JPS5831239A - Total heat-exchange air conditioner - Google Patents

Total heat-exchange air conditioner

Info

Publication number
JPS5831239A
JPS5831239A JP12895381A JP12895381A JPS5831239A JP S5831239 A JPS5831239 A JP S5831239A JP 12895381 A JP12895381 A JP 12895381A JP 12895381 A JP12895381 A JP 12895381A JP S5831239 A JPS5831239 A JP S5831239A
Authority
JP
Japan
Prior art keywords
heat
total heat
heat exchanger
heat exchange
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP12895381A
Other languages
Japanese (ja)
Other versions
JPH0331976B2 (en
Inventor
Nobuyuki Yano
矢野 宣行
Akira Aoki
亮 青木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP12895381A priority Critical patent/JPS5831239A/en
Publication of JPS5831239A publication Critical patent/JPS5831239A/en
Publication of JPH0331976B2 publication Critical patent/JPH0331976B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/12Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling
    • F24F3/14Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification
    • F24F3/1411Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification by absorbing or adsorbing water, e.g. using an hygroscopic desiccant
    • F24F3/1423Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification by absorbing or adsorbing water, e.g. using an hygroscopic desiccant with a moving bed of solid desiccants, e.g. a rotary wheel supporting solid desiccants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/1044Rotary wheel performing other movements, e.g. sliding

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

PURPOSE:To improve efficiency, and to attain maintenance-free of the titled device by laminating partitioning plates having heat transmitting property and moisture permeability at regular intervals and alternating flowing the suction of the outside air and the exhaust of the inside air between each of the layers while periodically exchanging the flows of the both airs. CONSTITUTION:The partitioning plates having heat transmitting property and moisture permeability are laminated while corrugated space plates are put and the directions of the corrugated space plates are alternately changed at every 90 deg., and the heat exchange section of a total heat exchanger 12 is formed. In such constitution, fans 8, 8' are driven, indoor air is exhausted and outdoor air is sucked, and the indoor and outdoor air is heat-exchanged by means of the heat exchanger 12. The heat exchanger 12 is swung at every 90 deg. at a predetermined period. Consequently, suction and exhaust paths are exchanged with each other periodically. Accordingly, the heat accumulating and humidity accumulating and radiating and dehumidifying action of elements are added to the exchange of sensible heat and latent heat, the efficiency of total heat exchange is improved while the clogging of the elements can be prevented, and maintenance-free of the device can be attained.

Description

【発明の詳細な説明】 本発明は屋外空気の吸気と室内空気の排気など、吸排同
時に行なう全熱交換換気装置に関するものであり、その
目的は蓄湿蓄熱性を有するエレメントをもった静止透過
式全熱交換器を使って、吸排の風の流れ方向を両方向と
も周期的に逆転させつつ全熱交換換気することにより、
より高効率の全21’ するととにある。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a total heat exchange ventilation system that simultaneously takes in outdoor air and exhausts indoor air. By using a total heat exchanger to perform total heat exchange ventilation while periodically reversing the flow direction of intake and exhaust air in both directions,
There is a higher efficiency total 21'.

従来、空調換気扇に用いられている全熱交換器に透過式
全熱交換器がある。これは、二4ントの仕切板として紙
のような透湿性と熱透過性をもったものを使用し、仕切
板によって仕切られた各層間を交互に吸気流と排気流が
同時に一定方向に通過することにより、仕切板を通して
全熱交換を行なうものであり、一般に全熱交換効率は5
6〜6゜チと低い。まだ、仕切板間の各層の中を流れる
気流の方向が変化しないので、熱交換器の気流入口部分
には、はこりが蓄積しやすく、フィルタが必要のみなら
ず熱交換器入口部の清掃が定期的なメこのことが熱交換
効率の低下や熱交換器の寿命を短かくする主因ともなっ
ている。
Conventionally, there is a transmission type total heat exchanger as a total heat exchanger used in air conditioning ventilation fans. This uses paper-like moisture permeability and heat permeability as a 24-ton partition plate, and the intake air flow and exhaust air flow alternately pass in a fixed direction between each layer partitioned by the partition plate. By doing so, total heat exchange is performed through the partition plate, and the total heat exchange efficiency is generally 5.
It's as low as 6-6 degrees. Since the direction of the airflow flowing through each layer between the partition plates does not change yet, debris tends to accumulate at the air inlet of the heat exchanger, making it necessary not only to use a filter but also to clean the inlet of the heat exchanger. Regular maintenance is a major cause of reduced heat exchange efficiency and shortened heat exchanger life.

