JPS582644A - On-line phase quantitative determination device for complex phase metal strip - Google Patents

On-line phase quantitative determination device for complex phase metal strip

Info

Publication number
JPS582644A
JPS582644A JP10102281A JP10102281A JPS582644A JP S582644 A JPS582644 A JP S582644A JP 10102281 A JP10102281 A JP 10102281A JP 10102281 A JP10102281 A JP 10102281A JP S582644 A JPS582644 A JP S582644A
Authority
JP
Japan
Prior art keywords
phase
ray
diffraction
strip
aperture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10102281A
Other languages
Japanese (ja)
Inventor
Takeshi Kitagawa
北川 孟
Taiji Soumura
泰治 荘村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Rigaku Corp
Original Assignee
Rigaku Industrial Corp
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rigaku Industrial Corp, Kawasaki Steel Corp filed Critical Rigaku Industrial Corp
Priority to JP10102281A priority Critical patent/JPS582644A/en
Publication of JPS582644A publication Critical patent/JPS582644A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/20Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by using diffraction of the radiation by the materials, e.g. for investigating crystal structure; by using scattering of the radiation by the materials, e.g. for investigating non-crystalline materials; by using reflection of the radiation by the materials
    • G01N23/207Diffractometry using detectors, e.g. using a probe in a central position and one or more displaceable detectors in circumferential positions

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

PURPOSE:To conduct quantitative determination of phases simply with high accuracy by providing an X-ray tube that applies characteristic X-ray with a specified incidence angle and an X-ray detecting device that receives diffracting X-ray from the strip for running metal strips with complex phases. CONSTITUTION:An on-line phase quantitative determinating device consists of an X-ray tube of the type of sealed Cr target, an X-ray detector 2 that receives diffracting X-ray from the grid surface of ferrite phase, and an X-ray detector 3 that receives diffracting X-ray from the grid surface of austenite phases. With the present device, there is a certain relation between the amount of austenite phases and the intensity of diffracting X-ray from them. Therefore, the values of correlation between them are stored beforehand in a calculation device, and by comparing them with the input value of an integrated intensity, quantitative determination of austenite phases in the longitudinal direction of a metal strip can be made by on-line real time, namely with simplicity and high accuracy.

Description

【発明の詳細な説明】 この発明は、複合相合−ストリ、ツブのオンライン相定
置装置に関し、とくに複数の相をもつ金属ストリップの
各相の定置をオンラインリアルタイムで簡便かつ高精度
に行おうとするものであム一般に裏合相金−材料におい
ては、その相比率が材料の機械的および物理的性質を決
定するJM要な費素となる。
[Detailed Description of the Invention] The present invention relates to an online phase positioning device for composite mating strips and tubes, and in particular is intended to easily and accurately position each phase of a metal strip having multiple phases online in real time. In general, in back-alloy materials, the phase ratio is an important factor that determines the mechanical and physical properties of the material.

たとえば/70r−7Niステンレス鋼板は、焼鈍後の
状態ではオーステナイト単相であるが、そ〜の後の冷間
11111上によりオーステナイト相の一部は加工t8
起マルテンサイトに相変態し、この相比率が冷+b 1
10工Itこ便用する用途たとえばスプリング材などに
おいては重要な意味をもつ。またフェライト−□マルテ
ンサイトニ相合金冷延高張力鋼板において&j1そわら
の相比率が機械的性質に大きな1智を与える。
For example, /70r-7Ni stainless steel plate has a single austenite phase after annealing, but part of the austenite phase is removed by cold processing at t8.
phase transformation to martensite, and this phase ratio is cold + b 1
It has an important meaning in applications such as spring materials. In addition, in a ferrite-□ martensitic dual-phase alloy cold-rolled high-strength steel sheet, the phase ratio of &j1 has a large influence on mechanical properties.

促ってこの柚糎合相金属ストリップの製造においてに、
各相の比率を所定の値に制−することが、そのほらつき
低減とともに重要な品質管理項目の1つであり、このた
めには各相の割合をオンラインで正−に足瀘することが
望ましい。
In the production of this yuzu paste metal strip,
Controlling the ratio of each phase to a predetermined value is one of the important quality control items as well as reducing fluctuations, and for this purpose, it is necessary to control the ratio of each phase correctly online. desirable.

ところで金−材料の相定−法の一つとして従来からx 
v 1ril ff法が知られているが、このX@回折
法による相定−では通常被検体Φの集合組織の影会を除
去することが必要とさね1、そのために数多くの結晶格
子面からの回折張度の測定をしたりまた測定機器の揺動
を行わねばならないなど煩雑な操作Ili扱いを必要と
するのでオンラインでの測定を困絵なものとしていた。
By the way, as one of the phase determination methods for gold materials, x
The v 1 ril ff method is known, but this phase determination using the The on-line measurement is difficult because it requires complicated operations such as measuring the diffraction tonicity of the sample and rocking the measuring equipment.

