JPS5827071A - Photomagnetic field detector - Google Patents

Photomagnetic field detector

Info

Publication number
JPS5827071A
JPS5827071A JP12518381A JP12518381A JPS5827071A JP S5827071 A JPS5827071 A JP S5827071A JP 12518381 A JP12518381 A JP 12518381A JP 12518381 A JP12518381 A JP 12518381A JP S5827071 A JPS5827071 A JP S5827071A
Authority
JP
Japan
Prior art keywords
magnetic field
light
prism
optical fiber
optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12518381A
Other languages
Japanese (ja)
Inventor
Hiroyoshi Matsumura
宏善 松村
Kazuyuki Nagatsuma
一之 長妻
Yasuo Suganuma
菅沼 庸雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP12518381A priority Critical patent/JPS5827071A/en
Publication of JPS5827071A publication Critical patent/JPS5827071A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/032Measuring direction or magnitude of magnetic fields or magnetic flux using magneto-optic devices, e.g. Faraday or Cotton-Mouton effect
    • G01R33/0322Measuring direction or magnitude of magnetic fields or magnetic flux using magneto-optic devices, e.g. Faraday or Cotton-Mouton effect using the Faraday or Voigt effect

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Magnetic Variables (AREA)

Abstract

PURPOSE:To obtain a stable output overcoming disturbance other than magnetic field, for example, light loss due to bending of an optical fiber and changes in the light transmissivity due to variation in the temperature by having a magnetic field detecting section made up of a polaroid element, a medium with a Faraday rotational capacity and an optical prism. CONSTITUTION:Unpolarized light from an light source 1 is introduced into a magnetic field detecting section A through an optical fiber 2-1. The detecting section A is made up of a polariod element 3, a Faraday rotation element 4 and an optical prism 7, in such a manner that the vibration direction of light from the polaroid element 3 is set at 45 deg. to the main axis of the prism 7. The prism 7 separates the incident light into two linear polarized waves which are separately detected with light detectors 6-1 and 6-2 through an optical fiber 2-2. The ratio is taken between the difference and sum of the intensities P1 and P2 of lights detected with the detectors 6-1 and 6-2 to perform a calculation. This provides only an output proportional to the magnetic field H thereby ensuring a stable output.

Description

【発明の詳細な説明】 本発明は、光ファイバと光の偏波面の回転能(ファラデ
ー回転能)を利用した磁界測定装置において、磁界以外
の外乱(例えば、光ファイバの曲げによる光損失、温度
変化による光透過事変化)にも安定な磁界検出を可能と
する方法−関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides a magnetic field measuring device that utilizes an optical fiber and its ability to rotate the polarization plane of light (Faraday rotation ability), which is capable of detecting disturbances other than magnetic fields (for example, optical loss due to bending of an optical fiber, temperature The present invention relates to a method that enables stable magnetic field detection even when light transmission changes (changes in light transmission due to changes).

従来、光ファイバとファラデー回転能をもつ素子を組合
せた磁界検出方法は第1図に示す構成を取っていた。光
源1からの無偏光の光を光ファイバ2−1で磁界検出部
人に導く。磁界検出部人は偏光子3、ファラデー回転素
子4、検光子5よりなり、光ファイバ2−1の無偏光の
光は偏光子3で直線偏光成分が取り出されファラデー回
転素子4に注入される。ファラデー回転素子4は、光の
進行方向に印加された磁界の強さHに比例しただけ直線
偏光の光を、面内で回転させる。検光子5は通常偏光子
3と45°の角度で相対しており、ファラデー回転素子
4による直線偏光の回転で検光子5t−通る光の強度が
変化する。この光を光ファイバ2−2で光検出器6まで
導き、出力を検出する。この検出出力は磁界の強さHに
比例して次のように書きあられせる。
Conventionally, a magnetic field detection method that combines an optical fiber and an element with Faraday rotation ability has had the configuration shown in FIG. Unpolarized light from a light source 1 is guided to a magnetic field detection unit through an optical fiber 2-1. The magnetic field detection unit is composed of a polarizer 3, a Faraday rotation element 4, and an analyzer 5. A linearly polarized component of unpolarized light from the optical fiber 2-1 is extracted by the polarizer 3 and is injected into the Faraday rotation element 4. The Faraday rotation element 4 rotates linearly polarized light within a plane in proportion to the strength H of the magnetic field applied in the direction in which the light travels. The analyzer 5 normally faces the polarizer 3 at an angle of 45 degrees, and the rotation of the linearly polarized light by the Faraday rotation element 4 changes the intensity of the light passing through the analyzer 5t. This light is guided to a photodetector 6 through an optical fiber 2-2, and the output is detected. This detection output is proportional to the magnetic field strength H and can be written as follows.

