JPS5830599Y2 - Two-fluid nozzle for wet granulation - Google Patents

Two-fluid nozzle for wet granulation

Info

Publication number
JPS5830599Y2
JPS5830599Y2 JP11835477U JP11835477U JPS5830599Y2 JP S5830599 Y2 JPS5830599 Y2 JP S5830599Y2 JP 11835477 U JP11835477 U JP 11835477U JP 11835477 U JP11835477 U JP 11835477U JP S5830599 Y2 JPS5830599 Y2 JP S5830599Y2
Authority
JP
Japan
Prior art keywords
nozzle
inner cylinder
valve body
fluid
shaft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP11835477U
Other languages
Japanese (ja)
Other versions
JPS5445252U (en
Inventor
清 奥田
晃平 加藤
和雄 金子
博 佐藤
喜一 真砂
規男 川畑
理平 富田
Original Assignee
大日本塗料株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大日本塗料株式会社 filed Critical 大日本塗料株式会社
Priority to JP11835477U priority Critical patent/JPS5830599Y2/en
Priority to US05/841,713 priority patent/US4206161A/en
Priority to DE2746782A priority patent/DE2746782C3/en
Priority to GB42913/77A priority patent/GB1576782A/en
Publication of JPS5445252U publication Critical patent/JPS5445252U/ja
Application granted granted Critical
Publication of JPS5830599Y2 publication Critical patent/JPS5830599Y2/en
Expired legal-status Critical Current

Links

Landscapes

  • Processes Of Treating Macromolecular Substances (AREA)
  • Glanulating (AREA)
  • Nozzles (AREA)

Description

【考案の詳細な説明】 本考案は湿式造粒用二流体ノズルに関する。[Detailed explanation of the idea] The present invention relates to a two-fluid nozzle for wet granulation.

さらに詳しくは各々のノズル径を調節することが出来、
流体の処理量とは関係なく粒子の形状や粒子径を調整す
ることが出来る構造の二流体ノズルに関する。
For more details, you can adjust the diameter of each nozzle,
The present invention relates to a two-fluid nozzle having a structure in which the shape and diameter of particles can be adjusted regardless of the amount of fluid to be processed.

各種の湿式造粒法が既に知られている。Various wet granulation methods are already known.

また、特公昭44−6399号に記載されている静電写
真用トーナーの製造法や、特開昭48−52851号に
記載されている粉末塗料の製造方法等に使用されている
It is also used in the method for producing electrostatic photographic toners described in Japanese Patent Publication No. 44-6399, and the method for producing powder paints described in Japanese Patent Application Laid-Open No. 48-52851.

例えば造粒しようとする固体を溶剤■に溶解した溶液を
、該固体は溶解しないが該溶剤Iを溶解する多量の溶剤
IIと乳化状態で接触させ、乳化液滴中の溶剤Iを溶剤
H中へ抽出移行させて固体粉末を形成する方法が提示さ
れている。
For example, a solution in which a solid to be granulated is dissolved in solvent (1) is brought into contact with a large amount of solvent (II) in an emulsified state that does not dissolve the solid but dissolves the solvent (I), and the solvent I in the emulsified droplets is dissolved in the solvent (H). A method of extracting and transferring to form a solid powder is presented.

しかして上記溶液を溶剤Hと乳化状態で接触させる方法
としては、両者を二流体ノズルで噴霧することにより、
微細で比較的粒径のそろった粉末を迅速に連続的に製造
することが出来る。
However, as a method of bringing the above solution into contact with solvent H in an emulsified state, by spraying both with a two-fluid nozzle,
Fine powder with relatively uniform particle size can be produced rapidly and continuously.

上記二流体ノズルは、例えばインスタントコーヒー等の
食品や石ケン及び薬品などの造粒に使用されるもの及び
、塗料のエアースプレー塗装に使用されるものなどがあ
る。
Examples of the two-fluid nozzle include those used for granulating foods such as instant coffee, soap and medicine, and those used for air spray painting of paints.

