JPS5826245A - Measuring method for degree of fineness - Google Patents

Measuring method for degree of fineness

Info

Publication number
JPS5826245A
JPS5826245A JP12361281A JP12361281A JPS5826245A JP S5826245 A JPS5826245 A JP S5826245A JP 12361281 A JP12361281 A JP 12361281A JP 12361281 A JP12361281 A JP 12361281A JP S5826245 A JPS5826245 A JP S5826245A
Authority
JP
Japan
Prior art keywords
classification
classifier
weight
fineness
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP12361281A
Other languages
Japanese (ja)
Other versions
JPH0140945B2 (en
Inventor
Koichi Iitani
井伊谷 鋼一
Eigorou Honma
本間 栄五郎
Masamichi Kabaya
蒲谷 正道
Akira Saito
章 斉藤
Masayuki Yasukuchi
安口 正之
Yukiyoshi Yamada
幸良 山田
Ikuo Shimokawa
下川 生夫
Hiroshi Tomiyasu
富安 浩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sankyo Dengyo Corp
Taiheiyo Cement Corp
Nisshin Seifun Group Inc
Original Assignee
Sankyo Dengyo Corp
Nisshin Seifun Group Inc
Nihon Cement Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sankyo Dengyo Corp, Nisshin Seifun Group Inc, Nihon Cement Co Ltd filed Critical Sankyo Dengyo Corp
Priority to JP12361281A priority Critical patent/JPS5826245A/en
Priority to GB08222583A priority patent/GB2103373B/en
Priority to DE19823229789 priority patent/DE3229789A1/en
Publication of JPS5826245A publication Critical patent/JPS5826245A/en
Publication of JPH0140945B2 publication Critical patent/JPH0140945B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B07SEPARATING SOLIDS FROM SOLIDS; SORTING
    • B07BSEPARATING SOLIDS FROM SOLIDS BY SIEVING, SCREENING, SIFTING OR BY USING GAS CURRENTS; SEPARATING BY OTHER DRY METHODS APPLICABLE TO BULK MATERIAL, e.g. LOOSE ARTICLES FIT TO BE HANDLED LIKE BULK MATERIAL
    • B07B7/00Selective separation of solid materials carried by, or dispersed in, gas currents
    • B07B7/08Selective separation of solid materials carried by, or dispersed in, gas currents using centrifugal force
    • B07B7/083Selective separation of solid materials carried by, or dispersed in, gas currents using centrifugal force generated by rotating vanes, discs, drums, or brushes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D45/00Separating dispersed particles from gases or vapours by gravity, inertia, or centrifugal forces
    • B01D45/12Separating dispersed particles from gases or vapours by gravity, inertia, or centrifugal forces by centrifugal forces
    • B01D45/14Separating dispersed particles from gases or vapours by gravity, inertia, or centrifugal forces by centrifugal forces generated by rotating vanes, discs, drums or brushes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B07SEPARATING SOLIDS FROM SOLIDS; SORTING
    • B07BSEPARATING SOLIDS FROM SOLIDS BY SIEVING, SCREENING, SIFTING OR BY USING GAS CURRENTS; SEPARATING BY OTHER DRY METHODS APPLICABLE TO BULK MATERIAL, e.g. LOOSE ARTICLES FIT TO BE HANDLED LIKE BULK MATERIAL
    • B07B4/00Separating solids from solids by subjecting their mixture to gas currents
    • B07B4/02Separating solids from solids by subjecting their mixture to gas currents while the mixtures fall
    • B07B4/025Separating solids from solids by subjecting their mixture to gas currents while the mixtures fall the material being slingered or fled out horizontally before falling, e.g. by dispersing elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B07SEPARATING SOLIDS FROM SOLIDS; SORTING
    • B07BSEPARATING SOLIDS FROM SOLIDS BY SIEVING, SCREENING, SIFTING OR BY USING GAS CURRENTS; SEPARATING BY OTHER DRY METHODS APPLICABLE TO BULK MATERIAL, e.g. LOOSE ARTICLES FIT TO BE HANDLED LIKE BULK MATERIAL
    • B07B9/00Combinations of apparatus for screening or sifting or for separating solids from solids using gas currents; General arrangement of plant, e.g. flow sheets
    • B07B9/02Combinations of similar or different apparatus for separating solids from solids using gas currents
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/02Investigating particle size or size distribution
    • G01N15/0272Investigating particle size or size distribution with screening; with classification by filtering