本発明は上記従来の静止透過式全熱交換器を使ものであ
る。
The present invention uses the conventional static transmission type total heat exchanger described above.

以下本発明の詳細について、一実施例を示す図面にもと
づき説明する。第1図は本発明の一実施℃°。
The details of the present invention will be explained below based on the drawings showing one embodiment. Figure 1 shows one implementation of the present invention.

例の全熱交換器の一部外観図、図において1は仕切板、
2は間隔板である。間隔板2は波形に成形されたクラフ
ト紙を使用している。第2図は仕切板lの断面を示した
ものである。この仕切板1はたとえば防燃紙等の熱透過
性と透湿性、蓄熱性と蓄湿性をもっている。第2図にお
いて、風の流れる方向(図中矢印方向)を周期的に(こ
こでは30秒〜1分間隔)逆転さす場合を考える。高温
高湿の夏の室外雰囲気を33℃60%、冷房中の室内雰
囲気を26°C50%に設定した場合、第2図の矢印方
向の風の流れの場合には室外側から室内側へ向う顕熱と
潜熱は仕切板1に蓄熱蓄湿されるものもあれば、仕切板
1中を3側から4側に移動して室内側からの空気流にさ
らされている仕切(mの4側から、室内側からの気流に
乗って室外側へ排出されるものもある。また、仕切板1
への水分の吸着によって生じた吸着熱や、仕切板1から
の水分の脱着によって生じた脱着熱(この場合は吸熱反
応のため負)も同様に蓄熱、まだは、仕切板1中を反対
面に向って移行する。この方式の利点は、空気流を周期
的に反転させることにより、室外側から熱交換器中に持
ち込まれたエンタルピーを仕切板1を通して再び室外側
へ排出さす以外に、仕切板1や間隔板2に蓄エンタルピ
ーさせ、風の流れる方向が逆転した時にそれを室外側へ
排出さす機構も加わるので、従来の方式に比べ、全熱交
換効率が飛躍的に増大することにある。
A partial external view of the example total heat exchanger. In the figure, 1 is a partition plate,
2 is a spacing plate. The spacer plate 2 is made of corrugated kraft paper. FIG. 2 shows a cross section of the partition plate l. This partition plate 1 has heat permeability, moisture permeability, heat storage ability, and moisture storage ability, such as flameproof paper. In FIG. 2, consider a case where the direction of wind flow (arrow direction in the figure) is reversed periodically (here, at intervals of 30 seconds to 1 minute). When the outdoor atmosphere in a hot and humid summer is set to 33°C and 60%, and the indoor atmosphere during cooling is set to 26°C and 50%, if the wind flows in the direction of the arrow in Figure 2, it will flow from the outside to the inside. Some of the sensible heat and latent heat are stored as heat and moisture in the partition plate 1, while others move from the 3rd side to the 4th side in the partition plate 1 and move from the 3rd side to the 4th side of the partition (4th side of m) exposed to the airflow from the indoor side. Some of them are discharged to the outside by riding on the airflow from the indoor side.
The heat of adsorption generated by the adsorption of moisture from the partition plate 1 and the heat of desorption generated by the desorption of moisture from the partition plate 1 (in this case, negative due to an endothermic reaction) are also stored. move towards. The advantage of this method is that by periodically reversing the air flow, the enthalpy brought into the heat exchanger from the outdoor side is discharged to the outdoor side through the partition plate 1. Since a mechanism is added that stores enthalpy in the air and discharges it to the outside when the direction of wind flow is reversed, the total heat exchange efficiency is dramatically increased compared to conventional systems.

第3図は、この方式の熱交換効率の測定法を示した模式
図であり、第4図はその得られた結果である。
FIG. 3 is a schematic diagram showing this method of measuring heat exchange efficiency, and FIG. 4 shows the results obtained.