更に、上記造粒に使用される二流体ノズルは、第1図に
示すようなa内部混合型、b傾斜型、C並行型及びd直
角型などがある。
Furthermore, the two-fluid nozzles used for the above granulation include the a-internal mixing type, the b-inclined type, the C-parallel type, and the d-right angle type, as shown in FIG.

しかしてこれ等はいずれも、ノズル「1径が固定されて
いるため、流体の圧送圧を増加させると流速が増し噴霧
粒子の径が小さくなる。
However, in all of these, the diameter of the nozzle is fixed, so when the pressure of the fluid is increased, the flow velocity increases and the diameter of the sprayed particles decreases.

従って所定の粒子径の粉末を得るためには圧送圧を−・
定にして、一定の処理量で造粒することが必要である。
Therefore, in order to obtain powder with a predetermined particle size, the pumping pressure must be -.
It is necessary to granulate at a constant throughput.

さらに造粒を停止する時に溶液及び溶剤Hを完全に同時
に止めることは難しく、−万が他方のノズ゛ル「1内に
引き込まれ内部で゛固化してノス゛ル詰りを起こし易い
Furthermore, it is difficult to stop the solution and solvent H completely at the same time when stopping granulation, and if they were to be drawn into the other nozzle 1, they would solidify inside and easily cause nozzle clogging.

また塗料の塗装に使用するエアースプレーガンは、塗料
を吐出するノズルの開きを調整する尖端状の弁を有する
が、空気の噴射ノズル径は固定していて口径を調整する
ことが出来ない。
Furthermore, air spray guns used for painting paint have a pointed valve that adjusts the opening of the nozzle that discharges the paint, but the diameter of the air injection nozzle is fixed and cannot be adjusted.

該スプレーカ゛゛ンで塗料を噴霧する際には、別に配置
されたバルブで空気の流量を調整し、塗料の吐出量に合
せて空気の噴射速度を定め、塗料の微粒化を適正な範囲
に調整する。
When spraying paint with this spray gun, the air flow rate is adjusted with a separately placed valve, the air jet speed is determined according to the amount of paint discharged, and the atomization of the paint is adjusted to an appropriate range. .

この構造の二流体ノズルを湿式造粒に使用すると、溶液
の吐出量を変更する時に微粒化を−・定に保一つために
溶剤IIの噴出速度を調整すれば溶液ど溶剤IIの量比
が変化し、粉末の形状が変化する。
When a two-fluid nozzle with this structure is used for wet granulation, when changing the discharge amount of the solution, in order to keep the atomization constant, the spouting speed of the solvent II can be adjusted, and the amount ratio of the solution to the solvent II can be adjusted. changes, and the shape of the powder changes.

該粉末の形状は前記乳化液滴よりグ)液剤Iの抽出速度
によって変化するが、該抽出速度は相対向な溶剤IIの
量によって決まる。
The shape of the powder varies depending on the extraction rate of liquid agent I from the emulsified droplets, which is determined by the relative amounts of solvent II.

−h’粒粉末形状を一定に保とうとして溶液と溶剤Hの
量比を一定にすれば微粒化を 一定に保つことが出来な
くなる。
-h' If you try to keep the grain powder shape constant by keeping the ratio of solution and solvent H constant, it will not be possible to keep the atomization constant.

本考案は上記の欠点を解決し、ノズ゛ル先端部で芥ノス
゛ル0開閉及び]]径の調整を個別に行うことが出来る
二流1体7gルに関する。
The present invention solves the above-mentioned drawbacks and relates to a two-flow one-piece 7g product which can individually open and close the waste nozzle and adjust its diameter at the tip of the nozzle.

