(a) and 3(b), respectively. Figure 3(a)
Figure 3(b) shows the radiation characteristics in which the light emitting element (g) emits light from a single point in a solid angle, and FIG. 3(b) shows the incident characteristics in which the light receiving element μs can detect light in a solid angle. Figure 3(c) shows the light emitting element (
A) and the light receiving element (to) are set apart from each other by a distance l and face each other,
The radiation characteristics and incidence characteristics of an optical sensor device consisting of a pair of light emitting elements (to) and light receiving elements (to) are shown superimposed.

ここでαは発光素子(至)に関し、距離lだけへだてた
位置における発光素子(至)の明るさの到達直径を示し
、βは受光素子CIK関し、距離lだけへだてた位置に
おける受光検知直径を示している。
Here, regarding the light emitting element (to), α indicates the diameter at which the brightness of the light emitting element (to) reaches at a position separated by a distance l, and β represents the light receiving detection diameter at a position separated by a distance l with respect to the light receiving element CIK. It shows.

すなわち、発光素子(ト)と受光素子(ト)との一対か
らなる1つの光センサ装置に関しては、発光素子に)か
ら立体角で放射された光束は対応する受光素子鱒によっ
てその一部の光束が選択的に検出され、結局は発光素子
(2)と受光素子ぐ呻とを結ぶ光束の検出が可能である
In other words, for one optical sensor device consisting of a pair of a light emitting element (G) and a light receiving element (G), the light beam emitted from the light emitting element at a solid angle is partially absorbed by the corresponding light receiving element. is selectively detected, and in the end, it is possible to detect the light flux connecting the light emitting element (2) and the light receiving element (2).

!lsa図(c)に示したように発光素子(至)と受光
素子(至)を距離lの間隔で相対向させ、そのときの画
素子に)(至)の放射特性と入射特性が第3図(c)の
ようKなった場合の光センナ装置を以下に詳しく説明す
る。前記光センナ装置の集合体により平行光線糸を確保
するということは、光センナ装置が複数個集まり、各党
センナ装置の光軸が相互に平行光線を形成させるような
光センサ装置に構成することである。この場合光センサ
装置の構成にあたっては、1対の基材の全表面にわ九っ
て多数の発光素子および受光素子を対向させて配置させ
た光センf装置であっても平行光線系が確保されるし、
また第1図のように投光器(6)および受光器(7)K
横力向に一列に発光素子および受光素子に)を配置させ
た光センナ装置を上下方向に走査するようKしても平行
光線系が確保される。
! As shown in lsa diagram (c), the light-emitting element (to) and the light-receiving element (to) are faced to each other at a distance of l, and the radiation characteristics and incident characteristics of (to) to the pixel at that time are The optical sensor device in the case of K as shown in FIG. 3(c) will be described in detail below. Securing parallel light rays by an assembly of optical sensor devices means that a plurality of optical sensor devices are assembled to form an optical sensor device in which the optical axes of each optical sensor device mutually form parallel light rays. be. In this case, when configuring the optical sensor device, a parallel beam system is ensured even if the optical sensor device has a large number of light emitting elements and light receiving elements arranged facing each other across the entire surface of a pair of base materials. will be done,
Also, as shown in Figure 1, the emitter (6) and receiver (7) K
A parallel beam system is ensured even when an optical sensor device in which a light emitting element and a light receiving element are arranged in a line in the direction of lateral force is scanned in the vertical direction.

光センサ装置の集合体を複数個の組に分割するのに、第
3図(c)K示した画素子Q4(至)の放射特性および
入射特性を十分に考慮して行なうわけであるが、この場
合考慮すべき要因としてα、βの値が重要である。特に
αとβとを比べて両者の大きい方、すなわちmax(α
、β)が考慮の条件となる。
When dividing the assembly of optical sensor devices into a plurality of groups, the radiation characteristics and incidence characteristics of the pixel Q4 (to) shown in FIG. 3(c)K are fully considered. In this case, the values of α and β are important factors to consider. In particular, compare α and β and find the larger of the two, that is, max(α
, β) are the conditions for consideration.