ノさ せた場合、切換スイッチを入れてから、4秒後には26
oO回転の定常1゛直になることが測定結果から確かめ
られている。イ11ロ、ハ二の位置に温度センサーと湿
度センサーをセットし、その変化を記録計に書かせるよ
うにしだ。使用している湿度計はタンタルの静電容量の
変化を利用したもので、応答性ははやく、数秒後には平
衡値の96係まで達するものである。このようなテスト
装置を前記の室内側と室外側の温湿度条件にそれぞれ調
節されだ2つの隣り合う恒温恒湿の部屋間にセントして
、30秒サイクルで風の流れの方向を周期的に逆転した
場合の全熱交換効率の変化を求めた結果が第4図のAで
ある。図中A′はこれを3o秒間の麿 平均値としてならしたものである。Bは同−d熱交換器
′を使用して、風の流れの方向を逆転させないて一定方
向に流し続けるいわゆる従来タイプの全熱交換方式の場
合の平衡時の効率を同装置で求めた結果である。この結
果からも明らかなように、このような蓄熱透過方式によ
る空調換気法では、従来の透過式全熱交換器を使って、
風を一定方向に流し続ける空調換気法に比べて全熱交換
効率がはファンb回転方向切換時からの経過時間を示す
26 seconds after turning on the selector switch.
It has been confirmed from the measurement results that the oO rotation remains 1° straight. Set the temperature sensor and humidity sensor at the positions A, 11, and 2, and record the changes on the recorder. The hygrometer used makes use of changes in the capacitance of tantalum, and is quick to respond, reaching the equilibrium value of coefficient 96 within a few seconds. Such a test device was placed between two adjacent rooms with constant temperature and humidity, which were adjusted to the indoor and outdoor temperature and humidity conditions, respectively, and the direction of the air flow was periodically changed in a 30-second cycle. A in FIG. 4 shows the result of determining the change in total heat exchange efficiency when the rotation is reversed. In the figure, A' is the average value for 30 seconds. B is the result of using the same device to find the efficiency at equilibrium in the so-called conventional type of total heat exchange system where the air flow continues to flow in a fixed direction without reversing the flow direction using the same-d heat exchanger. It is. As is clear from these results, in this type of air conditioning ventilation method based on the heat storage and transmission method, using a conventional transmission type total heat exchanger,
Compared to the air conditioning ventilation method in which wind continues to flow in a fixed direction, the total heat exchange efficiency indicates the elapsed time from the time when the rotation direction of fan b is switched.

6ペ 第5図はこの方式を利用して製作した空調換気扇の実施
例の模式図であり、第6図はその外観図である。ただし
、この図の場合前面パネルのルーフアンの構造である。
Fig. 5 is a schematic diagram of an embodiment of an air conditioning ventilation fan manufactured using this method, and Fig. 6 is an external view thereof. However, this figure shows the structure of the roof panel on the front panel.

9は前面パネルのルーバー間に一部スウィングさす。ス
ウィングに要する時間は約1秒間である。
9 inserts a part of the swing between the louvers on the front panel. The time required for swinging is about 1 second.