即ち、本考案は、同軸二重筒状のノズ゛ル朴筒及びノズ
゛ル内筒よりなる−1−流体ノズ゛ルにおいて、ノス゛
ル朴筒の開口内面及びノズ゛ル内筒の先端性向か゛嵌合
する円錐側面を有し、7ノズ゛ル内筒が[゛、記同軸方
向に可動な状態で゛支持体(、二支持され、ノズ゛ル内
節の先端開[1を閉塞し、かつ移動によりllJ″変間
隙全間隙する弁体を、該弁体と−・体構造の軸をfi
1.、て軸JJ下1」に可動な状態で別の支持体に支持
してなる湿式造粒用二流体ノズ゛ルに関する。
That is, the present invention provides a -1 fluid nozzle consisting of a nozzle cover tube and a nozzle inner tube in the form of coaxial double cylinders, in which the opening inner surface of the nozzle cover tube and the tip direction of the nozzle inner tube are changed. It has a fitting conical side surface, and the seven nozzle inner tubes are supported by two supports movable in the same axial direction, and the tip of the nozzle inner tube is closed. And the valve body which changes the entire gap by movement, and the axis of the body structure is fi.
1. The present invention relates to a two-fluid nozzle for wet granulation, which is supported on another support in a movable state along the axis JJ.

本考案0湿式造粒用二粒体ノス゛ルを使用することによ
1)、前記溶液の吐出量を圧送圧又は噴出速度に関係な
く変更することが出来、該吐出量の変化に比例して溶剤
Hの吐出量を変更するど共に溶剤Hの噴出速度を調整し
て所定の形状及び粒子径の粉末を製造することが出来る
By using the two-granule nozzle for wet granulation of the present invention, 1) the discharge amount of the solution can be changed regardless of the pumping pressure or the ejection speed, and the solvent Powder having a predetermined shape and particle size can be produced by changing the amount of H discharged and adjusting the jetting speed of the solvent H.

更に造粒を停止する際には両方のノズルを閉じることが
出来るのでツズル詰りを防止することが出来るという特
徴を有する。
Furthermore, since both nozzles can be closed when granulation is stopped, clogging of the nozzles can be prevented.

以下図面により本考案を説明する。The present invention will be explained below with reference to the drawings.

第2図のa及び1)は各々本考案のm=流体ノズルの具
体例を示す断面図である。
FIGS. 2a and 1) are cross-sectional views showing specific examples of the m=fluid nozzle of the present invention, respectively.

図中1はノス゛ル朴筒、2はノてル内筒で、各々の開口
内面1′及び先端性向2′は相互に嵌合する円錐側面を
有している。
In the figure, 1 is a nozzle housing cylinder, and 2 is a nozzle inner cylinder, each of which has an opening inner surface 1' and a tip end 2' having conical side surfaces that fit into each other.

該ノズル内筒2は上記円錐側面1′及び2′が円錐の軸
に関して同軸になる位置に軸ブj向に可動な状態でノズ
ル外筒と一体構造の支持体3に支持されている。
The nozzle inner tube 2 is supported by a support 3 integrally constructed with the nozzle outer tube in a position where the conical side surfaces 1' and 2' are coaxial with respect to the axis of the cone in a movable state in the axis direction.

該支持方法は図に示すようにノス゛ル内筒2の外面、及
び支持体3の該内筒2を通す透孔内面に相互に噛合うネ
ジ溝を設け、ノズ゛ル内筒2を該透孔にネジ込み支持す
る方法が利用出来る。
As shown in the figure, this supporting method involves providing thread grooves that engage with each other on the outer surface of the nozzle inner cylinder 2 and the inner surface of the through hole of the support body 3 through which the inner cylinder 2 passes, and then inserting the nozzle inner cylinder 2 into the through hole. You can use the method of supporting by screwing into the

該ノズル内筒2の先端開「1部には弁体4が有り、弁体
4と 一体に連結固定された軸5を介して、該軸の方向
に可動な状態で゛ノズ゛ル内筒2ど一体構造の別の支+
、1体6に支持されている。
The nozzle inner cylinder 2 has a valve body 4 at its open end, and the nozzle inner cylinder is movable in the direction of the axis via a shaft 5 that is integrally connected and fixed to the valve body 4. Another support with two integrated structures +
, is supported by one body 6.