Landscapes

  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combined Means For Separation Of Solids (AREA)

Abstract

PURPOSE:To measure the degree of fineness of powdered body precisely and quickly, by classifying to obtain 50% separated grains in the range of 2-14mum diameter by a wind force classifier and measuring the weight ratio of the throw- in quantity to the classifier and the yield after classification. CONSTITUTION:A powdered and granular body to be a product is conveyed by a transporting machine 1 for a sample and is sampled in a supply feeder 4 from a gate 2 and then, the weight is measured by a weight gauge 5. This sample is supplied to a classifier 6 little by little by a feeder 4'' and is classified to obtain 50% separated grains in the range of 2-14mum, especially 5-10mum, diameter. Fine powder is collected with a fine powder collection device 10 and is sent to a discharge route 11. Coarse powder is charged to a hopper 7 for coarse powder and is sent to a discharge route 9 after the weight is measured by a weight gauge 8. The ratio of the weight measured by the gauge 5, 8 is obtained by an operator 14 and moreover, the degree of fineness of the powdered body is calculated.

Description

【発明の詳細な説明】 本発明は粉末度を、精度よくかつ迅速に簡便に測定り、
オンラインシステムに組み込んでも使用で龜る粉末度測
定方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention measures fineness accurately, quickly, and easily.
The present invention relates to a method for measuring fineness that is difficult to use even if it is incorporated into an online system.

従来分級機を用−て、その分級機投入量と分級後収量(
例え社戻り粉収量)の重量比をもとにして粉末度を求め
る場合、分級機の性能上のll!#もあって、50≦分
離粒子径(以下分級点と称す)は15−m以上であり、
そのため重量比と粉末度との相関度が低くその改善が望
まれていた。
Using a conventional classifier, the amount of input into the classifier and the yield after classification (
For example, when determining the fineness based on the weight ratio of powder yield (return powder yield), it is important to consider the performance of the classifier. Because of #, 50≦separated particle diameter (hereinafter referred to as classification point) is 15-m or more,
Therefore, the degree of correlation between weight ratio and powderiness is low, and improvement thereof has been desired.

本発明者らは、種々研究した結果、2〜14μm、特に
5〜10μmの範囲内の任意の分級点で分級する仁とに
より、上記重量比と粉末度との相関度が非常に高いとの
知見を得て本発明を完成するに至った。
As a result of various studies, the present inventors have found that the correlation between the above weight ratio and fineness is very high by classifying particles at any classification point within the range of 2 to 14 μm, especially 5 to 10 μm. Based on this knowledge, we have completed the present invention.

すなわち、本発明の要旨は、風力分級機を用いて、その
分級機投入量と分級後収量との重量比によ抄粉体の粉末
度を測定するに当り、分級点が2〜14μmの範囲内に
存在する条件で分級することを特徴とする粉体の粉末度
測定方法にある。
That is, the gist of the present invention is that when measuring the fineness of paper powder using a wind classifier based on the weight ratio of the input amount to the classifier and the yield after classification, the classification point is in the range of 2 to 14 μm. A method for measuring the fineness of powder, which is characterized by classifying it under conditions existing in the powder.

本発明に使用する風力分級機としては渦流式分級機がよ
く、特に強制渦流式分級機があけられるが分級点が2〜
14μmの範囲に入るものであれdどれでも使用できる
As the wind classifier used in the present invention, a vortex classifier is preferred, and a forced eddy current classifier is particularly suitable, but the classification point is 2 to 2.
Any material within the range of 14 μm can be used.

上記渦流式分級機において、分級点が2〜14μmの範
■に入るようにするには、風力分級機の分級ローターの
回転数、風量等を調整すれげよい。
In order for the above-mentioned eddy current classifier to have a classification point within the range of 2 to 14 μm, it is necessary to adjust the rotation speed, air volume, etc. of the classification rotor of the wind classifier.

分級点を2〜14#mに限る理由は、この範囲をはずれ
た場合、重量比と粉末炭との相関度が悪くなるからであ
る。
The reason why the classification point is limited to 2 to 14 #m is that if it is outside this range, the correlation between the weight ratio and the powdered coal becomes poor.

この発明でいう粉末度とは、比表面積であ抄、また分級
後収量とは分級後の粗粉量、あるいは微粉量である。
In the present invention, the fineness refers to the specific surface area, and the yield after classification refers to the amount of coarse powder or fine powder after classification.