以上のように本発明においては、顕熱交換と潜熱交換は
仕切板を通して行われるのみならず、エレメントの蓄熱
、蓄湿と放熱、脱湿作用により行なわれるものも加わる
ので、全熱交換効率を従来の透過式のものに比べて、相
当高くすることが可能である。まだ、−次気流と二次気
流の方向も周涜 欺的に逆転するだめ、′熱交換器入口へほこりが付着蓄
積していかないので、フィルターが不要になす るばかりか、熱交換器入口面の掃除というメインテナン
スも不要となる。捷だ、従来の方式のように、エレメン
トの表面に目すまりが起り、エレメントの寿命が短かく
なるということも少なくなる。
As described above, in the present invention, sensible heat exchange and latent heat exchange are not only performed through the partition plates, but also those performed by heat storage, moisture storage, heat release, and dehumidification of the element, so that the total heat exchange efficiency can be improved. Compared to the conventional transmission type, it can be made considerably more expensive. However, since the directions of the secondary airflow and the secondary airflow are reversed in an unnatural manner, dust does not adhere to and accumulate at the heat exchanger inlet, which not only eliminates the need for a filter, but also prevents dust from accumulating at the heat exchanger inlet. There is no need for maintenance such as cleaning. This is better, as with the conventional method, there is less chance of clogging occurring on the surface of the element, which shortens the life of the element.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の構成要素である全熱交換器
の模式外観図、第2図は第1図における仕切板の断面図
、第3図は全熱交換効率の測定装置の模式図、第4図は
上記測定装置を使って得られた本発明の一実施例におけ
る全熱交換効率と従来方式における全熱交換効率を示す
特性図、第61・・・・・・仕切板、2・・・・・・間
隔板、5,12・・・・・・全熱交換器、6 、6’ 
、 8 、8’・・・・・・ ファン、9・・・・・・
全面パネル、10,10/・・・・・・シャッタ。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
図 第2図 4    くてユ==コ室内恒1jカ・b第 35!J 第4図 杼通1F8韻 V 第5図 第6図 手続補正書 昭和57年 2月2乙日 昭和56年特許願第128953  号2発明の名称 主熱交換豊中調翌1 3補正をする者 事件との関係      特  許  出  願  入
住 所  大阪府門真市大字門真1006番地名 称 
(582)松下電器産業株式会社代表者    山  
下  俊  彦 4代理人 〒571 住 所  大阪府門真市大字門真1006番地松下電器
産業株式会社内 6補正の対象 訂正明細書 6、補正の内容 (1)明細書全文を別紙の通り補正する。 (2)第2図を別紙の通り訂正する。 (3)第3図を別紙の通り訂正する。 (4)第5図を第6図(イ)とし別紙の通り訂正する。 (5)第5図(ロ)を別紙の通り追加する。 (6)第6図(イ)および(ロ)を別紙の通り追加する
。 (7)第6図を第7図とする。 、1 滑車  灼烟愉佃画IF圧■へ乙hイをへス仝勃じσ壊
弓尭1、発明の名称 全熱交換空調装置 2、特許請求の範囲 熱透過性と透湿性とを有する仕切板を所定間隔を置いて
複数層に重ね合わせ、−次気流と二次気流とが、前記仕
切板の各層間を交互に通るように形成した全熱交換器を
構成要素とし、前記−火気交換空調装置。 3、発明の詳細な説明 本発明は屋外空気の吸気と屋内空気の排気など、吸排同
時に行なう全熱交換換気装置に関するものであり、その
目的は蓄湿蓄熱性を有するエレメントをもった透過式全
熱交換器を使って、吸排気を周期的に交換(すなわち、
その通路において周期的に吸気と排気を交互に通過)さ
せて全熱交換換気することにより、より高効率の全熱交
換能力をもち、かつメインテナンスフリーなどの特徴を
もったより便利な全熱交換空調装置を提供することにあ
る。 直木、i砺沃A層V(用V)つ4LL、V10土渚叉沃
伝に透過式全熱交換器がある。これは、エレメントの仕
切板として紙のような透湿性と熱透過性をもったものを
使用し、仕切板によって仕切られた各層間を交互に吸気
流と排気流が同時にそれぞれ一定方向に通過することに
より、仕切板を通して全熱交換を行なうものであり、一
般に全熱交換効率は55〜60%と低い、また、仕切板
間の各層の中を流れる気流の方向が変化しないので、熱
交換器の気流入口部分には、はこりが蓄積しやすく、フ
ィルタが必要のみならず熱交換器入口部の清掃が定期的
なメインテナンス項目として必要である。 また、この種の熱交換器のエレメントは目づまりを起し
易く、このことが熱交換効率の低下や熱交換器の寿命を
短かくする主因ともなっている。 本発明は上記従来の静止透過式全熱交換器を使用して、
仕切板の各層間を一定方向に吸気と排気流を流しながら
全熱交換換気を行なう空調装置の上記欠点を解消するも
のである。 以下本発明の詳細について、一実施例を示す図3゜ 面にもとづき説明する。第1図は本発明の一実施例の全
熱交換器の一部外観図で、図において1は仕切板、2は
間隔板である。仕切板1には防燃紙間隔板2は波形に成
形されたクラフト紙を使用している。第2図は仕切板1
の断面を示したもので流れと熱交換について考える。こ
の構成の特徴は仕切板1の両側において室内側からの空
気と室外いま高温高湿の夏の室外雰囲気を33“C6O
%、冷房中の室内雰囲気を26°Cr5Oチに設定した
場合、第2図の矢印方向の風の流れの場合には室外側か
ら室内側−\向う顕熱と潜熱は仕切板1に蓄熱蓄湿され
るものもあれば、仕切板1中を3側から4側に移動して
室内側からの空気流にさらされている仕切板1の4側か
ら、室内側からの気流に乗って室外側へ排出されるもの
もある。また、仕切板1への水分の吸着によって生じた
吸着熱や、仕切板1からの水分の脱着によって生じた脱
着熱(この場合は吸熱反応のため負)の一部も同様に蓄
熱、または、仕切板1中を3−4方向に向って移行する
。サイクルが切換わり、気流の方向が逆転して、室外側
の空気流と室内側の空気流が入れ替わると、仕切板1の
表面3近くに蓄熱、蓄湿されていた顕熱と潜熱は、室内
側からの低温の気流にのって室外側へ排出される。この
方式の利点は、室外からの空気流と室内からの空気流を
周期的に反転させ入れ替えることにより、室外側から熱
交換器中に持ち込まれたエンタルピーを仕切板1を通し
て再び室外側へ排出さす以外に、仕切板1や間隔板2に
蓄エンタルピーさせ、仕切板の両面において空気流を交
換した時にそれを室外側へ排出さす機構も加わるので、
従来の方式に比べ、全熱交換効率が飛躍的に増大するこ
とにある。 第3図は、この方式の熱交換効率の測定法を示5  、 した模式図であり、第4図はその得られた結果である。 図中6は全熱交換器で、大きさは150  X250゜
6、e/はグロベラ式のファンであり、正逆回転方向を
変えられるようにしている。全熱交換器5を通過する風
量は、どちらの方向でも2.5m”/minになるよう
にセットされている。ファン6.6′の回転方向を逆転
させた場合、切換スイッチを入れてから、4秒後には2
600回転の定常値になることが測定結果から確かめら
れている。イ11ロ、ハ二の位置に温度センサーと湿度
センサーをセットし、その変化を記録計に書かせるよう
にした。使用している湿度計はタンタルの静電容量の変
化を利用したもので、応答性ははやく、数秒後には平衡
値の95チまで達するものである。このようなテスト装
置を前記の室内側と室外側の温湿度条件にそれぞれ調節
された2つの隣り合う恒温恒湿の部屋間にセットして、
3o秒サイクルで風の流れの方向を周期的に逆転した場
合(すなわち室内からの空気の流れる通路と室外からの
空気の流れる通路が入れ変わる)の全熱交換効率の変化
を求めた結果が第4図のAである3図中A′はこれを3
0秒間の平均値としてならしたものである。Bは同一の
全熱交換器6を使用して、風の流れの方向全逆転させな
いで一定方向に流し続けるいわゆる従来タイプの全熱交
換方式の場合の平衡時の効率を同装置で求めた結果であ
る。この結果からも明らかなように、このような蓄熱透
過方式による空調換気法では、従来の透過式全熱交換器