該支持方法は前記同様にネジ込、7ス支持する方法が利
用出来る。
As for the supporting method, the method of screwing in or supporting with 7 screws can be used in the same manner as described above.

また該弁体4及びノてル内筒2の先端開1−1部は軸5
を移動させ両8′を桜触させた時にノズル内筒2の先端
開口が完全に密閉されるような相互に合致する面を有す
ることか必要で゛ある。
In addition, the opening 1-1 portion of the valve body 4 and the nozzle inner cylinder 2 is connected to the shaft 5.
It is necessary to have surfaces that match each other so that the tip opening of the nozzle inner cylinder 2 is completely sealed when the nozzle inner cylinder 2 is moved and both 8' are brought into contact.

該合致する面は第2図aのようにノズル内筒の先端開[
−1内面2aと弁体の側面4aが嵌合する円錐側面と+
るか、又は第2図すのように、ノズル内筒の開L」先端
面21〕と弁体の底面41)がビッツj合わさる平面で
あるようなIfユニ状考えられる。
The matching surfaces are formed by opening the tip of the nozzle inner cylinder as shown in Fig. 2a.
−1 inner surface 2a and a conical side surface where the side surface 4a of the valve body fits together; +
Alternatively, as shown in FIG. 2, it is possible to consider an If uni-shape in which the open end surface 21 of the nozzle inner cylinder and the bottom surface 41 of the valve body meet on a plane.

−[記aの場合軸5は該円錐の軸と一致する5二どが必
要てパある。
- [In the case of a, the axis 5 must be 5 and 2, which coincides with the axis of the cone.

又すの場合、軸5は談平面に垂直でパあることが必要て
゛ある。
In this case, it is necessary that the axis 5 be perpendicular to the plane of discussion.

上記の構造の二、流体ノズ゛ルはノズ゛ル汁筒の開11
内面1′とyフル内筒の先端性向2Cによって形成され
る間隙7を有し、間隙7はノス゛ル内筒を前記同軸方向
に移動させることによってrlを調整し、また完全に密
閉することによりなくすことか出来る。
Second of the above structure, the fluid nozzle is the opening 11 of the nozzle fluid cylinder.
It has a gap 7 formed by the inner surface 1' and the tip direction 2C of the full inner cylinder, and the gap 7 is eliminated by adjusting RL by moving the nozzle inner cylinder in the coaxial direction and by completely sealing it. I can do it.

またノス゛ル内筒の先端開口内面2aと弁体の側i4a
ないしは、ノズ゛ル内筒の開1」先端面21〕と弁体の
底面4bとによって形成さI’Lる間隙8は、弁体4を
軸5の方向に移動させることによって、巾を調整し、ま
た完全に密閉することによりなくすことが出来る。
In addition, the tip opening inner surface 2a of the nozzle inner cylinder and the side i4a of the valve body
Alternatively, the width of the gap 8 formed by the open end surface 21 of the nozzle inner cylinder and the bottom surface 4b of the valve body can be adjusted by moving the valve body 4 in the direction of the axis 5. However, it can also be eliminated by completely sealing it.

本考案の二流体ノズルは上記間隙7及び8より各々の流
体を噴出させるもので、間隙の巾と流体の圧送圧を調整
することによって、吐出量と噴出速度を夫々独立して調
整することが出来る。
The two-fluid nozzle of the present invention jets each fluid from the gaps 7 and 8, and by adjusting the width of the gap and the fluid pressure, the discharge amount and jet speed can be adjusted independently. I can do it.

このようにすることによって粉末の粒子径及び形状を一
定に保ちながら処理量を変更したり、また粒子の形状を
変えずに粒子径を変化させることなどが可能となる。
By doing so, it becomes possible to change the processing amount while keeping the particle size and shape of the powder constant, or to change the particle size without changing the particle shape.