粉末炭として比表面積を使い、工程管理を行う場合は予
め2〜14μmの範囲内の任意の点を分級点とし、粉末
度の興なる複数個の粉体サンプルを使って、その比表面
積と分級前後の重量比との関係式を求めておけば、この
風力分級機を用いて、分級前後の重量比を測定すること
によ抄、容易にそれに対応する比表面積を求めることが
できる。
When controlling the process using the specific surface area of powdered coal, set an arbitrary point within the range of 2 to 14 μm as a classification point in advance, and use multiple powder samples of varying fineness to calculate the specific surface area and classification. If the relational expression between the weight ratio before and after classification is determined, the specific surface area corresponding to the weight ratio can be easily determined by measuring the weight ratio before and after classification using this wind classifier.

セメントの粉末度を測定する場合について、第1図と第
2図を参照して説明する。
The case of measuring the fineness of cement will be explained with reference to FIGS. 1 and 2.

第1図におりて、サンプル用輸送機1としては、スクリ
ューコンベア、ベルトコンベア、するいはエアースライ
ド等を用いることができ、その末端は戻し経路3に接続
されてお抄、末端の手前にサンプリングゲー)!!設け
る。
In Fig. 1, a screw conveyor, a belt conveyor, an air slide, etc. can be used as the sample transport device 1, and the end thereof is connected to the return path 3, and the sample is transported before the end. sampling game)! ! establish.

分級フィーダ4は、粉粒体の受槽4′および受槽から粉
粒体を排出するためのスクリューフィーダ41  を備
え、ざらに受槽および排出スクリューフィーダ全体の重
量を測定し得る重量計5が設けられて−る。
The classification feeder 4 includes a receiving tank 4' for powder and granular material and a screw feeder 41 for discharging the powder and granular material from the receiving tank, and is also provided with a weight scale 5 that can roughly measure the weight of the receiving tank and the discharge screw feeder as a whole. -ru.

分級機6は特訓昭53〜76466に開示されているも
のが好ましくその構造は第2図の通りである。この構造
をもつ分級機は、分級点を14μm以下に膜室するには
好都合である。
Preferably, the classifier 6 is the one disclosed in Japanese Special Training No. 53-76466, and its structure is as shown in FIG. A classifier having this structure is advantageous in making the classification point a membrane chamber of 14 μm or less.

7は粗粉用ホッパーであ抄、分級機6より排出された粗
粉を受けるためのものである。このホッパー7には重量
計8が設けられている。9は、排出経路である。
Reference numeral 7 denotes a hopper for coarse powder for receiving the coarse powder discharged from the papermaking and classifier 6. This hopper 7 is provided with a weight scale 8. 9 is a discharge route.

10は微粉捕集装置例えばバクフィルターであり、11
はその排出経路、12は風量コントロールパルプ、13
は送風機である。
10 is a fine powder collection device such as a bag filter; 11
is its discharge route, 12 is the air volume control pulp, 13
is a blower.

14は各重量計5,8に連結された演算器で、これによ
って粉末度を演算する。
14 is a computing unit connected to each weighing scale 5, 8, which computes the powderiness.

第2図は、上記分級機6の詳細図であって、15はケー
シング、16は粉体投入口、17は分散羽根、18は分
散円板、Dは粗粉取出し口、加は外方分級羽根、21は
内方分級羽根、nは補助羽根、田は分級ロータ、冴はバ
ランスロータ、bは空気導入口、墓は微粉取出口、nは
渦流ケーシング、列は分級室、四は回転軸であ゛る。
FIG. 2 is a detailed view of the classifier 6, in which 15 is a casing, 16 is a powder inlet, 17 is a dispersion blade, 18 is a dispersion disk, D is a coarse powder outlet, and K is an outer classification. Vane, 21 is inner classification vane, n is auxiliary vane, ta is classification rotor, sae is balance rotor, b is air inlet, grave is fine powder outlet, n is vortex casing, row is classification chamber, 4 is rotating shaft That's it.

この分級機を参照しながら、分級機構を説明すると次の
とお抄である。
Referring to this classifier, the classification mechanism is explained as follows.