を使って、風を一定方向に流し続ける空調換気法に比べ
て全熱交換効率が格段に向上することが分かる。なお、
図中、横軸はファン6、e/の回転方向切換時からの経
過時間を示す。 第5図(イ)、(ロ)はこの方式を利用して製作した空
調換気扇の実施例の模式図であり、第6図はその外観図
である。ただし、この図の場合前面パネルのルーバーは
取りはずしている。図中12は全熱交換器、 a、a’
はシロッコ式のファンで、実際は1モータ、2フアンの
構造である39は前面パネルのルーバーである。1o、
1σはシャッターで71.−2 運転休止中は閉じられている。ここではファン8゜eの
回転方向は常に一定方向で、熱交換器内部を通る気流の
周期的な交換は、全熱交換器12を900スウイングさ
す方式で行なっている。全熱交換器12を図中の矢印1
1のように、30秒間に一部スウィングさす、スウィン
グに要する時間は約1秒間である。なお、第6図(イ)
と(ロ)の相違点は熱交換器900回転させている点で
ある。各々の状態における熱交換器内の空気の種類と流
れの方向を第6図(イ)、(ロ)に示す。 以上のように本発明においては、顕熱交換と潜熱交換は
仕切板を通して行われるのみならず、エレメントの蓄熱
、蓄湿と放熱、脱湿作用により行なわれるものも加わる
ので、全熱交換効率を従来の透過式のものも加わるので
、全熱交換効率を従%/+ ・ −・                     
 ′−−4、図面の簡単な説明 第1図は本発明の一実施例の構成要素である全熱交換器
の模式外観図、第2図は第1図における仕切板の断面図
、第3図は全熱交換効率の測定装置の模式図、第4図は
上記測定装置を使って得られた本発明の一実施例におけ
る全熱交換効率と従来方式における全熱交換効率を示す
特性図、第5図(イ)及び(ロ)は本発明の一実施例の
全熱交換空調装置の概念図、第6図(イ)及び(ロ)は
第5図における空気の流れを示す図、第7図は第5図の
斜視図である。 1・・・・・・仕切板、2・・・・間隔板、6,12・
・・・・全熱交換器、6 、6’ 、 8 、8’・・
 ・ファン、9・・・−全面パネル、10,1σ・−・
・シャッタ。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第2
図     7 第5図 (イ) 第6図 第  7  図
Fig. 1 is a schematic external view of a total heat exchanger that is a component of an embodiment of the present invention, Fig. 2 is a sectional view of a partition plate in Fig. 1, and Fig. 3 is a diagram of a total heat exchange efficiency measuring device. Schematic diagram, Fig. 4 is a characteristic diagram showing the total heat exchange efficiency in one embodiment of the present invention and the total heat exchange efficiency in the conventional method obtained using the above measuring device, No. 61... Partition plate , 2... Spacing plate, 5, 12... Total heat exchanger, 6, 6'
, 8 , 8'... Fan, 9...
Full panel, 10,10/...shutter. Name of agent: Patent attorney Toshio Nakao and 1 other person No. 1
Figure 2 Figure 4 Kuteyu==ko Indoor Constant 1j Ka・b No. 35! J Figure 4 Shuttle 1F8 rhyme V Figure 5 Figure 6 Procedural amendment document February 2, 1980 Date of 1982 Patent Application No. 128953 2 Name of the invention Principal heat exchange Toyonaka tone Next day 1 3 Person making the amendment Relationship to the incident Patent application Address 1006 Kadoma, Kadoma City, Osaka Prefecture Name
(582) Matsushita Electric Industrial Co., Ltd. Representative Yama
Toshihiko Shimo 4 Agent 571 Address 1006 Oaza Kadoma, Kadoma City, Osaka Prefecture Matsushita Electric Industrial Co., Ltd. Target of 6 Amendments Amendment Specification 6, Contents of Amendment (1) The entire statement of the specification will be amended as shown in the attached sheet. (2) Correct Figure 2 as shown in the attached sheet. (3) Correct Figure 3 as shown in the attached sheet. (4) Change Figure 5 to Figure 6 (A) and correct it as shown in the attached sheet. (5) Add Figure 5 (b) as shown in the attached sheet. (6) Figure 6 (a) and (b) are added as shown in the attached sheet. (7) Let Figure 6 be Figure 7. , 1 Pulley burns the IF pressure ■ to move the heat to the σ breakage 1, title of the invention total heat exchange air conditioner 2, claim scope has heat permeability and moisture permeability The total heat exchanger is composed of a plurality of layers of partition plates stacked at predetermined intervals so that the secondary air flow and the secondary air flow alternately pass between the layers of the partition plates, and Replacement air conditioner. 3. Detailed Description of the Invention The present invention relates to a total heat exchange ventilation system that simultaneously takes in and exhausts outdoor air and exhausts indoor air. A heat exchanger is used to periodically exchange intake and exhaust air (i.e.