このため現実には、オフライン抜取検査で鋼板の挟間を
測定し、その軸から材質のばらつきを推定する幅間でそ
のfljJ 1dtlも焼鈍温度の管理を行う程度であ
った。
For this reason, in reality, the fljJ 1dtl and annealing temperature were only managed by measuring the gap between the steel plates in an off-line sampling inspection and estimating the variation in material quality from the axis.

この発明は上記の開−を有利に解決するもので、xMA
回折−器の揺動など煩雑な操作し扱いを必要とすること
なく簡便にしかも高い精度で腹合相合−ストリッフノオ
ンライン相定蓋を可能ならしめる装置を提案するもので
ある。
This invention advantageously solves the above-mentioned problems, and the xMA
The purpose of the present invention is to propose a device that allows for simple and highly accurate intra-abdominal phase matching-striffonline phase constant lid without requiring complicated operations and handling such as rocking of a diffractometer.

すなわちこの発明は、ライン走行中の腹合札金−ス) 
IJツブに対し一定の入射角で特性X@を照射するX線
管と、該ストリップのxw照射域における複合相各相の
うち少くとも−の相の特定格子面からの回折X線を受光
するXIIM!#川器、ま″用さらには必要に応じてバ
ックグラウンド回折xIIMを受光するX&l検出器と
、xlIli管の照射開口およびX41.1検出器の受
光開口の少くとも一方に設けた開き角10  Q(上り
ソーラスリットおよびこれらを収納する分光室とをそな
え、かつ受光した回折X線の積分強度を1−別に算出す
る信号処理装置ならびに得られた積分強度値に基いて複
合相各相の定−を行う醜算装置とからなる複合相金銅ス
トリップのオンライン相定縁装置である。
In other words, the present invention is applicable to the following:
An X-ray tube that irradiates the IJ tube with characteristic X@ at a constant angle of incidence, and receives diffracted X-rays from a specific lattice plane of at least the negative phase of each of the composite phases in the xw irradiation area of the strip. XIIM! # For river equipment, ma'' In addition, if necessary, an X&l detector that receives the background diffraction (A signal processing device that is equipped with an upstream solar slit and a spectroscopic chamber that houses these, and that separately calculates the integrated intensity of the received diffracted X-rays, and a signal processing device that separately calculates the integrated intensity of the received diffracted X-rays, and a This is an on-line phase edging device for composite phase gold-copper strips, which consists of a device for performing the process and a device for performing the process.

この発明では、X線管の照射開口およびX線検liI 
Mの受光開口のうち少くともいずれか一方に開き角を/
Q以上としたソーラスリットを設けて適当な回折角度幅
をもって受光し、得られた回折X−のプロフィルを回折
角度について積分して得らtする積分強度を求めること
により回折X41!の強度を飛蹄的しこ増大させ、かく
してxIIi!回折装置のオンラインへの1用を可能な
らしめたのである。
In this invention, the irradiation aperture of the X-ray tube and the
Set an aperture angle to at least one of the light-receiving apertures of M.
A solar slit of Q or more is provided to receive light with an appropriate diffraction angle width, and the profile of the obtained diffraction X- is integrated with respect to the diffraction angle to obtain the integrated intensity of the diffraction X41! increases the strength of xIIi! This made it possible to use the diffraction device online.

すなわち従来のX@回折装置では、できるだけ正体な回
折角度位置にて回折x1i11jIj度の測定を行うべ
く、スリットの開き角は0010程度に極力小さくして
角度分解能を高めることに主眼が置かれCいた)である
が、発明者らの研究によれば、X−回uスを利用する相
定−においては、(1)厳蕾な回折角度位置の評価はと
くに必要なく、(2)むしろ回折X@強度としては、ブ
ラック6の条件を満足する角度のまわりにある回折角度
幅をもって表われる回折xIsプロフィルから求められ
る積分強度を測定することが望ましいこと、(3)  
そして上記の積分強度を得るために必要なバックグラウ
ンド回折xII強度は別速に検出できること、 などが判明し、上の条件を満足させるためスリットの−
き角を回折XSのプロフィルの幅に応じてできるだけ広
くすることにより回折X線の強度を着しく^めることに
成功したのであり、かくしてヘッド部と被検体との間の
距離を十分大きくとることができるようになり、また照
視野の増大も達成され、ここにX線回折装置によるオン
ライン相定量が実現したのである。
In other words, in the conventional X@ diffraction device, the main focus was on increasing the angular resolution by making the opening angle of the slit as small as possible to about 0010 in order to measure the degree of diffraction x1i11jIj at the true diffraction angle position as much as possible. ) However, according to the inventors' research, in phase determination using the (3) Regarding the intensity, it is desirable to measure the integrated intensity determined from the diffraction xIs profile that appears with a diffraction angle width around an angle that satisfies the Black 6 condition.
It was also found that the background diffraction xII intensity required to obtain the above integrated intensity can be detected at a different speed.
By making the angle as wide as possible according to the width of the diffraction XS profile, we succeeded in controlling the intensity of the diffraction X-rays, and in this way, we were able to maintain a sufficiently large distance between the head and the subject. This also made it possible to increase the illumination field, making online phase quantification possible using an X-ray diffraction device.

