JPS5828682B2 - NBYSN1-XALX - Google Patents

NBYSN1-XALX

Info

Publication number
JPS5828682B2
JPS5828682B2 JP49034604A JP3460474A JPS5828682B2 JP S5828682 B2 JPS5828682 B2 JP S5828682B2 JP 49034604 A JP49034604 A JP 49034604A JP 3460474 A JP3460474 A JP 3460474A JP S5828682 B2 JPS5828682 B2 JP S5828682B2
Authority
JP
Japan
Prior art keywords
niobium
xalx
magnetic field
critical
atoms
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP49034604A
Other languages
Japanese (ja)
Other versions
JPS50128991A (en
Inventor
昂 安河内
信光 碓井
良三 秋浜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SHINKU YAKIN KK
Original Assignee
SHINKU YAKIN KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SHINKU YAKIN KK filed Critical SHINKU YAKIN KK
Priority to JP49034604A priority Critical patent/JPS5828682B2/en
Publication of JPS50128991A publication Critical patent/JPS50128991A/ja
Publication of JPS5828682B2 publication Critical patent/JPS5828682B2/en
Expired legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Description

【発明の詳細な説明】 本発明はNb 2 S n 1−xAlx金属間化合物
からなる超電導体の製造法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing a superconductor comprising a Nb 2 S n 1-xAlx intermetallic compound.

現在使用されている金属間化合物超電導マグネット材料
は、Nb 3 Sn、 V3 Gaの2種であり、これ
らの材料は気相反応法または拡散による固体反応法によ
って製造されている。
There are two types of intermetallic superconducting magnet materials currently used: Nb 3 Sn and V 3 Ga, and these materials are manufactured by a gas phase reaction method or a solid state reaction method using diffusion.

上記の如き公知の超電導体の特性は下記の表■に列記す
る通りである。
The properties of the above-mentioned known superconductors are listed in Table 2 below.

上記のような特性を有する公知のNb3Sn。Known Nb3Sn having the above characteristics.

■立ちは、その臨界磁場の値が220KGであるた
、これら公知材料を用いて製造した超電導マグネットの
発生し得る磁場は、4,2°にで最高150KGである
■For standing, the value of the critical magnetic field is 220KG.
The maximum magnetic field that can be generated by superconducting magnets manufactured using these known materials is 150 KG at 4.2 degrees.

しかるに、より高い200KG程度の磁場を発生させる
ためには、上記の如き公知の超電導体線材では実現不可
能であり、より高い臨界磁場(少なくとも200KG以
上)を発生し得る超電導体材料の開発が望1れている。
However, in order to generate a higher magnetic field of about 200 KG, it is impossible to achieve this with the known superconductor wires as mentioned above, and it is desirable to develop a superconductor material that can generate a higher critical magnetic field (at least 200 KG or more). 1 has been written.

一方に釦いて近年18°に以上の臨界温度を有する超電
導体材料が幾種類か開発され、これらのうち若干のもの
は前述したような所望の高い臨界磁場を有している。
On the other hand, in recent years several types of superconductor materials with critical temperatures above 18 DEG have been developed, some of which have the desired high critical magnetic fields as mentioned above.

これらの例としてはNb5(Alo−75−Geo−2
5:4]OKG耘よびNb3Al:300KGを挙げる
ことができる。
Examples of these include Nb5(Alo-75-Geo-2
5:4] OKG and Nb3Al:300KG.

しかし乍ら、これらの材料は、1500°C以上の高温
処理によってのみ製造しうるため、実用超電導マグネッ
ト材料に要求される他の重要な要素である、高い臨界電
流密度を具備し得ない。
However, since these materials can only be manufactured by high-temperature treatment at 1500° C. or higher, they cannot have a high critical current density, which is another important element required for practical superconducting magnet materials.

このような理由によって上記組成の超電導体材料は実用
化し得ない現状である。
For these reasons, the superconductor material having the above composition cannot be put to practical use at present.

本発明の方法は、前記の如き公知材料の諸欠点を克服し
かつ改良した超電導体の製造法に関するものである。
The method of the present invention relates to a method for manufacturing a superconductor that overcomes the drawbacks of the known materials as described above and is improved.

本発明方法を更に具体的に説明する。The method of the present invention will be explained in more detail.