By performing total heat exchange ventilation by periodically passing intake and exhaust air through the passage, it has a more efficient total heat exchange capacity and is maintenance-free, making it a more convenient total heat exchange air conditioner. The goal is to provide equipment. There is a transmission type total heat exchanger in Naoki, I Tono A layer V (Yo V) tsu 4LL, V10 Tonagi Kaoden. This uses paper-like material with moisture permeability and heat permeability as the partition plate of the element, and the intake air flow and exhaust air flow alternately pass through each layer separated by the partition plate in a fixed direction. By doing so, total heat exchange is performed through the partition plates, and the total heat exchange efficiency is generally as low as 55 to 60%.Also, the direction of the airflow flowing in each layer between the partition plates does not change, so the heat exchanger Dust tends to accumulate at the air inlet of the heat exchanger, and not only a filter is required, but also cleaning of the heat exchanger inlet is a regular maintenance item. Furthermore, the elements of this type of heat exchanger tend to become clogged, which is a main cause of lowering the heat exchange efficiency and shortening the life of the heat exchanger. The present invention uses the above-mentioned conventional static transmission type total heat exchanger, and
The present invention solves the above-mentioned drawbacks of an air conditioner that performs total heat exchange ventilation by flowing intake air and exhaust air in a fixed direction between each layer of a partition plate. The details of the present invention will be explained below based on FIG. 3, which shows one embodiment. FIG. 1 is a partial external view of a total heat exchanger according to an embodiment of the present invention, in which 1 is a partition plate and 2 is a spacer plate. The partition plate 1 and the flameproof paper spacing plate 2 are made of corrugated kraft paper. Figure 2 shows partition plate 1
Let's think about flow and heat exchange using a cross-section of . The feature of this configuration is that on both sides of the partition plate 1, the air from the indoor side and the outdoor atmosphere of the summer, which is currently hot and humid, are separated by 33"C6O.
%, when the indoor atmosphere during cooling is set to 26°Cr5O and the wind flows in the direction of the arrow in Figure 2, the sensible heat and latent heat flowing from the outside to the inside are stored in the partition plate 1. Some of them become moist, and some of them move from the 3rd side to the 4th side in the partition plate 1 and are carried by the airflow from the indoor side from the 4th side of the partition plate 1, which is exposed to the airflow from the indoor side. Some are discharged to the outside. In addition, part of the adsorption heat generated by the adsorption of moisture to the partition plate 1 and the desorption heat generated by the desorption of moisture from the partition plate 1 (in this case negative due to an endothermic reaction) is also stored as heat, or It moves through the partition plate 1 in the 3-4 direction. When the cycle is switched and the direction of the airflow is reversed, and the airflow on the outside and the airflow on the indoor side are swapped, the sensible heat and latent heat that had been stored near the surface 3 of the partition plate 1 are transferred to the room. It is discharged to the outside of the room along with the low-temperature airflow from the inside. The advantage of this method is that by periodically reversing and replacing the airflow from outside and the airflow from inside, the enthalpy brought into the heat exchanger from the outside is discharged back to the outside through the partition plate 1. In addition, a mechanism is added that stores enthalpy in the partition plate 1 and spacing plate 2 and discharges it to the outdoor side when airflow is exchanged on both sides of the partition plate.
Compared to conventional methods, the total heat exchange efficiency is dramatically increased. FIG. 3 is a schematic diagram showing a method for measuring heat exchange efficiency using this method, and FIG. 4 shows the results obtained. In the figure, 6 is a total heat exchanger, the size of which is 150 x 250°6, and e/ is a grubber type fan, which allows the rotation direction to be changed between forward and reverse directions. The air volume passing through the total heat exchanger 5 is set to 2.5 m''/min in either direction.If the rotation direction of the fan 6.6' is reversed, turn on the changeover switch and , 2 after 4 seconds