また、この発明では、同一圧延加工条件下のストリップ
についてはストリップの集合組織は一定と見なし得るこ
とから、集合組織の影響を除去するため゛の複雑な機構
は一切排除して簡略化したこともオンライン相定量を可
能ならしめた一因である0 さらにこの発明においては、腹合相金調ストリップの相
定量を行うに当り、相比率が未知の試料(ついては、襄
金相各相の特定格子面からの回折X線ならびにバックグ
ラウンド回折X1ilの強度をそれぞわ計測することが
必要であるが、同じ組成の金−ストリップを特定加工条
件下に処理する場合には、得られた結果をそれぞれのパ
ターン毎に統計的にまとめることにより、すべての相お
よびバックグラウンドからの回折x#sを測定すること
なしに嚢合相のうち少くとも−の相からの回折X線とバ
ックグラウンド回折X線の組合せにより、さらには複合
相のうち少くとも−の相からの回折X線のみを測定する
ことこより、該ストリップの複合相各相の定量も達成で
きる。
In addition, in this invention, since the texture of the strip can be regarded as constant for strips under the same rolling processing conditions, the complex mechanism described in ``2'' is completely eliminated and simplified in order to eliminate the influence of the texture. This is one of the factors that made online phase determination possible.Furthermore, in this invention, when performing phase determination of a gold-tone strip, it is necessary to use a sample with an unknown phase ratio (for example, a specific grid of each phase of the gold-tone phase). It is necessary to measure the intensity of the diffracted X-rays from the surface and the background diffracted X1il, respectively, but when gold strips of the same composition are processed under specific processing conditions, the obtained results can be measured separately. By statistically summarizing each pattern of Furthermore, by measuring only the diffraction X-rays from at least the negative phase of the composite phase, it is possible to quantify each phase of the composite phase of the strip.

以下この発明を、7工ライトーオーステナイド二相合金
ストリップの相定量を行う場合の好適実施WQについて
具体的に説明する。
Hereinafter, the present invention will be described in detail with regard to a preferred implementation WQ in the case of performing phase quantification of a heptagonalite-austenoid two-phase alloy strip.

第1図にX線回折m器を納め尿ヘッド部を示し、回申l
はCrターゲットの封入型x#A管球、コはフェライト
相の(211)格子面からの回折X線を受光するX線検
出器、Jはオーステナイト相の(ago)格子面からの
回折x!lを受光するX−検出器、モしてダはバックグ
ラウンド回折X線受光用のxs検出器であり、これらの
X@検出器のうちコ・3については一定の入射角で照射
される照射ビームに対し、それぞれプ゛ラッグの条件を
満足するJI=7!t°、129°(JIは回折角)の
回折角+[置に、またバックグラウンド用X@検出器亭
は、それらのけば中間の/$70の角度位置に固定した
Figure 1 shows the urine head section containing the X-ray diffraction device, and the
is an x#A tube with an enclosed Cr target, C is an X-ray detector that receives diffracted X-rays from the (211) lattice plane of the ferrite phase, and J is the x! diffraction from the (ago) lattice plane of the austenite phase. The X-detector that receives 1, and the X-detector that receives background diffraction X-rays, and the JI = 7 that satisfies the plug conditions for each beam! t°, 129° (JI is the diffraction angle) at the diffraction angle + [, and the background X@detector was fixed at an angular position of /$70 midway between them.

s−t、z−2,j−3および!−蓼は、いずれもソー
ラスリットで、この例ではx4m管球Iの照射開口およ
び各Xll1[#コ、J、参の受光開口のすべてに設け
た場合について示したが、必ずしもその必要はなく照射
側か受光・側のいずれが一方に設ければよく、肝心なこ
とはX線照射領域からの回折X@のプロフィルの幅に応
じてその開き角を10以上にすることである。
s-t, z-2, j-3 and! - The solar slits are all solar slits, and in this example, the case where they are provided in the irradiation aperture of x4m tube I and the light receiving apertures of each It is sufficient to provide either the side or the light receiving side on one side, and the important thing is to set the aperture angle to 10 or more depending on the width of the profile of diffraction X@ from the X-ray irradiation area.