つまり、光セン?装置を集合させて平行光線装置とする
場合、光セン′!7装皺の光束の配置間隔がmax(α
、β)を直径とする円内に入るようになれば、多数の光
センナ装置の同時発光−同時受光方式による平行光線系
を確保する平行光線装置の実現は不可能である。しかし
、前記光束の配置間隔がmmx(asβ)を直径とする
円内に入るようであっても、光センf装置の集合体をm
aw(α、β)を直径とする国外のもOどうしが同じ組
に入るように複数個の組に分割し、各組を時系列的に駆
動すれば、全体的に平行光線系による感知22!間を確
保することができる。
In other words, Kosen? When the devices are assembled to form a parallel beam device, the optical sensor′! The arrangement interval of the luminous flux of 7 wrinkles is max(α
, β), it is impossible to realize a parallel light beam system that secures a parallel light beam system using a simultaneous light emitting/simultaneous light receiving system of a large number of optical sensor devices. However, even if the arrangement interval of the light beams falls within a circle whose diameter is mmx(asβ), the aggregate of the optical sensor f devices is m
If we divide into a plurality of groups so that foreign objects with diameters aw (α, β) are in the same group, and drive each group in chronological order, we can sense the whole using a parallel ray system. ! It is possible to secure time.

光センナ装置の各組を時系列的に駆動するとは、各艇内
に所属する光センサ装置は同時発光−同時受光を行ない
、各部間の光センサ装置は時間差を置いて遂次に連続し
て駆動され、結果的には高密度に配置され九番光センサ
装置をあますことなく駆動して全体的に平行光線系によ
る感知空間を確保するものである。
Driving each set of optical sensor devices in chronological order means that the optical sensor devices belonging to each boat perform simultaneous light emission and simultaneous light reception, and the optical sensor devices between each part operate one after another with a time difference. As a result, the ninth optical sensor device is arranged at a high density and is driven without leaving any space, thereby ensuring a sensing space using a parallel beam system as a whole.

また、時系列的に駆動する場合、発光素子の発光時間特
性ならびに受光素子の応・答時間特性などによって同時
発光−同時受光の峙聞域ならびに遂次に連続して時系列
的に上記各組を駆動する時間間隔などがある程度制御を
受けることがある。
In addition, when driving in chronological order, depending on the light emitting time characteristics of the light emitting element and the response time characteristics of the light receiving element, the above groups may be The time interval for driving may be controlled to some extent.

なお、光セン丈装置の線源は現在市販されている赤外線
、可視光線、紫外線などでよく、受光素子もこれに対応
した線源を検出できるようなものであればよい。
Note that the radiation source of the optical sensor height device may be any currently available commercially available infrared rays, visible light, ultraviolet rays, etc., and the light receiving element may also be of any type as long as it can detect a corresponding radiation source.