1)空気の流れについて番 第2図に示すように、空気人口5より吸込まれた空気は
、補助羽根ρにより円周方向の速度成分が与えられ、旋
回した状態で分級室列に入る。分級ロータ2およびバラ
ンスルータ別は回転軸四に固定され駆動モーターにより
駆動されている。したがって、空気は分級室部では補助
羽根nによ11完全に分級ロータと同−周速を持つこと
になる。バランスロータスの役割は分級室の円周面での
均一化した半径方向の流れを−るとともに、分級機の圧
損をここで軽減することにある。
1) Air Flow As shown in Figure 2, the air sucked in from the air intake 5 is given a velocity component in the circumferential direction by the auxiliary vane ρ, and enters the classification chamber row in a swirling state. The classification rotor 2 and the balance router are fixed to a rotating shaft 4 and driven by a drive motor. Therefore, the air in the classification chamber has the same circumferential speed as the classification rotor due to the auxiliary blade n. The role of the balance lotus is to equalize the radial flow on the circumferential surface of the classification chamber and to reduce the pressure loss of the classifier here.

バランスロータスを出た空気は111巻ケーシングnに
よ砂分級機出口に導かれ、途中、サイクロン、バグフィ
ルタ等を介してブロアに連結されて−る。この時の空気
の流れは図中に矢印で示されて−る。
The air leaving the balance lotus is guided to the sand classifier outlet by the 111-volume casing n, and is connected to a blower via a cyclone, bag filter, etc. on the way. The air flow at this time is indicated by arrows in the figure.

2)粉粒体の流れについて番 粉体投入口16に適当な供、給手段で投入された粉粒体
原料は、空気流に乗った状態で分散羽根17を通過する
間に円周面でほぼ均一に分割され、粉粒体の一次分散が
行なわれる。分散羽根17からは電接線方向に射出され
た粉粒体は分散円板重上で二次分散され、完全な分散状
態で分級室部に供給される。ここで粉粒体の各粒子は回
転流による遠心力と半径方向流れによる抗力を受ける。
2) Regarding the flow of powder and granular material The powder and granular raw material introduced into the powder inlet 16 by an appropriate feeding means is blown on the circumferential surface while passing through the dispersion blades 17 while being carried by the air flow. It is divided almost uniformly, and primary dispersion of the powder and granules is performed. The granular material ejected from the dispersing blade 17 in the electric tangential direction is secondarily dispersed on the dispersing disk, and is supplied to the classification chamber in a completely dispersed state. Here, each particle of the granular material is subjected to a centrifugal force due to the rotational flow and a drag force due to the radial flow.

これらの粒子のうち遠心力〉抗力の関係が成立つ粗−粒
子は分級ロータの外に送られ粗粉取出し口重よ抄ロータ
リパルプ等を用いてエアシールした状態で取出される。
Among these particles, coarse particles for which the relationship of centrifugal force > drag force is satisfied are sent to the outside of the classification rotor and taken out in an air-sealed state using a paper rotary pulp or the like from the coarse powder outlet.

一方、遠心力〈抗力の関係が成立つ細かい粒子は空気流
に榮った状態でバランスロータス、渦巻ケーシングnを
介して装置外部に運ばれ、すイクロン、Δグフィルタ等
の捕集装置によ砂採取される。
On the other hand, fine particles that are subject to the relationship of centrifugal force (drag force) are transported to the outside of the device via the balance lotus and the spiral casing in an air flow, and are collected by a collection device such as a Suicron or a ΔG filter. collected.

この分級機の場合、分級点の調整は分級ロータコ及びバ
ランスロータスの回転数あるいは分級室列の通過風量を
変更することにより行なわれる。
In the case of this classifier, the classification point is adjusted by changing the rotational speed of the classification rotor tacho and balance rotor or the amount of air passing through the classification chamber row.

このような測定装置を用いて、粉粒体の粉末度の測定は
、次のように行なわれる。
Using such a measuring device, the fineness of a powder or granule is measured as follows.

製品となるべき粉粒体をIII造工過よシ連続的にすン
プリングし、サンプル用輸送機1によ抄約500 ky
/Hの能力で搬送する。さらに供給フィーダ4へのサン
プルの供給はサンプル用輸送機lに設けられたゲート2
の開放により行う。この場合のサンプリング量は約3(
) kgで開放時間は3〜4分を要するが、それ以外の
時にはゲート2は閉ざされて、サンプルは戻し経路3に
入シ製品に合流する。
Powder and granules to be made into products are continuously sampled through a III-forming process, and then transferred to sample transport machine 1 for approximately 500 ky.
/H capacity. Furthermore, the sample is supplied to the supply feeder 4 through a gate 2 provided on the sample transporter l.
This is done by opening the . In this case, the sampling amount is approximately 3 (
) kg and the opening time requires 3-4 minutes, otherwise the gate 2 is closed and the sample joins the incoming product in the return path 3.