4は室部であって、ここからX線の照射、受光を行うと
ともに、分光117の内部雰囲気を外部雰囲気からしゃ
断する。この室部乙には、XtiA@収が小さい板状材
を用い、高い強度を必要とする場合には厚さの大きいも
のを使用することが望ましい。また高温で使用する場合
は耐熱性、腐食性雰囲気で使用する場合は耐食性を考慮
する必要がある。
Reference numeral 4 denotes a chamber from which X-rays are irradiated and received, and the internal atmosphere of the spectrometer 117 is cut off from the external atmosphere. For this chamber part B, it is desirable to use a plate-like material with a small XtiA@ strength, and if high strength is required, use a material with a large thickness. In addition, it is necessary to consider heat resistance when used at high temperatures, and corrosion resistance when used in a corrosive atmosphere.

なおヘッド部において、外部雰囲気の圧力などを考慮に
入れる必要がある場合は、室部4と分光室7との接合に
気密性をもたせ、かつ分光室7の内部に適当な圧力下の
雰囲気ガスを充てんする。
If it is necessary to take into account the pressure of the external atmosphere in the head section, the connection between the chamber 4 and the spectroscopic chamber 7 should be made airtight, and the atmosphere gas under an appropriate pressure should be provided inside the spectroscopic chamber 7. Fill it with.

また焼鈍中など高温雰囲気下で相定量を行う場合には、
分光室7を水冷構造にすることが望ましくヤース内壁お
よび内部部品に結露し、かつ内部部品の損傷および絶縁
能低下を防ぐために露点の既い乾燥した雰囲気ガスを環
流する。さらにヘッド部は必要に応じて防爆構造とする
ことができる。
In addition, when performing phase determination in a high temperature atmosphere such as during annealing,
It is desirable that the spectroscopic chamber 7 has a water-cooled structure, and in order to prevent dew condensation on the inner wall of the jar and internal parts, and to prevent damage to the internal parts and deterioration of insulation performance, a dry atmospheric gas having a dew point is circulated. Furthermore, the head portion can be constructed to be explosion-proof if necessary.

また金属ストリップは、通板中に上、下のぶれを生じ、
この上、下での変動が激しい場合にはX線回折に支障を
きたすおそれがあるが、この点は第2図に示したように
ヘッド部の上、下流でストリップlをそれぞれ上、下一
対のビンチロール9゜/θで軽く挾むことにより容易に
解消できる。
In addition, metal strips cause vertical and downward vibrations during threading.
If there are large fluctuations at the top and bottom, it may interfere with X-ray diffraction, but in this case, as shown in Fig. This can be easily resolved by lightly pinching with a vinyl roll of 9°/θ.

後述する測定結果から、第1図に示した好適例において
ヘッド部と被検体ストリップとの間の距離りが100 
mである場合には、該スジリップの上。
From the measurement results described later, it is found that in the preferred example shown in FIG.
m, above the streak lip.

下動が71111以内であればオンライン相定量に支障
はなく、数万cpaの高い積分強闇値が得られ、かつそ
の統計変動も小さかった。
If the downward movement was within 71111, there was no problem with online phase quantification, high integrated intensity values of tens of thousands of cpa were obtained, and the statistical fluctuations were small.

次に第3図に検出器にて受光した回折x!Iの処理系統
を示し、番号//および12はそれぞれ検出器コ、Jで
受光した回折Xilすなわちオーステナイト相およびフ
ェライト相各相の特定格子面からの回折X線の積分強度
を算出する信号処理゛装置、/1は検出Haからの回折
xsすなわちバックグラウンド回折xImの積分強度を
算出する信号処理装置であり、そしてl#は得られた積
分強度値に基いて各相の定量を行う演算製蓋である。
Next, Figure 3 shows the diffraction x! received by the detector. The numbers // and 12 indicate signal processing for calculating the integrated intensity of the diffracted X-rays received by the detectors K and J, that is, the integrated intensity of the diffracted X-rays from specific lattice planes of the austenite and ferrite phases. The device /1 is a signal processing device that calculates the integrated intensity of the diffraction xs from the detected Ha, that is, the background diffraction xIm, and l# is a calculation lid that quantifies each phase based on the obtained integrated intensity value. It is.