次に光センナ装置の集合体を複数個の組に分割して各組
を時系列的に駆動する方法の一例を第1図および第2図
により説明する。ここで投光器(6)および受光!(7
)は上記光センサ装置の集合体に相当する。前記投光器
(6)および受光器(7)を構成する400個の発光素
子(至)と400個の受光素子Mをそれぞれ50個づつ
の8つのグループに分割する。例えば(16−1)(1
5−2)〜(15−50)と(16−1)(16−2)
−(16−50) O@ 1 ノブループと、(15−
51)(15−52)−(15−100)と(16−5
1X 16−52)〜(16−1()0) O第2のグ
ループと、−・(15−351X15−352)(15
−400)と(16−351X16−352)−(16
−400) +7)第8のグループのように、そして時
系列的駆動の方法は例えば各グループの1.51,10
1,151.201.251.301.351の番号の
付く画素子(2)(至)を先づ同時投光−同時受光方式
で駆動する。次K 2.52,102,152,202
,252,302.352の番号の付く画素子a*et
駆動し、最後に50,100,150,200,250
.3[)0゜350.400の番号の付く画素子(至)
(至)を駆動し、全体として50個の駆動の後に全素子
の駆動を終る。いま各回の&動間隔を70μsec〜8
0μsecとすれば、全素子駆動が一順するのに要する
時間は(70−80)X50=3.5sec〜4011
1secである。
Next, an example of a method of dividing the assembly of optical sensor devices into a plurality of sets and driving each set in time series will be explained with reference to FIGS. 1 and 2. Here is the emitter (6) and the light receiver! (7
) corresponds to an aggregate of the above-mentioned optical sensor devices. The 400 light emitting elements (up to) and the 400 light receiving elements M constituting the light emitter (6) and the light receiver (7) are divided into eight groups of 50 each. For example, (16-1) (1
5-2) to (15-50) and (16-1) (16-2)
-(16-50) O@1 Knob loop and (15-
51) (15-52) - (15-100) and (16-5
1X 16-52) ~ (16-1()0) O second group and -. (15-351X15-352) (15
-400) and (16-351X16-352) -(16
-400) +7) As in the 8th group, and the time-series driven method is e.g. 1.51, 10 of each group.
Pixel elements (2) (to) numbered 1,151.201.251.301.351 are first driven in a simultaneous light emission-simultaneous light reception method. Next K 2.52, 102, 152, 202
, 252, 302. Pixel elements a*et numbered 352
Drive and finally 50, 100, 150, 200, 250
.. 3[)0°350.400 numbered pixel (to)
(up to), and after driving a total of 50 elements, driving of all elements is completed. Now the & movement interval for each time is 70 μsec ~ 8
If it is 0μsec, the time required for all elements to be driven in one order is (70-80)X50=3.5sec~4011
It is 1 sec.

第1図においては、投光器間々隔(受光器間々隔)は例
えば2701$4成され、各投光器(6)および受光1
! (7)は前記エアシリンダ(9)によって3Mピッ
チで下方へ走査される。いまエアシリンダ(9)により
投受光器(・バフ)が270鱈の間隔を0.45〜0.
75secで移動せしめられるとすれば、3鱈のピッチ
間隔を移動するのに要する時間はほぼsms e c〜
g*8ecとなシ、3sgピッチの移動の間に全素子駆
動の一順は完了できる。そして各ピッチ毎に時系列的な
全素子駆動が繰り返見され、270■の闇で90回の時
系列的全素子駆動が行なわれる。これKより横3鱈X 
400 、縦2701EI X 8の平面内で400 
X 90X 8本の平行光束を有する光センナゾーンが
時系列的に形成されたことになる。
In FIG. 1, the spacing between the emitters (the spacing between the receivers) is, for example, 2701$4, and each emitter (6) and the receiver 1
! (7) is scanned downward at a pitch of 3M by the air cylinder (9). Now, the air cylinder (9) is used to adjust the distance between the emitter and receiver (buff) of 270 cod by 0.45 to 0.
If it can be moved in 75 seconds, the time required to move the pitch interval of 3 cods is approximately sms e c~
One sequence of driving all the elements can be completed during movement of 3sg pitch, which is g*8ec. Then, time-sequential driving of all elements is repeated for each pitch, and 90 times of time-series driving of all elements is performed in 270 square meters. This is 3 cod X horizontally from K
400, 400 in a vertical 2701EI x 8 plane
X 90X This means that an optical sensor zone having eight parallel light beams is formed in time series.