溶融金属錫に0.1〜60原子優のアルミニウムを添加
した溶融金属浴を製造し、該金属浴中に、ニオブまたば
0.05〜10原子饅のチタニウム、ジルコニウム、タ
ンタル ハフニウムの1種モしくは2種以上を含有する
ニオブ基合金のテープまたは線材を浸漬し、該テープま
たは線材の表面に、前記溶融金属浴を耐着または耐着拡
散させ、浸漬状態の1\でまたは前記溶融金属浴から取
り出した後、600°〜1250°Cの温度で数分間乃
至数百時間、熱処理することによって基材たるニオブま
たはニオブ基合金と耐着された5n41合金との境界部
附近にβ−W型NbySn、−xAlx (但しy−3
〜4原子係、X−1〜30原子%)化合物をつくること
にある。
A molten metal bath is prepared by adding 0.1 to 60 atoms of aluminum to molten metal tin, and in the metal bath, niobium or 0.05 to 10 atoms of titanium, zirconium, or tantalum hafnium is added. Alternatively, a tape or wire of a niobium-based alloy containing two or more of them is immersed, and the molten metal bath is made to resist adhesion or to diffuse onto the surface of the tape or wire. After taking it out from the bath, it is heat-treated at a temperature of 600° to 1250°C for several minutes to hundreds of hours to form β-W near the boundary between the base material niobium or niobium-based alloy and the adhered 5n41 alloy. Type NbySn, -xAlx (however, y-3
-4 atom percent, X-1 to 30 atom%) compound.

なお熱処理時間は熱処理温度が高ければ短くなり、逆に
熱処理温度が低い場合は熱処理時間が長くなる。
Note that the heat treatment time becomes shorter if the heat treatment temperature is higher, and conversely, the heat treatment time becomes longer if the heat treatment temperature is lower.

本発明の方法により製造された線材は、臨界温度にむい
ては大きな変化を示さないにも拘らず、臨界磁場につい
ては、前記化合物にむいてX−30原子饅の場合、25
0KG以上、x=5原子係の場合、300KGを得るこ
とができる。
Although the wire manufactured by the method of the present invention does not show a large change in the critical temperature, the critical magnetic field is 25
If it is 0KG or more and x=5 atoms, 300KG can be obtained.

しかもこの線材は、比較的低温度での拡散法で製造され
るために、Nb3Snの同程度の高い臨界電流密度が、
低磁場より高磁場に互って保持されていることが確認で
きた。
Moreover, because this wire is manufactured using a diffusion method at a relatively low temperature, the critical current density is as high as that of Nb3Sn.
It was confirmed that the magnetic field was held more strongly in the high magnetic field than in the low magnetic field.

従って本発明方法で製造された超電導体線材は、現在の
Nb5Sntたは■3Ga線材では達成し得ない200
KGにも達する超高磁場を発生しうる超電導マグネット
材料として用いることができる。
Therefore, the superconductor wire produced by the method of the present invention has a
It can be used as a superconducting magnet material that can generate ultra-high magnetic fields reaching up to KG.

本発明方法による具体的実施例を以下に詳述するが、本
発明をこれら実施例に限定するものではない。
Specific examples of the method of the present invention will be described in detail below, but the present invention is not limited to these examples.

実施例 1 巾3mm、厚さ0.05mmの金属ニオブテープを、溶
融Sn1−alx’ (x”’:5原子俤、約950℃
)中に10分間浸漬、保持し、前記合金被覆と金属ニオ
ブの境界部にNbySnl−XAl(y−3〜4、x
= 5〜10原子係)の金属間化合物を生成させた。
Example 1 A metal niobium tape with a width of 3 mm and a thickness of 0.05 mm was heated at molten Sn1-alx'(x"': 5 atoms, about 950°C
) and held for 10 minutes, and NbySnl-XAl (y-3~4, x
= 5 to 10 atoms) was produced.

このように処理したテープの超電導特性はTc−17,
5°に、Hc2=300KG、臨界電流は60KOeで
約7OAであった。
The superconducting properties of the tape treated in this way are Tc-17,
At 5°, Hc2 = 300 KG, the critical current was 60 KOe and about 7 OA.

実施例 2 直径Jmm、Sの金属ニオブ線材を、80o0Cの溶融
5n1−x′A11x’ (x 二10原子咎)に浸漬
し、S n 1−x/Al x’を該ニオブ線材の表面
に被覆させ、この被覆ニオブ線材を、アルゴンガスまた
は真空中で、900°Cで1時間焼鈍し、被覆とニオブ
の境界部にβ−W型のNbySnl−XAlX(y−3
〜4、X−10原子φ)の金属間化合物を生成せしめた
Example 2 A metal niobium wire with a diameter of Jmm and S is immersed in molten 5n1-x'A11x' (x 210 atoms) at 80o0C, and the surface of the niobium wire is coated with S n 1-x/Al x'. The coated niobium wire was annealed at 900°C for 1 hour in argon gas or vacuum, and β-W type NbySnl-XAlX (y-3
~4, X-10 atoms φ) intermetallic compounds were produced.

このように処理した線材の超電導特性はTc17°に、
Hc2=270KGであった。
The superconducting properties of the wire treated in this way are Tc17°,
Hc2=270KG.