演算装置lダにおける相定量の要領の一例を述べると次
のとおりである◎ (1)  ff1号処理装置// 、 /コおよび13
からの出力に基いてオーステナイト量rvozの電量を
行う場合γvat = 17−1B、G−/((I7−
IB、G、)+(Iα−より、G、))−−−−−(1
) ここで工がオーステナイト相からの回折x!Iの積分強
度値Ia: 7エライト相からの回折X@の積分強度値
より、G、 :バックグラウンド回折x1積分強度竺(
2)  検出器l/および13からの出力に基いてオー
ステナイト相の定量を行う場合 ’VOI =Kl・(与−IB、G、)    −−−
−−(2)ここでに工とは対象鋼種別に予めオーステナ
イト量とCI、−I、、G、)との較正曲線を求めてお
いた場合にこれら両方の量を関係づける係数であり、こ
の係数は、被検体毎に、また予想されるrIlが大幅に
興なる場合は、所定の1 オーステナイト量の範囲別に用意し、演算装Ml#に記
憶させておけばよい。
An example of how to calculate the phase quantity in the arithmetic unit DA is as follows◎ (1) ff1 processing unit //, /co and
When calculating the amount of austenite rvoz based on the output from γvat = 17-1B, G-/((I7-
IB, G, )+(Iα−, G,))---(1
) Here, the diffraction from the austenite phase is x! Integrated intensity value Ia of I: 7 From the integrated intensity value of diffraction
2) When quantifying the austenite phase based on the outputs from the detectors l/ and 13'VOI = Kl (give -IB, G,) ---
--(2) Here, Δ is a coefficient that relates the amounts of austenite and CI, -I, , G,) when a calibration curve is obtained in advance for each target steel type, This coefficient may be prepared for each subject, or for each predetermined range of 1 austenite amount if the expected rIl increases significantly, and may be stored in the arithmetic unit Ml#.

(3)  検出器//からの出力のみに基いてオーステ
ナイト相の定置を行う場合 rVOj ” K2”r      ==−″(3)(
3)式のに2については実際の測定においてはより、G
、は殆んど変化しないところから、たとえ ば測定開始点あるいは一定時間毎の より、G、実測値を用い連続的オンライオ−ステナイト
相の定量を行う。
(3) When emplacement of the austenite phase is performed based only on the output from the detector //
3) Regarding equation 2, in actual measurement, G
Since , hardly changes, for example, the continuous online austenite phase is quantified using actual measured values of G and from the starting point of measurement or at regular intervals.

この発明に従い開き角を30としたソーラスリットを用
いた場合の回折X線の強度を、従来の開き角0.IOの
スリットを使用した場合と比較すると従来装置の172
0の負荷率(−印加電力/管球最大電力)でしかもヘッ
ド部と被検体間の距離を参倍にした場合であっても約3
倍の強度が得られた。
The intensity of diffracted X-rays when using a solar slit with an aperture angle of 30 according to the present invention is compared with that of the conventional aperture angle of 0. Compared to the case of using IO slit, the conventional device has 172
Even when the load factor is 0 (-applied power/maximum tube power) and the distance between the head and the subject is multiplied, it is approximately 3.
Double the strength was obtained.

すなわち回収X線強度は従来の4000倍以上に増大で
きた。
In other words, the recovered X-ray intensity was increased by more than 4000 times that of the conventional method.

以下この発明装置を用いて、スプリング材として使用に
供するステンレス冷延鋼帯すなわちオーステナイトーマ
ルテンサイトニ相合金におけるオーステナイト相の定量
を行った場合について説明する。
Hereinafter, a case will be described in which the apparatus of the present invention is used to quantify the austenite phase in a cold-rolled stainless steel strip used as a spring material, that is, an austenite-martensitic two-phase alloy.

x41管球としては、Qrターゲットの封入型x&1管
球を柑い、BKV、3omムの電力を印加した。
As the x41 tube, a Qr target enclosed type x&1 tube was used, and a BKV, 3 ohm power was applied.

ソーラスリットはX線の照射開口および受光開口のすべ
てに設置し、開き角は3°のものな用いた。
Solar slits were installed in both the X-ray irradiation aperture and the light receiving aperture, and the opening angle was 3°.

また特性X線以外の白色部をカットするため、X線の照
射側および受光側にそれぞれ厚さ32m。
In addition, in order to cut the white part other than the characteristic X-rays, the thickness is 32 m on the X-ray irradiation side and the light receiving side.

30μmのバナジウム・フィルタを挿入した。窩材とし
ては厚さ約〃μmのアルミニウム箔を使用した。この窒
材は厚さ約l■のベリリ□−ウム箔とX線吸収量の点で
同等である。
A 30 μm vanadium filter was inserted. Aluminum foil with a thickness of about 〃μm was used as the cavity material. This nitrogen material is equivalent in X-ray absorption to beryllium □-ium foil having a thickness of about 1 inch.

なおこの棚の金−ストリップは、一般に平たん度も息<
、シかもかなり硬いものでもあるので、通常のライン走
行においては上、下での変動が激しいか、この変動は前
掲第2図に示したようにヘッド部の上、下流でそれぞれ
一対のピンチロールで軽く挾むことにより防止でき、か
くしてストリップ走行中における上、下動を±l■以内
に抑えることができた。
Furthermore, the gold strip on this shelf is generally flat and breathable.
, and is also quite hard, so during normal line running, there may be large fluctuations at the top and bottom, or this fluctuation may be caused by a pair of pinch rolls at the top and downstream of the head, as shown in Figure 2 above. This could be prevented by lightly pinching the strip, and thus the upward and downward movements during strip running could be suppressed to within ±1.