なお本実施例では、時系列的な同時投光−同時受光の順
序を1の番号の付く画素子からそれに隣接する20番号
の付く画素子へ、さらにそれに隣接する画素子へと遂次
選択したところを示したが、間隔をあけて選択するよう
Kしてもよい。例えば10番号の付く画素子の次に25
の番号の付く画素子を選択し、その次に20番号の付く
画素子Kj2す、さらにその次は26の番号の付く画素
子を選択するようKしてもよい。
In this embodiment, the time-series simultaneous light emission and simultaneous light reception is sequentially selected from the pixel numbered 1 to the adjacent pixel numbered 20, and then to the pixel adjacent thereto. However, K may be selected at intervals. For example, next to the pixel numbered 10, 25
You may select the pixel numbered Kj2, then the pixel Kj2 numbered 20, and then the pixel numbered 26.

以上本発明によれば、平行光IIl系の光束の配置間隔
が発光素子および受光素子のmal(α、β)を直径と
する円内に入るようであっても、全体的に平行光線系に
よる感知空間を確保できる利点を有する。
As described above, according to the present invention, even if the arrangement interval of the luminous flux of the parallel beam IIl system falls within a circle whose diameter is the mal (α, β) of the light emitting element and the light receiving element, the entire parallel beam system is used. It has the advantage of securing sensing space.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明方法が適用される一例の自動採寸装置の
概略斜視図、第2図は要部の斜視図、第3図(a) (
b) (c) #1発光素子の放射特性図および受光素
子の入射特性図ならびにそれらを合成した特性図である
。 (1)・・・キャビン、(2)・・・固定円板床、(3
)・・・回転床、(4)・・・ガイドレール、(5)・
・・可動フレーム、(6)・・・投光器、(7)・・・
受光器、(9)・・・エアシリンダ、(至)・・・コン
ピュータ、(ロ)・−・タイプライタ−1(至)・・・
発光素子、(ロ)・・・受光素子 代理人   森  本  義  弘 (−2 グ 第3図
Fig. 1 is a schematic perspective view of an example of an automatic measuring device to which the method of the present invention is applied, Fig. 2 is a perspective view of main parts, and Fig. 3 (a) (
b) (c) A radiation characteristic diagram of the #1 light emitting element, an incident characteristic diagram of the light receiving element, and a characteristic diagram combining them. (1)...Cabin, (2)...Fixed disk floor, (3
)... Rotating bed, (4)... Guide rail, (5)...
...Movable frame, (6)...Floodlight, (7)...
Receiver, (9)...Air cylinder, (To)...Computer, (B)...Typewriter-1 (To)...
Light-emitting element, (b) ... Light-receiving element agent Yoshihiro Morimoto (-2) Figure 3

Claims (1)

【特許請求の範囲】 1、発光素子と受光素子との対からなる光センナ装置を
集合させて平行光線系の光センサゾーンを形成するに際
し、前記光センサ装置の集合体を複数個の組に分割して
各組を時系列的に駆動し、平行光線系による感知空間を
確保することを特徴とする平行光線系の光センナゾーン
彫威方法。 λ 光センデ装置の集合体は、発光素子と受光素子とを
それぞれ相対向する平面上に配置して合成され、前記光
センナ装置の集合体を複数個の組に分割して各組を時系
列的に駆動し、平行光線系による感知空間を確保するこ
とを特徴とする特許請求の範囲第1項記載の平行光線系
の光センサゾーン形成方法。 1 党センナ装置の集合体は、発光素子と受光素とをあ
る平面上で相対向して配置して構成され、前記光センサ
装置の集合体を複数個の組に分割して各組を時系列的に
駆動し、かつ前記光センサ装置の集合体をさらに前記あ
る平面に対して直角な方向に走査するとともに前記各組
の時系列的駆動を繰り返して行々うことを特徴とする特
許#F才の範囲第1項記載の平行光線系の光センサゾー
ン形成方法。
[Claims] 1. When assembling optical sensor devices each consisting of a pair of a light emitting element and a light receiving element to form a parallel beam system optical sensor zone, the optical sensor apparatuses are grouped into a plurality of sets. A parallel beam system optical senna zone carving method characterized by dividing and driving each set in time series to secure a sensing space by a parallel beam system. λ An assembly of optical sensor devices is synthesized by arranging a light emitting element and a light receiving element on opposing planes, and the assembly of optical sensor apparatuses is divided into a plurality of groups, and each group is arranged in chronological order. 2. A method for forming a photosensor zone using a parallel light beam system according to claim 1, wherein the parallel light beam system is driven to ensure a sensing space by the parallel light beam system. 1. An assembly of optical sensor devices is constructed by arranging a light emitting element and a light receiving element to face each other on a certain plane, and the assembly of optical sensor devices is divided into a plurality of groups, and each group is separated by time. Patent No. 1, characterized in that the optical sensor devices are sequentially driven, and the aggregate of the optical sensor devices is further scanned in a direction perpendicular to the certain plane, and each set is repeatedly driven in time series. The method for forming an optical sensor zone of a parallel beam system according to item 1.
JP56130418A 1981-08-19 1981-08-19 Formation of optical sensor zone of parallel light system Granted JPS5831312A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56130418A JPS5831312A (en) 1981-08-19 1981-08-19 Formation of optical sensor zone of parallel light system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56130418A JPS5831312A (en) 1981-08-19 1981-08-19 Formation of optical sensor zone of parallel light system