実施例 3 実施例1または実施例2の方法に釦いて、a:Nbテー
プの組成 り:溶融S nl−x’Alx′の浴温 c: 〃 〃 の組成X′ d :/r〃 による浸漬温度 e: 〃 〃 浸漬状態あるいは浸漬後の焼鈍時
間および温度 を夫々表3の如く変化させた、この場合に得られる超電
導特性を、表2釦よび第1図、第2図に示す。
Example 3 Click on the method of Example 1 or Example 2, a: Composition of Nb tape: Molten Snl-x'Alx' bath temperature c: Composition of Temperature e: 〃 〃 The immersion state or the annealing time and temperature after immersion were changed as shown in Table 3, and the superconducting properties obtained in this case are shown in Table 2 and FIGS. 1 and 2.

これらの結果から明らかな如く、方法むよび変数を変化
させた場合には、臨界温度と臨界磁場は最終的に形成さ
れるβ−W型NbySnl−xAlx(y−3〜4、x
= 0〜50原子%)の組成のXのみに依存し、方法
や変数には殆んど依存しないことが判明した。
As is clear from these results, when the method and variables are changed, the critical temperature and critical magnetic field are
It was found that it depends only on the composition of X (= 0 to 50 at.

NbySnl−xA#xのXの変化による臨界温度と臨
界磁場を表3に示す。
Table 3 shows the critical temperature and critical magnetic field depending on the change in X of NbySnl-xA#x.

Claims (1)

【特許請求の範囲】 1 金属ニオブまたは0.05〜10原子係の範囲内で
チタニウム、ジルコニウム、ハフニウムまたはタンタル
の1種もしくは2種以上を含有するニオブ基合金からな
るテープオたは線材を、600’〜1250℃の溶融S
n4−xAlx (x = O,1〜60原子%)浴中
に浸漬し、しかるのち600゜〜1250℃の温度で2
分間〜600時間焼鈍して、β−W型NbySn1−x
A7x (y=3〜4 。 x=l]〜30原子%)の金原子化合物を形成すること
を特徴とする超電導体の製造法。
[Scope of Claims] 1 A tape or wire made of niobium metal or a niobium-based alloy containing one or more of titanium, zirconium, hafnium, or tantalum in the range of 0.05 to 10 atoms, '~1250℃ melting S
immersed in a n4-xAlx (x = O, 1 to 60 at%) bath and then heated for 2
After annealing for 600 minutes to 600 hours, β-W type NbySn1-x
A method for producing a superconductor, comprising forming a gold atom compound of A7x (y=3 to 4; x=l] to 30 at. %).
JP49034604A 1974-03-29 1974-03-29 NBYSN1-XALX Expired JPS5828682B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP49034604A JPS5828682B2 (en) 1974-03-29 1974-03-29 NBYSN1-XALX

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP49034604A JPS5828682B2 (en) 1974-03-29 1974-03-29 NBYSN1-XALX

Publications (2)

Publication Number Publication Date
JPS50128991A JPS50128991A (en) 1975-10-11
JPS5828682B2 true JPS5828682B2 (en) 1983-06-17

Family

ID=12418946

Family Applications (1)

Application Number Title Priority Date Filing Date
JP49034604A Expired JPS5828682B2 (en) 1974-03-29 1974-03-29 NBYSN1-XALX

Country Status (1)

Country Link
JP (1) JPS5828682B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55107769A (en) * 1979-02-09 1980-08-19 Natl Res Inst For Metals Manufacture of nb3 sn diffused wire

Also Published As

Publication number Publication date
JPS50128991A (en) 1975-10-11

Similar Documents

Publication Publication Date Title
US3181936A (en) Superconductors and method for the preparation thereof
US4435228A (en) Process for producing NB3 SN superconducting wires
JP3103608B2 (en) Nickel-based substrate for ceramic superconductors
JPS5823110A (en) Method of producing nb3sn superconductive wire material
JPS5828682B2 (en) NBYSN1-XALX
JPH04334815A (en) Niobium-tin superconductor containing hafnium oxide particle
JPH01275434A (en) Production of high temperature superconducting oxide film
JPH0645132A (en) Carrier for superconducting coil
JPH0316726B2 (en)
JPS5828683B2 (en) NBYSN1-XALX
JPS5828684B2 (en) NBYSN1-XALX
JPS6249756B2 (en)
JPH01234323A (en) High temperature superconducting thin film
JPS63453A (en) Oxidation resistant permanent magnet material and its production
JPH06283056A (en) Oxide superconductive wire
Jung et al. New ordered structure in the niobium--nitrogen system
US3801378A (en) Niobium-gallium superconductor
JPH0393685A (en) Surface stabilizing treatment for oxide superconductive bulk
JPS62139856A (en) Manufacture of superconductive v-hf-ti wire
JPH05135636A (en) Manufacture of compound superconductive wire
Webb Niobium--gallium superconductor
JPH0129867B2 (en)
JPS6222205B2 (en)
JPS6366890B2 (en)
JPS5823109A (en) Method of producing nb3sn superconductive wire material