さて上に述べた条件の下でストリップの長手方向にxI
Iを照射してストリップの全長にわたって各相およびバ
ックグラウンドからの回折X線の積分強度を算出した一
例を第参図に示す。図中工I、およびより、G、がそれ
ぞれオーステナイト相、マルテンサイト相およびバック
グラウンドからの回折xsの積分強度である。
Now under the above conditions xI in the longitudinal direction of the strip
An example of calculating the integrated intensity of diffracted X-rays from each phase and the background over the entire length of the strip by irradiating the strip with I is shown in FIG. In the figure, I and G are the integrated intensities of diffraction xs from the austenite phase, martensite phase, and background, respectively.

ストリップの先端(LIC)および尾端(Tic)にお
いてオーステナイト相からの回折x[Ilの積分強度が
低く、マルテンサイト相からの回折X線の楡分会度が高
いのは圧延時ではLEおよびTE部の湿質が低いなど圧
延加工*件から予想されるところと一致し、この傾向は
別の方法で相定量船行った結果からも実証されている。
The integrated intensity of diffraction This is consistent with what would be expected from the rolling process*, such as low wet quality, and this tendency was also confirmed by the results of phase weighing using another method.

また同図においてバックグラウンド回折X@の積分強度
が測定中にほとんど変動しないことからもこの算出値の
信頼性が握付けられる。さらに□十分な回数の繰返し測
定の結果、オーステナイト相およびマルテンサイト相か
らの回折X線の積分強度工r # 工Mはその値が急激
に変化するLH、T1部を含めて誤差±3襲以内で再現
性があることが確められた。
Furthermore, the reliability of this calculated value can be grasped from the fact that the integrated intensity of the background diffraction X@ hardly changes during the measurement in the same figure. Furthermore, as a result of repeated measurements a sufficient number of times, the integrated intensity of the diffracted X-rays from the austenite and martensite phases (r # M) has an error within ±3 degrees, including the LH and T1 parts where the value changes rapidly. It was confirmed that it was reproducible.

また第5図にはストリップの通板方向と垂直な方向にX
線を照射した場合におけるオーステナイト相、マルテン
サイト相各相からの回折XSの積分彊度工′ 。1′に
ついて開ぺ。た結果を、バックγ    M グラウンド回折x41の積分強度”B、G、と共に示し
た。
Also, in Figure 5, there is an
Integral curve of diffraction XS from austenite phase and martensite phase when irradiated with radiation. Open about 1'. The results are shown together with the integrated intensities "B, G" of the back γ M ground diffraction x41.

同図に併記したIr 、 IN値と比較すると、工I、
Comparing with the Ir and IN values shown in the same figure, the
.

11M値は、ストリップの長手方向にわたる変化の傾向
は一致するが、絶対値は異なる。このように集合組織の
影響を補正しない場合には、X線の照射方法の違いによ
り得られる値は変化する。しかしながらいずれの場合で
も、得られた積分強度と、別法により集合組織の影響を
除失して定置した鋼□中オーステナイト量との関係をみ
ると、第4図に示したように両者には一定の関係があり
、従ってこれらの相関値を予め演算装−←記憶させてお
けば、入力された積分!![値と照合させることにより
オンラインリアルタイムでストリップの長手方向にわた
るオーステナイト相の定量が実施で−き、とくにオース
テナイト量が特定範囲内であれば1%の精度での相定量
が可能である。
The 11M values have the same tendency of change over the longitudinal direction of the strip, but the absolute values are different. If the influence of texture is not corrected in this way, the values obtained will vary depending on the difference in the X-ray irradiation method. However, in any case, when we look at the relationship between the obtained integrated strength and the amount of austenite in the steel □, which is placed in place by eliminating the influence of the texture, as shown in Figure 4, there is a difference between the two. There is a certain relationship, so if these correlation values are stored in advance in the arithmetic unit, the input integral! ! [By comparing with the value, it is possible to quantify the austenite phase in the longitudinal direction of the strip online in real time. In particular, if the amount of austenite is within a specific range, the phase can be quantified with an accuracy of 1%.

さらにヘッド部を被検体ストリップの幅方向に順次移動
させることにより幅方向にわたるオーステナイト樋定量
も達成でき、ばらつき管理の点で役立つ。
Further, by sequentially moving the head portion in the width direction of the strip to be examined, austenite trough quantification across the width can be achieved, which is useful in terms of variation control.

上述の相定量に当っては、両相からの回折X@ならびに
バックグラウンド回折X線の積分強度を算出して行うこ
とが精度の点ではより好ましいが、成分組成ならびに加
工条件が等しいストリップに対してはそれまでに得られ
た統計データを活用して、両相のうちいずれか一方の相
からの回折Xlとバックグラウンド回折xIIの組合わ
せ、さらにはいずれか−相からの回折X@のみの積分強
度から十分満足できる精度でオンライン相定量を行い得
る。
In terms of accuracy, it is more preferable to calculate the integrated intensity of the diffraction Then, by utilizing the statistical data obtained so far, we can calculate the combination of the diffraction Xl from one of the two phases and the background diffraction Online phase quantification can be performed with sufficient accuracy from the integrated intensity.