Publications (2)

Publication Number Publication Date
JPS5831312A true JPS5831312A (en) 1983-02-24
JPH0148482B2 JPH0148482B2 (en) 1989-10-19

Family

ID=15033775

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56130418A Granted JPS5831312A (en) 1981-08-19 1981-08-19 Formation of optical sensor zone of parallel light system

Country Status (1)

Country Link
JP (1) JPS5831312A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6219616U (en) * 1985-07-17 1987-02-05
US4693621A (en) * 1984-01-25 1987-09-15 Tokyo Electric Co., Ltd. Paper loading device of printer
US4804860A (en) * 1985-05-02 1989-02-14 Robotic Vision Systems, Inc. Robot cell safety system
JPH01127755U (en) * 1988-02-23 1989-08-31

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4693621A (en) * 1984-01-25 1987-09-15 Tokyo Electric Co., Ltd. Paper loading device of printer
US4804860A (en) * 1985-05-02 1989-02-14 Robotic Vision Systems, Inc. Robot cell safety system
JPS6219616U (en) * 1985-07-17 1987-02-05
JPH01127755U (en) * 1988-02-23 1989-08-31

Also Published As

Publication number Publication date
JPH0148482B2 (en) 1989-10-19

Similar Documents

Publication Publication Date Title
CN100500098C (en) Self-aligning scintillator-collimator assembly
US5757006A (en) Articulating detector array for a gamma camera
US4417817A (en) Volumetric measurement of particles
CA1291668C (en) Sunshield device
JPS62502707A (en) How to measure objects in three dimensions
JPH07109364B2 (en) Light detection and display
JPH0313568B2 (en)
JPS6251482U (en)
US11908165B2 (en) Systems and methods for calibrating image capturing models
JPS5831312A (en) Formation of optical sensor zone of parallel light system
WO1981003698A1 (en) Method and apparatus for monitoring movement
US8526012B1 (en) Noncontact scanning system
CN86105398A (en) Radiographic apparatus
Llosá et al. Development of a PET prototype with continuous LYSO crystals and monolithic SiPM matrices
JPH0739247Y2 (en) Photocurrent distribution analyzer for light receiving element
JP2644961B2 (en) 2-axis measurement sun sensor
RU2208370C2 (en) Method of contactless measurement object surface topography and device for method embodiment
US11442075B2 (en) Ballistic projectile velocity measurement apparatus
JP3357703B2 (en) sensor
CN210324284U (en) TOF calibration module
JPH05189638A (en) Moving body analyzer
JPH0571882B2 (en)
JP2010008093A (en) Infrared imaging apparatus and infrared imaging method
RU2001120817A (en) Method for non-contact measurement of topography of the surface of an object and device for its implementation
JPS6342323Y2 (en)