供給フィーダ4においてサンプリング後およびサンプリ
ング前に重量を測定し、その差し引きでサンプルの正味
の重量を算出する。このサンプルをフィーダ41により
徐々に分級機6に供給し、上述し念ように分級を行う。
The weight is measured in the supply feeder 4 after and before sampling, and the net weight of the sample is calculated by subtracting the weight. This sample is gradually fed to the classifier 6 by the feeder 41, and classified as described above.

この際の分級点は5〜10#mとし、得られた粗粉は粗
粉用ホッパ7に入れ、ここで分級の前後の重量を測定し
、その差し引きにより正味の重量を出し、演算器によっ
て粉末度を算出する。測定後の粗粉は排出経路9に送る
。一方分級後の微粉は微粉捕集装置10により捕集し、
排出経路11へ送る。
The classification point at this time is 5 to 10 #m, and the obtained coarse powder is put into the coarse powder hopper 7, where the weight before and after classification is measured, and the net weight is calculated by subtracting the weight. Calculate the fineness. The coarse powder after the measurement is sent to the discharge route 9. On the other hand, the fine powder after classification is collected by a fine powder collection device 10,
Send it to the discharge route 11.

演算器14において粉末度は次式によって得られる。In the calculator 14, the fineness is obtained by the following equation.

y = a z −1−b y:比表面積(ブレーン値)oII/!pX:収率% 
(@s −Wa ) / (Wu−%))xtoOWl
:分級開始前のフィーダ重量 鳥 :分級終了後の  l W8:分級終了後の粗粉用ホッパー重量W4:分級開始
前の  l a、b:係数 上記分級機において、分級点を1.0〜19.0岸mに
変えたときの分級機投入量に対する分級後粗装置の重量
比啄と比表面積(ブレーン値)との関係を第3図と下表
に示す。
y = az -1-b y: Specific surface area (Braine value) oII/! pX: Yield%
(@s −Wa ) / (Wu−%))xtoOWl
: Weight of the feeder before the start of classification Bird: l after the end of classification W8: Weight of the hopper for coarse powder after the end of classification W4: l before the start of classification a, b: Coefficients In the above classifier, the classification point is 1.0 to 19. Figure 3 and the table below show the relationship between the weight ratio and specific surface area (Blaine value) of the coarsening device after classification with respect to the input amount of the classifier when changing to .0 shore m.

この結果より分級点を2〜14μm、特に5〜10μm
の範囲内で選べば粉末度との相関関係が高いことがわか
る。
Based on this result, the classification point was set at 2 to 14 μm, especially 5 to 10 μm.
It can be seen that if it is selected within the range of , there is a high correlation with the fineness.

本発明によれば、粉体の粉末度を精度よく、かつ迅速に
簡便に測定することができるので、セメント等の粉体を
扱う工業においては、その製造工程中の粉末度を管理す
る場合に好適に応用することができる。
According to the present invention, the fineness of powder can be measured accurately, quickly, and easily. Therefore, in industries that handle powder such as cement, it is possible to measure the fineness of powder during the manufacturing process. It can be suitably applied.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明方法を実施するための測定装置の概略図
、第2図は本発明方法において使用する分級機の縦断面
図であり、片面を省略して示す図、第3図は上記分級機
において、分級点を変化させたときの分級機投入量に対
する分級後粗装置の重量比(≦)と比表面積(ブレーン
値)との関係を示す図表である。 l・・・サンプル用輸送機、2・・・サンプリングゲー
ト、4・・・分級フィーダ、 5,8・・・重量計、6
・・・分級機、      7・・・粗粉用ホッパー。 第2図 第3図 X:重量化ol。 第1頁の続き ■出 願 人 日清製粉株式会社 東京都中央区日本橋小網町19番 12号 ■出 願 人 三協電業株式会社 東京都目黒区中央町1丁目8番 11号
Fig. 1 is a schematic diagram of a measuring device for carrying out the method of the present invention, Fig. 2 is a longitudinal sectional view of a classifier used in the method of the present invention, with one side omitted, and Fig. 3 is the above-mentioned 2 is a chart showing the relationship between the weight ratio (≦) of the crude device after classification and the specific surface area (Blaine value) to the input amount of the classifier when changing the classification point in the classifier. l... Sample transporter, 2... Sampling gate, 4... Classifying feeder, 5, 8... Weighing scale, 6
... Classifier, 7... Hopper for coarse powder. Figure 2 Figure 3 X: Weighted ol. Continued from page 1 ■Applicant: Nisshin Seifun Co., Ltd., 19-12 Nihonbashi Koami-cho, Chuo-ku, Tokyo ■Applicant: Sankyo Dengyo Co., Ltd., 1-8-11 Chuo-cho, Meguro-ku, Tokyo