Poot=kPo (1−8in2F)/2 ・凹曲・
=・(1)ここで  Pout:検出出力 Po:光源の光の強さ k  :伝送効率 F  :ファラデー回転角 ファラデー回転角は通常次式であられされる。
Poot=kPo (1-8in2F)/2 ・Concave curve・
=・(1) where Pout: Detection output Po: Light intensity k of the light source: Transmission efficiency F: Faraday rotation angle The Faraday rotation angle is usually expressed by the following equation.

F=V、HL  ・・・・・曲曲曲・曲曲曲・四囲〇)
■、:ベルデ定数 L :ファラデー素子の長さ ベルデ定数V、はファラデー回転素子固有の定数である
F=V, HL...muscles, melodies, squares 〇)
(2): Verdet constant L: Length of Faraday element Verdet constant V is a constant specific to the Faraday rotation element.

式(1)における伝送効率には、光ファイバの伝送損失
、光源から光ファイ、バへの光の注入率、光フアイバ端
面の反射率、ファラデー回転素子の光の吸収損失、偏光
子の透過率などに関するものである。第1図に示した磁
界検出器が完全に理想的な場合には式(1)、(2)よ
り出力は磁界の強さHのみによって変化し、その出力よ
り逆に磁界の強さHが求められる。しかし一般に光源1
がらの光の強さPaは時間的に、また外部温度変動によ
って変化する。マえ、光ファイバから偏光子3を介して
フも アラデー回転素子4に入る直線偏その光の強さも変化す
る。これは光ファイバ2−1内の光の偏光状態がつねに
完全にランダムな無偏光でないからである。このため、
弐〇)の伝送効率にも時間的に変化する。このため、磁
界検出が不安定になり、最小検出磁界が上記ノイズによ
って決定される。
The transmission efficiency in equation (1) includes the transmission loss of the optical fiber, the injection rate of light from the light source to the optical fiber, the reflectance of the optical fiber end face, the light absorption loss of the Faraday rotator, and the transmittance of the polarizer. etc. If the magnetic field detector shown in Figure 1 is completely ideal, the output will change only depending on the magnetic field strength H from equations (1) and (2); Desired. However, generally light source 1
The intensity of the light Pa changes over time and due to external temperature fluctuations. Furthermore, the intensity of the linearly polarized light that enters the Alladay rotation element 4 from the optical fiber via the polarizer 3 also changes. This is because the polarization state of the light within the optical fiber 2-1 is not always completely random and non-polarized. For this reason,
The transmission efficiency of 2〇) also changes over time. Therefore, magnetic field detection becomes unstable, and the minimum detected magnetic field is determined by the noise.

本発明の目的は磁界以外の外乱(例えば光源の変動、光
ファイバの伝送損失変動)によっては出力が安定な磁界
検出方法を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a magnetic field detection method whose output is stable despite disturbances other than magnetic fields (for example, fluctuations in a light source and fluctuations in transmission loss of an optical fiber).

以下、本発明を図を用いて詳細に説明する。第2図は本
発明における磁界検出器の構成図である。
Hereinafter, the present invention will be explained in detail using the drawings. FIG. 2 is a configuration diagram of a magnetic field detector according to the present invention.

磁界検出部Aは偏光子3、ファラデー回転素子4、光学
プリズム7よりなり、偏光子3の光の振動方向(直線偏
光の向き)と光学プリズムの光主軸かのを用い、光ファ
イバ2−2を介してそれぞれを光検出器6−1.6−2
で検出する。ここで光学プリズムは検出される光の強さ
P+、Paがそれぞれ次式であられされるものをもちい
る。
The magnetic field detection section A consists of a polarizer 3, a Faraday rotation element 4, and an optical prism 7, and uses the vibration direction of the light of the polarizer 3 (direction of linearly polarized light) and the optical principal axis of the optical prism to connect the optical fiber 2-2. photodetector 6-1.6-2 respectively through
Detect with. Here, the optical prism used is such that the intensities P+ and Pa of the detected light are expressed by the following equations.

・・・・・・・・・・・・ (3) これを演算回路で なる計算を行えば、式<3) 、 (4)より5=si
nF=sin(V、HL)  ”−””−”−”’・(
5)となる。式(5)は光源の強さ、伝送効率に無関係
で、ただ磁界に比例する出力を与える。このため検出出
力は非常に安定である。
・・・・・・・・・・・・ (3) If this is calculated using an arithmetic circuit, then from formula < 3), (4), 5=si
nF=sin(V,HL) ”−””−”−”'・(
5). Equation (5) is independent of the strength of the light source and the transmission efficiency, and gives an output that is proportional to the magnetic field. Therefore, the detection output is very stable.