また間隙7及び8を密閉することにより流体の逆流を防
ぎ、ノズル詰りを防止することが出来る。
Further, by sealing the gaps 7 and 8, backflow of fluid can be prevented and nozzle clogging can be prevented.

特に第3図に示すように二流体ノズルをタンクの底近く
に固定し、湿式造粒法により形成された粉末を含む懸濁
液を一時タンク内に滞溜させた後、タンク上部より取り
出す連続製造方法に適用する場合は、造粒を停止した際
に懸濁液がノズル内に逆流するのを防止することが出来
るという特徴を有する。
In particular, as shown in Figure 3, a two-fluid nozzle is fixed near the bottom of the tank, and the suspension containing the powder formed by the wet granulation method is temporarily stored in the tank and then taken out from the top of the tank. When applied to a manufacturing method, it has the feature that it is possible to prevent the suspension from flowing back into the nozzle when granulation is stopped.

本考案において、二流体ノズルは必要により適宜の大き
さに形成することが出来る。
In the present invention, the two-fluid nozzle can be formed into an appropriate size as necessary.

例えば前記間隙7及び8の巾を各々約0.1〜2mm及
び約0゜05〜1mmに調整した時に間隙の外部端面の
面積が各々0.05〜2.5 crn”及び0.01〜
0.50m2程度になり、好適であった。
For example, when the widths of the gaps 7 and 8 are adjusted to about 0.1 to 2 mm and about 0.05 to 1 mm, respectively, the areas of the outer end surfaces of the gaps are 0.05 to 2.5 crn'' and 0.01 to 1 mm, respectively.
The area was approximately 0.50 m2, which was suitable.

以下実施例により本考案を説明する。The present invention will be explained below with reference to Examples.

先ず、着色樹脂溶液を調整した。First, a colored resin solution was prepared.

着色樹脂溶液の調整 メチルエチルチトンに固体アクリル樹脂を溶解して固型
分30重量%の樹脂溶液を作った。
Preparation of colored resin solution A solid acrylic resin was dissolved in methyl ethyl titone to prepare a resin solution having a solid content of 30% by weight.

この溶液1700重量部に弁柄957重量部、セバシン
酸150重量部、ノニオン系界面活性剤30重量部を加
え、小型アトライターで回転数15Or、p、m で
60分間練合し顔料分散度(グラインドゲージによる)
が5μ以下のミルベースを得た。
To 1,700 parts by weight of this solution, 957 parts by weight of Bengara, 150 parts by weight of sebacic acid, and 30 parts by weight of nonionic surfactant were added, and the mixture was kneaded with a small attritor for 60 minutes at a rotation speed of 15 Or, p, m to obtain the pigment dispersion ( (according to grind gauge)
A mill base with a diameter of 5μ or less was obtained.

このミルベース2000部に上記30%樹脂溶液280
0部を加えて粘度を調整し着色樹脂溶液を得た。
Add 280 parts of the above 30% resin solution to 2000 parts of this mill base.
The viscosity was adjusted by adding 0 parts to obtain a colored resin solution.

実施例 1 第2図のaに示すような構造であって間隙7及び8の巾
を各々1mm及び0.5mmにしたときの各間隙の外部
端面の面積が0.16crn2及び0.02crn2で
ある、二流体ノズルを第3図に示す如く内容積200
lの造粒タンクに設置した。
Example 1 The structure is as shown in FIG. 2 a, and when the widths of gaps 7 and 8 are 1 mm and 0.5 mm, respectively, the areas of the outer end surfaces of each gap are 0.16 crn2 and 0.02 crn2. , the two-fluid nozzle has an internal volume of 200 mm as shown in FIG.
It was installed in a 1-liter granulation tank.

二流体ノズルには間隙7及び8より各々水及び前記着色
樹脂溶液を噴射出来るように、パイプ及びポンプを介し
て各々水及び着色樹脂溶液のタンクを接続した。
Tanks for water and colored resin solution were connected to the two-fluid nozzle via pipes and pumps so that water and the colored resin solution could be injected from gaps 7 and 8, respectively.