以上オーステナイトーマルテンサイトニ相合金における
オーステナイト相の定量を行う場合につき主に説明した
が、その他7エライトーマルテンサイドニ相合金冷延高
張力鋼板の相定量や、Ni−2n腹金めつき鋼板の合金
化度の測定にも適用できるのは勿論である。ただしフエ
ライトーマルテンサイトニ相合金冷延高伽力鋼板の相定
量を行う場合には、通常xIm回折法においてはフェラ
イト相とマルテンサイト相の区別が事実上不可能である
ため、測定温度をM8点以上とし、マルテンサイト相は
変動前のオーステナイト相として定量する必要がある。
Above, we have mainly explained the case of quantifying the austenite phase in an austenite-martensitic dual-phase alloy, but we have also explained the case of determining the austenite phase in a 7-elite-martensite dual-phase alloy cold-rolled high-strength steel sheet and Ni-2N plated steel sheet. Of course, it can also be applied to measuring the degree of alloying. However, when quantifying the phase of a ferrite-martensitic dual-phase alloy cold-rolled high-strength steel sheet, it is usually impossible to distinguish between the ferrite phase and the martensitic phase using the xIm diffraction method, so the measurement temperature should be set at the M8 point or above. Therefore, it is necessary to quantify the martensite phase as the austenite phase before deformation.

またNi−Zn 腹合めつき鋼板の合金化度は合金相た
とえばδ、相の定量を行うことにより容易に判定できる
Further, the degree of alloying of a Ni--Zn plated steel sheet can be easily determined by quantifying the alloy phase, for example, δ phase.

かくしてこの発明によれば、複合相全開ストリップの複
合相各相の定量をオンラインリアルタイムで簡便かつ高
精度に達成でき、製品の品質管理に利用して偉効を奏す
る。
Thus, according to the present invention, the quantitative determination of each composite phase in a composite phase fully open strip can be easily and accurately achieved online in real time, and can be used to great effect for product quality control.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はヘッド部の説明図、第2図は被検体ス) IJ
ツブの上、下動防止要領の説明図、第3図は検出器にて
受光した回折X@の処理系統図、第1図はストリップの
長手方向の向きにx41回折を行った場合のストリップ
全長にわたる回折X411の積分強度の推移を示したグ
ラフ、第5図はストリップの幅方向の向きでX線回折を
行った場合のストリップ全長にわたる回折X線の積分強
度の推移を示したグラフ、第4図はオーステナイト相か
らノ回折xlIiの積分強度と鋼中のオーステナイ)3
1との関係を示したグラフである。 / ・X @管、x、zおよUtt−XIIA検出W、
S−t 、 S−2,S−3および!−ダ・・・ソーラ
スリット、7・・・分光室、// e /コおよび13
・・・信号処理装置、/f・・・演算装置。 特許出願人  川崎製鉄株式金社 同 出願人  理学電機工業株式会社
Figure 1 is an explanatory diagram of the head, Figure 2 is the specimen) IJ
An explanatory diagram of how to prevent the tube from moving up and down. Figure 3 is a processing system diagram of the diffraction Figure 5 is a graph showing the transition in the integrated intensity of diffracted X-rays over the entire length of the strip when X-ray diffraction is performed in the width direction of the strip. The figure shows the integrated intensity of diffraction xlIi from the austenite phase and austenite in steel)3
1 is a graph showing the relationship with 1. / ・X @ tube, x, z and Utt-XIIA detection W,
S-t, S-2, S-3 and! - da... solar slit, 7... spectroscopic chamber, // e / co and 13
...Signal processing device, /f...Arithmetic device. Patent applicant: Kawasaki Steel Co., Ltd. Applicant: Rigaku Denki Kogyo Co., Ltd.

Claims (1)