以下、本発明を実施例を参照して詳細に説明する。Hereinafter, the present invention will be explained in detail with reference to Examples.

実施例 光源としては出力(Pout)が60mWの発光ダイオ
ードを用い、光ファイバとしては直径600μmの石英
ファイバをコアとし100μm厚のプラスチックのクラ
ツディングをもつものを使用した。光源の波長は0.8
μmであつ九。ファラデー回転素子としては、(YSm
LuCa)s  (FeQe)sOIlなる厚み15μ
mの磁性ガーネット薄膜を厚み0.35■のガドリニウ
ム・ガリウム・ガーネットGd5GaiO+*の両面に
、磁化方向が上記面に垂直となるように液相成長法によ
って形成したものを用いた。光学プリズムとしては大き
さが5×5謹で長さが約12簡のウォラストンプリズム
であり、二つの光の分離角は約20度であった。第2図
における光ファイバ2−1と偏光子3の間に直径1.8
■の棒レンズを入れ、光ファイバ2−1よりの光を平行
にした。また光ファイバ2−2とウォラストンプリズム
の間にも結合効率を上げるため同一の棒レンズを用いた
A light emitting diode with an output (Pout) of 60 mW was used as the light source of the embodiment, and an optical fiber having a core of a quartz fiber with a diameter of 600 μm and a plastic cladding of 100 μm thick was used as the optical fiber. The wavelength of the light source is 0.8
Nine in μm. As a Faraday rotation element, (YSm
LuCa)s(FeQe)sOIl thickness 15μ
A magnetic garnet thin film having a thickness of 0.35 mm was formed on both sides of a gadolinium-gallium-garnet Gd5GaiO+* having a thickness of 0.35 cm by liquid phase growth so that the magnetization direction was perpendicular to the above-mentioned planes. The optical prism was a Wollaston prism with a size of 5 x 5 and a length of about 12 lenses, and the angle of separation of the two lights was about 20 degrees. The diameter between the optical fiber 2-1 and the polarizer 3 in Fig. 2 is 1.8 mm.
A rod lens (2) was inserted to make the light from the optical fiber 2-1 parallel. Further, the same rod lens was used between the optical fiber 2-2 and the Wollaston prism in order to increase the coupling efficiency.

光検出器としてはPINフォトダイオードを用いそれぞ
れの出力を検出し、式(4)の演算を行わせた所第3図
に示すように良好な出力が直線性よく得られた。
As a photodetector, a PIN photodiode was used to detect each output, and when the calculation of equation (4) was performed, a good output with good linearity was obtained as shown in FIG.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の光ファイバを用いた磁界検出器の構成図
で、第2図は本発明における磁界検出器の構成図である
。第3図は実施例の説明図で、出力と磁界の強さの関係
を示す。 1・・・光源、2−1.2−2・・・光ファイバ、3・
・・偏光子、4・・・ファラデー回転素子、5・・・検
光子、6゜6−1.6−2・・・光検出器、7・・・光
学プリズム。 代理人 弁理士 薄田利幸 罫  1  図 4 −2 第3図 伍昇Q 狼−2<4”ラスジ
FIG. 1 is a block diagram of a conventional magnetic field detector using an optical fiber, and FIG. 2 is a block diagram of a magnetic field detector according to the present invention. FIG. 3 is an explanatory diagram of the embodiment, showing the relationship between the output and the strength of the magnetic field. 1... Light source, 2-1.2-2... Optical fiber, 3.
... Polarizer, 4... Faraday rotation element, 5... Analyzer, 6°6-1.6-2... Photodetector, 7... Optical prism. Agent Patent Attorney Toshiyuki Usuda 1 Figure 4-2 Figure 3 Gosho Q Wolf-2 < 4” Rasuji

Claims (1)