Claims (1)

【特許請求の範囲】[Claims] 風力分級機を用いてその分級機投入量と分級後収量との
重量比により粉体の粉末度を測定するにあたり、50%
分離粒子径が2〜14μmの範囲内に存在する条件で分
級することを特徴とする幹体の粉末度測定方法。
When measuring the fineness of powder using a wind classifier based on the weight ratio of the amount input to the classifier and the yield after classification, 50%
A method for measuring the fineness of a trunk body, characterized by classifying under conditions such that the separated particle size is within a range of 2 to 14 μm.
JP12361281A 1981-08-07 1981-08-07 Measuring method for degree of fineness Granted JPS5826245A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP12361281A JPS5826245A (en) 1981-08-07 1981-08-07 Measuring method for degree of fineness
GB08222583A GB2103373B (en) 1981-08-07 1982-08-05 Method of measuring fineness of powder
DE19823229789 DE3229789A1 (en) 1981-08-07 1982-08-06 METHOD FOR MEASURING THE FINE POWDERED MATERIAL

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12361281A JPS5826245A (en) 1981-08-07 1981-08-07 Measuring method for degree of fineness

Publications (2)

Publication Number Publication Date
JPS5826245A true JPS5826245A (en) 1983-02-16
JPH0140945B2 JPH0140945B2 (en) 1989-09-01

Family

ID=14864903

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12361281A Granted JPS5826245A (en) 1981-08-07 1981-08-07 Measuring method for degree of fineness

Country Status (3)

Country Link
JP (1) JPS5826245A (en)
DE (1) DE3229789A1 (en)
GB (1) GB2103373B (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2138574B (en) * 1983-04-11 1986-08-06 Bestobell Slurry particle size analysis
CN104907252B (en) * 2015-06-10 2017-01-11 洛阳矿山机械工程设计研究院有限责任公司 Replacement method for rotor blades of powder concentrator
JP7358765B2 (en) * 2019-04-04 2023-10-11 株式会社サタケ Flour milling equipment monitoring system

Also Published As

Publication number Publication date
JPH0140945B2 (en) 1989-09-01
GB2103373B (en) 1985-05-09
DE3229789A1 (en) 1983-02-24
GB2103373A (en) 1983-02-16
DE3229789C2 (en) 1987-05-07

Similar Documents

Publication Publication Date Title
US4390131A (en) Method of and apparatus for comminuting material
CN86103352B (en) Separator for sorting particulate material
US4574896A (en) Measuring device for the continuous weight determination of material streams
JPS59142877A (en) Air classifier
CN87103124B (en) Vertical mill
US4626343A (en) Separator for sorting particulate material
CA1172225A (en) Impact grinding method and apparatus
JPH05504296A (en) Vertical impact crusher with connected crushed material classifier
US2795463A (en) Pneumatic conveying systems
US4253857A (en) Apparatus for separating an entrained solid from a gas
JPS5826245A (en) Measuring method for degree of fineness
US5301555A (en) Method and apparatus for measuring the mass throughput of a flow of material according to the coriolis principle
MXPA97002608A (en) Efficient production of gypsum calcinated by collection and classification of fine and
US2546068A (en) Method and apparatus for dividing pulverous material into desired fractions by means of a rotating sifting machine
CN85107923B (en) Vertical grinding mill
US4511462A (en) Method and apparatus for sorting particulate material
US2932460A (en) Rotary drum grinder and plural separator circuit
JPH11503359A (en) Classifier for powder materials
GB1144132A (en) Method and apparatus for sifting comminuted materials such as cements
US3219185A (en) Method and apparatus for separating low micron size particles
JPH0563239B2 (en)
GB1401537A (en) Formation of powdered samples
US2915179A (en) Aerodynamic classifier
US4754931A (en) Pulverized solid control system
GB795494A (en) Improvements relating to a classifier for classifying materials of different size and/or density