It has been confirmed from the measurement results that the constant value is reached at 600 rotations. I set a temperature sensor and a humidity sensor at positions A, 11, and 2, and recorded the changes on the recorder. The hygrometer used makes use of changes in the capacitance of tantalum, and is quick to respond, reaching the equilibrium value of 95 degrees within a few seconds. Such a test device was set between two adjacent constant temperature and constant humidity rooms that were adjusted to the indoor and outdoor temperature and humidity conditions, respectively.
The results of determining the change in total heat exchange efficiency when the direction of the wind flow is periodically reversed in a 30 second cycle (that is, the passage through which air flows from inside the room and the passage through which air flows from outside are switched) are as follows. A' in Figure 3, which is A in Figure 4, is 3
It is normalized as an average value for 0 seconds. B is the result of using the same total heat exchanger 6 to find the efficiency at equilibrium in the case of the so-called conventional type total heat exchange method in which the air flow continues to flow in a fixed direction without completely reversing the flow direction. It is. As is clear from these results, the air conditioning ventilation method using such a heat storage transmission method has a higher total heat exchange efficiency than the air conditioning ventilation method that uses a conventional transmission type total heat exchanger and continues to flow air in a fixed direction. It can be seen that the results are significantly improved. In addition,
In the figure, the horizontal axis indicates the elapsed time from the time of switching the rotational direction of the fan 6, e/. FIGS. 5(a) and 5(b) are schematic diagrams of an embodiment of an air conditioning ventilation fan manufactured using this method, and FIG. 6 is an external view thereof. However, in this figure, the front panel louvers have been removed. In the figure, 12 is a total heat exchanger, a, a'
39 is a sirocco-type fan, which actually has a one-motor, two-fan structure.39 is a louver on the front panel. 1o,
1σ is 71. -2 Closed during outage. Here, the direction of rotation of the fan 8°e is always constant, and the periodic exchange of the airflow passing through the heat exchanger is performed by a system of 900 swings of the total heat exchanger 12. The total heat exchanger 12 is indicated by arrow 1 in the figure.
1, a part of the swing is made in 30 seconds, and the time required for the swing is about 1 second. In addition, Figure 6 (a)
The difference between and (b) is that the heat exchanger is rotated 900 times. The type of air and the direction of flow in the heat exchanger in each state are shown in Figures 6(a) and 6(b). As described above, in the present invention, sensible heat exchange and latent heat exchange are not only performed through the partition plates, but also those performed by heat storage, moisture storage, heat release, and dehumidification of the element, so that the total heat exchange efficiency can be improved. Since the conventional transmission type is also added, the total heat exchange efficiency can be reduced by %/+ ・ −・
'--4, Brief Description of the Drawings Figure 1 is a schematic external view of a total heat exchanger that is a component of one embodiment of the present invention, Figure 2 is a sectional view of the partition plate in Figure 1, and Figure 3 The figure is a schematic diagram of a total heat exchange efficiency measuring device, and FIG. 4 is a characteristic diagram showing the total heat exchange efficiency in an embodiment of the present invention and the total heat exchange efficiency in a conventional method obtained using the above measuring device. Figures 5 (a) and (b) are conceptual diagrams of a total heat exchange air conditioner according to an embodiment of the present invention, and Figures 6 (a) and (b) are diagrams showing the air flow in Figure 5. FIG. 7 is a perspective view of FIG. 5. 1... Partition plate, 2... Spacing plate, 6, 12...
...Total heat exchanger, 6, 6', 8, 8'...
・Fan, 9...-Full panel, 10,1σ...
·Shutter. Name of agent: Patent attorney Toshio Nakao and 1 other person 2nd
Figure 7 Figure 5 (a) Figure 6 Figure 7