【特許請求の範囲】 1、光源とファラデー回転能を有する媒質を有してなる
磁界検出部と、上記検出部からの光を計測する計測部と
上記光源と検出部および計測部を光学的に結合する光伝
送路とからなる磁界測定装置において上記検出部が偏光
子、ファラデー回転能を有する媒質と光学プリズムで構
成されたことを特徴とする磁界検出器。 2、特許請求の範囲第1項記載の磁界検出器において、
光学プリズムは、入射光″lr、2つの直線偏光の光に
分離するプリズムで構成されている磁界検出器。 3.4G許請求の範囲第1項記載の磁界検出器において
、分離された2つの光を、実質的に2本の光ファイバで
計測部まで導びき、それらの出力の差と和の比を取って
計測する磁界検出器。
[Claims] 1. A magnetic field detection section comprising a light source and a medium having Faraday rotation ability, a measurement section that measures light from the detection section, and an optical system that connects the light source, the detection section, and the measurement section. What is claimed is: 1. A magnetic field detector comprising a magnetic field measuring device comprising a coupled optical transmission path, wherein the detecting section comprises a polarizer, a medium having Faraday rotation ability, and an optical prism. 2. In the magnetic field detector according to claim 1,
The optical prism is a magnetic field detector composed of a prism that separates the incident light "lr" into two linearly polarized lights. A magnetic field detector that essentially guides light through two optical fibers to a measuring section and measures the difference and sum of their outputs.
JP12518381A 1981-08-12 1981-08-12 Photomagnetic field detector Pending JPS5827071A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12518381A JPS5827071A (en) 1981-08-12 1981-08-12 Photomagnetic field detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12518381A JPS5827071A (en) 1981-08-12 1981-08-12 Photomagnetic field detector

Publications (1)

Publication Number Publication Date
JPS5827071A true JPS5827071A (en) 1983-02-17

Family

ID=14903951

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12518381A Pending JPS5827071A (en) 1981-08-12 1981-08-12 Photomagnetic field detector

Country Status (1)

Country Link
JP (1) JPS5827071A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60138480A (en) * 1983-12-27 1985-07-23 Hitachi Cable Ltd Optical magnetic field sensor
JPS6126875A (en) * 1984-07-17 1986-02-06 Toshiba Corp Measuring device for magnetic field
JPS62133973A (en) * 1985-12-05 1987-06-17 松下電器産業株式会社 Disposal apparatus
US4896103A (en) * 1985-06-29 1990-01-23 Kabushiki Kaisha Toshiba Current measuring magnetic field sensor having magnetooptic element with its easy axis of magnetization at right angles to the magnetic field generated by the current
US4956607A (en) * 1988-03-03 1990-09-11 Ngk Insulators, Ltd. Method and apparatus for optically measuring electric current and/or magnetic field

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60138480A (en) * 1983-12-27 1985-07-23 Hitachi Cable Ltd Optical magnetic field sensor
JPS6126875A (en) * 1984-07-17 1986-02-06 Toshiba Corp Measuring device for magnetic field
US4896103A (en) * 1985-06-29 1990-01-23 Kabushiki Kaisha Toshiba Current measuring magnetic field sensor having magnetooptic element with its easy axis of magnetization at right angles to the magnetic field generated by the current
JPS62133973A (en) * 1985-12-05 1987-06-17 松下電器産業株式会社 Disposal apparatus
US4956607A (en) * 1988-03-03 1990-09-11 Ngk Insulators, Ltd. Method and apparatus for optically measuring electric current and/or magnetic field

Similar Documents

Publication Publication Date Title
US5245407A (en) Fiber-optic gyroscope with depolarizers in a fiber coil located between a light source and a polarizer
US7176671B2 (en) Current measuring device
US6014217A (en) Fiber optic gyroscope scattering error reduction
US5218652A (en) Depolarizer for electromagnetic radiation
CA1205523A (en) Interferometer device for measurement of magnetic fields and electric current pickup comprising a device of this kind
JP2759381B2 (en) Depolarized fiber optic rotation sensor with low Faraday effect drift
US5136667A (en) Fiber optic gyro
EP3690466A1 (en) Magnetic sensor element and magnetic sensor device
JPS5827071A (en) Photomagnetic field detector
Svantesson et al. Magneto-optical garnet materials in fiber optic sensor systems for magnetic field sensing
CN114674302B (en) Dual-polarization optical fiber gyroscope with dead-end optical power recycling function
US20030138224A1 (en) Method for fabrication of an all fiber polarization retardation device
JPH07151555A (en) Optical fiber gyro taking out signal from light source
JPH0740048B2 (en) Optical fiber type voltage sensor
JPS61223824A (en) Reflection type optical sensor
JP4868310B2 (en) Photocurrent sensor
Zhou et al. Sensitive detection of optical rotation in liquids by reflection polarimetry
JPS60263866A (en) Optical electric field sensor
JPS61212773A (en) Photosensor
Sohlstrom et al. Waveguide-based fiber optic magnetic field sensor with directional sensitivity
JPH0618567A (en) Optical-fiber current sensor
JPH0933586A (en) Photosensor
JPS6162882A (en) Magnetic field detector
JP2001502798A (en) A device with a retracing optical circuit for measuring physical quantities with a high degree of rejection of environmental noise
JP2000206218A (en) Multilayer film magnetic field sensitive element and optical type magnetic field detector using the same