間隙7及び8を閉塞した状態で上記造粒タンクに100
1の水を充填し、次に水を供給するポンプを稼動させ、
水圧を30kg/cm2に設定した後に間隙7を巾1m
mに開き流量40 kg/分で水を噴射した。
100 g was added to the granulation tank with gaps 7 and 8 closed.
1 fill with water, then operate the water supply pump,
After setting the water pressure to 30kg/cm2, make the gap 7 1m wide.
water was injected at a flow rate of 40 kg/min.

次いで樹脂溶液を供給するポンプを稼動させ圧力を5
kg/cm2に設定し、間隙8を巾0.4mmに開き流
量−3kg/crn 2で着色樹脂溶液を噴射した。
Next, operate the pump that supplies the resin solution and increase the pressure to 5
kg/cm2, the gap 8 was opened to a width of 0.4 mm, and the colored resin solution was injected at a flow rate of -3 kg/cm2.

この状態で造粒タンク内に生成する樹脂粒子の平均粒子
径は32μであった。
The average particle diameter of the resin particles produced in the granulation tank in this state was 32μ.

(米国コールターエレクI・ロニク社製コールターカウ
ンター、モチ゛ルTA使用。
(Using a Coulter counter made by Coulter Electric I/Ronik in the United States, Motiru TA.

以下同じ)次に水圧を25kg/cm2及び間隙7の巾
を0.5mmにし流量13.3kg/分で水を噴射する
と共に、樹脂溶液を圧力4kg/crn2及び間隙8の
巾を0.3mmにして流量1 kg/分で噴射した。
(The same applies hereinafter) Next, water is injected at a flow rate of 13.3 kg/min with the water pressure set to 25 kg/cm2 and the width of gap 7 to 0.5 mm, and the resin solution is sprayed at a pressure of 4 kg/cm2 and the width of gap 8 to 0.3 mm. and injected at a flow rate of 1 kg/min.

この状態で生成した樹脂粒子は上記と同しく平均粒子径
が32μであった。
The resin particles produced in this state had an average particle diameter of 32 μm as described above.

造粒を停止する時は先ず間隙8を閉じ、次いで間隙7を
閉塞した。
When stopping granulation, first gap 8 was closed, and then gap 7 was closed.

次いで再び造粒及び停止の操作を20回繰り返したかノ
ズル詰りは全く起らず、また形成される樹脂粒子の形状
及び粒度分布の再現性も極めて良好であった。
Next, the operation of granulation and stopping was repeated 20 times, but no nozzle clogging occurred at all, and the reproducibility of the shape and particle size distribution of the resin particles formed was also extremely good.

実施例 2 第2図のbに示すような構造であって間隙7及び8の巾
を各々1mm及びQ、5mmにしたときの各間隙の外部
端面の面積が0.16cm2及び0.03cm2である
二流体ノズルを用いた外は実施例■と同じ装置を使用し
た。
Example 2 The structure is as shown in FIG. 2b, and when the widths of gaps 7 and 8 are 1 mm and Q, 5 mm, respectively, the areas of the outer end surfaces of each gap are 0.16 cm2 and 0.03 cm2. The same equipment as in Example 2 was used except that a two-fluid nozzle was used.

間隙7及び8を閉塞した状態で上記造粒タンクに100
lの水を充填し、実施例1と同じ順序で水圧40 k
g/ctn ”及び間隙7の巾を0.4mmにし、流量
20 kg/分で水を噴射した後、樹脂溶液を圧力4k
g/cm2及び゛間隙8の巾をQ、4mmにして流量2
kg/分で噴射した。
100 g was added to the granulation tank with gaps 7 and 8 closed.
1 of water and water pressure 40 k in the same order as in Example 1.
g/ctn” and the width of the gap 7 to 0.4 mm, and after injecting water at a flow rate of 20 kg/min, the resin solution was heated to a pressure of 4 k.
g/cm2 and the width of gap 8 is Q, 4 mm, and the flow rate is 2.
kg/min.