Claims (1)

【特許請求の範囲】[Claims] 熱透過性と透湿性とを有する仕切板を所定間隔を置いて
複数層に重ね合わせ、−次気流と二次気向が交錯丸るよ
うに形成した全熱交換器を構成要素とし、前記−次気流
と二次気流の流れの方向を周期的に逆転させることを特
徴とする全熱交換空調装置。
The total heat exchanger is composed of a plurality of layers of heat permeable and moisture permeable partition plates stacked at predetermined intervals so that the - secondary air flow and the secondary air flow intersect and form a circle, and the - A total heat exchange air conditioner characterized by periodically reversing the flow direction of the secondary airflow and the secondary airflow.
JP12895381A 1981-08-18 1981-08-18 Total heat-exchange air conditioner Granted JPS5831239A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12895381A JPS5831239A (en) 1981-08-18 1981-08-18 Total heat-exchange air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12895381A JPS5831239A (en) 1981-08-18 1981-08-18 Total heat-exchange air conditioner

Publications (2)

Publication Number Publication Date
JPS5831239A true JPS5831239A (en) 1983-02-23
JPH0331976B2 JPH0331976B2 (en) 1991-05-09

Family

ID=14997486

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12895381A Granted JPS5831239A (en) 1981-08-18 1981-08-18 Total heat-exchange air conditioner

Country Status (1)

Country Link
JP (1) JPS5831239A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5896988A (en) * 1981-12-07 1983-06-09 Matsushita Electric Ind Co Ltd Heat exchange method
US4799539A (en) * 1985-03-12 1989-01-24 Advanced Design & Manufacture Limited Thermally efficient room ventilator
JP2009270723A (en) * 2008-04-30 2009-11-19 Mitsubishi Electric Corp Humidifying device
WO2014180279A1 (en) * 2013-05-08 2014-11-13 Dongguan Excel Industrial Co Ltd Swing-core air exchanger

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5022365U (en) * 1973-06-19 1975-03-13
JPS518530U (en) * 1974-07-05 1976-01-22

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5022365U (en) * 1973-06-19 1975-03-13
JPS518530U (en) * 1974-07-05 1976-01-22

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5896988A (en) * 1981-12-07 1983-06-09 Matsushita Electric Ind Co Ltd Heat exchange method
US4799539A (en) * 1985-03-12 1989-01-24 Advanced Design & Manufacture Limited Thermally efficient room ventilator
JP2009270723A (en) * 2008-04-30 2009-11-19 Mitsubishi Electric Corp Humidifying device
WO2014180279A1 (en) * 2013-05-08 2014-11-13 Dongguan Excel Industrial Co Ltd Swing-core air exchanger

Also Published As

Publication number Publication date
JPH0331976B2 (en) 1991-05-09

Similar Documents

Publication Publication Date Title
US4582129A (en) Heat exchanging system
JP5220102B2 (en) Heat exchange ventilator
US4377400A (en) Heat exchanger
WO2021200072A1 (en) Air quality adjustment system
US20130174730A1 (en) Energy recovery ventilator and dehumidifier
JPH04227433A (en) Ventilating and heat exchanging device
CN100559090C (en) Aircondition
JP2018004133A (en) Total heat exchange element and total heat exchange-type ventilation device
JPS5831239A (en) Total heat-exchange air conditioner
JP2009257651A (en) Ventilator
JPH0331975B2 (en)
JPS5896988A (en) Heat exchange method
JPS59208339A (en) Ventilator
JPH0333998B2 (en)
JP6262445B2 (en) Total heat exchanger using water vapor permselective membrane
JPS5855637A (en) Air conditioner
JPS58179743A (en) Air-conditioning ventilating fan
JP2004324901A (en) Heat exchange ventilating device
JPS6324227B2 (en)
WO2022130470A1 (en) Total heat exchange element and total heat exchange ventilation device
JP2002228393A (en) Heat exchanger, method for recovering its function, heat exchanger and ventilator and maintenance system therefor
JPS58179745A (en) Air-conditioning ventilating fan
JPS58160752A (en) Air conditioning ventilation fan
JP2005024156A (en) Heat exchanging/ventilating device
JPS58179746A (en) Air-conditioning ventilating fan