【特許請求の範囲】 1、 ライン走行中の腹合和合−ストリップに対し一定
の入射角で特性X@を照射するX線管と、レストリップ
のX線照射域における複合相各州のうち少くとも−の相
の特定格子面からの回折Xwを受光するX線検出器と、
X41Ij管の照り・I開口およびx#M検出器の受光
開口の少くとも一方に設けた開き角10以上のソーラス
リットおよびこれらを収納する分光室とからなるヘッド
部をそなえ、かつ受光した回折X軛の積分@度を算出す
る「d号処理装置ならひに得られた積分強度値に捕いて
複合相各相の足−を行う演算装置とからなる複金相金−
ストリップのオンライン札定置装置。 2 ライン走行中の伽合相金−ストリップに対し一定の
入射角で特性X41jを照射するX@管と、該ストリッ
プのXI/M照射域における麹合相各相のうち少くとも
−の相の特定格子面からの回折X線ならびにパックグラ
ウンド回すfX@を゛それぞれ個別に受光するX4ij
l柳田器と、X線管の照射開口およびX線検出器の受光
開口の少くとも一方に設けた開き角10以上のソーラス
リットおよびこれらを収納する分光室とからなるヘッド
部をそなえ、かつ受光した回折X@の積分強度を個別に
算出する信号処理装置ならびに得られた積分強度値Gこ
基いて複合相名相の定量を行う演算装置とからなる襞合
相金−ストリップのオンライン相定皺装置。
[Claims] 1. Antral integration during line running - an X-ray tube that irradiates the strip with a characteristic - an X-ray detector that receives diffracted Xw from a specific lattice plane of the phase;
It is equipped with a head section consisting of a solar slit with an aperture angle of 10 or more provided on at least one of the illumination/I aperture of the X41Ij tube and the light receiving aperture of the x#M detector, and a spectroscopic chamber that houses these, and the diffraction X that is received. It is a compound metal complex consisting of an arithmetic device that calculates the integral of the yoke by using the integrated intensity value obtained by the D processing device and calculates the sum of each phase of the complex phase.
Strip online bill placement device. 2 An X@ tube that irradiates characteristic X4ij that individually receives diffracted X-rays from specific lattice planes and background rotating fX@
A head part consisting of a Yanagida device, a solar slit with an opening angle of 10 or more provided on at least one of the irradiation aperture of the X-ray tube and the light receiving aperture of the X-ray detector, and a spectroscopic chamber housing these, and a light receiving device. On-line phase determination of a pleated alloy strip consists of a signal processing device that individually calculates the integrated intensity of the diffraction Device.
JP10102281A 1981-06-29 1981-06-29 On-line phase quantitative determination device for complex phase metal strip Pending JPS582644A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10102281A JPS582644A (en) 1981-06-29 1981-06-29 On-line phase quantitative determination device for complex phase metal strip

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10102281A JPS582644A (en) 1981-06-29 1981-06-29 On-line phase quantitative determination device for complex phase metal strip

Publications (1)

Publication Number Publication Date
JPS582644A true JPS582644A (en) 1983-01-08

Family

ID=14289567

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10102281A Pending JPS582644A (en) 1981-06-29 1981-06-29 On-line phase quantitative determination device for complex phase metal strip

Country Status (1)

Country Link
JP (1) JPS582644A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55163445A (en) * 1979-06-06 1980-12-19 Kawasaki Steel Corp On-line measurement of austenitic quantity in rolled steel plate

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55163445A (en) * 1979-06-06 1980-12-19 Kawasaki Steel Corp On-line measurement of austenitic quantity in rolled steel plate

Similar Documents

Publication Publication Date Title
Li et al. An improved method to increase the predictive accuracy of the ECR technique
US3914607A (en) Thickness measuring apparatus and method for tire ply and similar materials
EP0348574B1 (en) Method of simultaneously measuring thickness and composition of film and apparatus therefor
US2521772A (en) Method of determining the thickness of a metal coating on a metal base
JPS582644A (en) On-line phase quantitative determination device for complex phase metal strip
CN104316511A (en) Correcting method for spectral line interference in atomic emission spectrometric analysis of spark source
CN116465501A (en) Method and system for measuring NESR (near infrared spectrometer) of infrared spectrum radiometer based on calibration residual error
JP4302852B2 (en) Method for measuring surface oxide of metal material and X-ray diffractometer
JP2012217994A (en) Steel plate rolling control method, apparatus and program
US3482098A (en) Temperature and composition compensator for radiation thickness gauges
JP6520865B2 (en) Method of measuring degree of alloying and / or plating adhesion of galvanized steel sheet
JPH0288952A (en) Method and device for analyzing tissue
JP4523958B2 (en) X-ray fluorescence analyzer and program used therefor
JPS649575B2 (en)
JPWO2020105255A1 (en) Calibration method of temperature measuring device, calibration device of temperature measuring device, calibration method of physical quantity measuring device, and calibration device of physical quantity measuring device
US3848125A (en) Coating thickness gauge
JPH06347247A (en) Measuring method of thickness of alloy phase of plated layer
JPS6259254B2 (en)
JP2014055353A (en) Method for measuring alloying degree of alloyed galvanized steel
JP2707865B2 (en) Method of measuring alloying degree of alloyed galvanized layer
WO1992016819A1 (en) Dynamic alloy correction gauge
Verbeke et al. Energy-dispersive x-ray fluorescence of metals—a simple fundamental parameters approach
JP2873125B2 (en) Method and apparatus for measuring coating weight
JPS6290527A (en) Method for measuring thickness and composition of iron oxide film on steel material
JPH02302654A (en) Method and appratus for measuring plated amount of double-layer plated steel plate and composition of plated film