この状態で生成した樹脂粒子の平均粒子径は25μであ
った。
The average particle diameter of the resin particles produced in this state was 25 μm.

次に水圧50 kg/cm2及び間隙7の巾を0.6m
mにして水を流量40 kg/分で噴射すると共に、樹
脂溶液を圧力8 kg/cm2及び間隙8の巾をQ、5
mmにして流量4 kg/分で噴射した。
Next, the water pressure is 50 kg/cm2 and the width of gap 7 is 0.6 m.
Water was injected at a flow rate of 40 kg/min, and the resin solution was injected at a pressure of 8 kg/cm2 and a width of the gap 8 of Q, 5.
mm and was injected at a flow rate of 4 kg/min.

この状態で生成した樹脂粒子の平均粒子径は上記と同じ
<25μで゛あった。
The average particle diameter of the resin particles produced in this state was <25 μm, the same as above.

また実施例1と同様にして造粒及び停止を繰返したかノ
ズル詰りは全くなく、造粒の再現性も極めて良好で゛あ
った。
Furthermore, granulation and stopping were repeated in the same manner as in Example 1, and no nozzle clogging occurred, and the reproducibility of granulation was extremely good.

【図面の簡単な説明】[Brief explanation of drawings]

第1図a−dは公知の二流体ノズルの断面図を示す。 第2図a及びbは本考案の二流体ノズルの断面図を示す
ものである。 第3図は本考案の二流体ノズルを造粒タンクに設置した
断面図を示すものである。 本考案を示す図中 1はノズル外筒、2はノズル内筒、
3は支持体I、4は弁体、6は支持体IIである。
Figures 1a-d show cross-sectional views of a known two-fluid nozzle. Figures 2a and 2b show cross-sectional views of the two-fluid nozzle of the present invention. FIG. 3 shows a sectional view of the two-fluid nozzle of the present invention installed in a granulation tank. In the figure showing the present invention, 1 is the nozzle outer cylinder, 2 is the nozzle inner cylinder,
3 is a support I, 4 is a valve body, and 6 is a support II.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 1.同軸二重筒状のノズル外筒及びノズル内筒よりなる
二流体ノズルにおいて、ノズル外筒の開口内面及びノズ
ル内筒の先端外面が嵌合する円錐側面を有し、ノズル内
筒が上記同軸方向に移動可能な状態で支持体に支持され
ており、かつノズル内筒の先端開口を閉塞しまたは移動
により可変間隙を形成する弁体を該弁体と一体構造の軸
を介して軸方向に可動な状態で別の支持体に支持してな
る、湿式造粒用二流体ノズル。 2、上記弁体の側面とノズル内筒の開口先端内面が相互
に同軸の嵌合する円錐側面を有し、弁体と一体構造の軸
及びこれを支持する別の支持体が相互に噛合うネジ溝を
有し、該軸を同軸の位置に配設し、かつ回転移動出来る
状態で別の支持体にネジ込み支持してなる実用新案登録
請求の範囲第1項に記載の湿式造粒用二流体ノズル。 3、弁体の底面とノズル内筒の開口先端面が相互に合致
する平面を有し、弁体と一体構造の軸が該平面に対して
垂直に配設され、該軸とこれを支持する支持体が相互に
噛合うネジ溝を有し、該軸を回転移動出来る状態で別の
支持体にネジ込み支持してなる実用新案登録請求の範囲
第1項に記載の湿式造粒用二流体ノズル。
1. In a two-fluid nozzle consisting of a coaxial double-cylindrical nozzle outer cylinder and a nozzle inner cylinder, the nozzle inner cylinder has a conical side surface into which the opening inner surface of the nozzle outer cylinder and the tip outer surface of the nozzle inner cylinder fit, and the nozzle inner cylinder is arranged in the coaxial direction. The valve body is supported by a support body in a movable state and is movable in the axial direction via a shaft integrally constructed with the valve body, which closes the tip opening of the nozzle inner cylinder or forms a variable gap by movement. A two-fluid nozzle for wet granulation, which is supported on another support in a stable state. 2. The side surface of the valve body and the inner surface of the opening end of the nozzle inner cylinder have conical side surfaces that coaxially fit with each other, and the valve body, a shaft that is integrally structured, and another support that supports it mesh with each other. For wet granulation according to claim 1, which has a screw groove, the shafts are disposed coaxially, and are screwed and supported by another support in a rotatable state. Two-fluid nozzle. 3. The bottom surface of the valve body and the opening end surface of the nozzle inner cylinder have a plane that matches each other, and a shaft integral with the valve body is disposed perpendicular to the plane and supports the shaft. The two-fluid for wet granulation according to claim 1, wherein the support has screw grooves that engage with each other, and the shaft is screwed and supported by another support in a rotatable state. nozzle.
JP11835477U 1976-10-18 1977-09-02 Two-fluid nozzle for wet granulation Expired JPS5830599Y2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP11835477U JPS5830599Y2 (en) 1977-09-02 1977-09-02 Two-fluid nozzle for wet granulation
US05/841,713 US4206161A (en) 1976-10-18 1977-10-13 Method of producing resin powder
DE2746782A DE2746782C3 (en) 1976-10-18 1977-10-18 Process for obtaining resin powder and two-fluid nozzle for carrying out the process
GB42913/77A GB1576782A (en) 1976-10-18 1977-10-26 Method of producing resin powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11835477U JPS5830599Y2 (en) 1977-09-02 1977-09-02 Two-fluid nozzle for wet granulation

Publications (2)

Publication Number Publication Date
JPS5445252U JPS5445252U (en) 1979-03-28
JPS5830599Y2 true JPS5830599Y2 (en) 1983-07-06

Family

ID=29072608

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11835477U Expired JPS5830599Y2 (en) 1976-10-18 1977-09-02 Two-fluid nozzle for wet granulation

Country Status (1)

Country Link
JP (1) JPS5830599Y2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014223603A (en) * 2013-05-15 2014-12-04 光弘 高橋 Production method of powder, and device therefor
JP7281928B2 (en) * 2019-03-19 2023-05-26 株式会社アルバック Vacuum freeze-drying equipment

Also Published As

Publication number Publication date
JPS5445252U (en) 1979-03-28

Similar Documents

Publication Publication Date Title
DE69003421T2 (en) Method and device for obtaining a larger spray width.
CN1096303C (en) Modular system for atomizing liquid and method of atomizing liquid
US3764069A (en) Method and apparatus for spraying
CA1276664C (en) Vibrating element for ultrasonic injection
JP3285949B2 (en) Spray dispenser
US4733820A (en) Vibrating element for use on an ultrasonic injection nozzle
JPS5829150B2 (en) spray device
CA2267027A1 (en) Rotary atomizer for particulate paints
JPS5658530A (en) Dispersing method
JP5060726B2 (en) Spray nozzle and insert
JPS5830599Y2 (en) Two-fluid nozzle for wet granulation
HU193858B (en) Spraying nozzle
KR101683218B1 (en) Operating method of fluidized bed granulator and the fluidized bed granulator
US4206161A (en) Method of producing resin powder
KR100759651B1 (en) Method and device for atomizing liquids
US3739049A (en) Method for producing powder composed of precisely spherical particles
CA2036614C (en) Apparatus for mixing and spraying a slurry
JP2001137747A (en) Atomizing nozzle
JP3118055B2 (en) Fine particle coating method and apparatus and spray nozzle
KR101169945B1 (en) Apparatus for electrospray using multiple coaxial nozzle
JP2003117442A (en) Method for atomizing liquid and nozzle used for the same
DE4417709A1 (en) Liquid atomiser using pressurised air
CN208098423U (en) A kind of adjustable spray gun
CN115106216A (en) Spraying device
JP2547243Y2 (en) Two-fluid injection nozzle