JPS5825953B2 - Exhaust air system - Google Patents

Exhaust air system

Info

Publication number
JPS5825953B2
JPS5825953B2 JP50092924A JP9292475A JPS5825953B2 JP S5825953 B2 JPS5825953 B2 JP S5825953B2 JP 50092924 A JP50092924 A JP 50092924A JP 9292475 A JP9292475 A JP 9292475A JP S5825953 B2 JPS5825953 B2 JP S5825953B2
Authority
JP
Japan
Prior art keywords
air
flow path
natural gas
liquefied natural
solidification
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP50092924A
Other languages
Japanese (ja)
Other versions
JPS5216479A (en
Inventor
博 石井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Oxygen Co Ltd
Original Assignee
Japan Oxygen Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Oxygen Co Ltd filed Critical Japan Oxygen Co Ltd
Priority to JP50092924A priority Critical patent/JPS5825953B2/en
Publication of JPS5216479A publication Critical patent/JPS5216479A/en
Publication of JPS5825953B2 publication Critical patent/JPS5825953B2/en
Expired legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/0002Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the fluid to be liquefied
    • F25J1/0012Primary atmospheric gases, e.g. air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0032Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration"
    • F25J1/004Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration" by flash gas recovery
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0221Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using the cold stored in an external cryogenic component in an open refrigeration loop
    • F25J1/0224Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using the cold stored in an external cryogenic component in an open refrigeration loop in combination with an internal quasi-closed refrigeration loop
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0279Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc.
    • F25J1/0292Refrigerant compression by cold or cryogenic suction of the refrigerant gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2205/00Processes or apparatus using other separation and/or other processing means
    • F25J2205/24Processes or apparatus using other separation and/or other processing means using regenerators, cold accumulators or reversible heat exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2210/00Processes characterised by the type or other details of the feed stream
    • F25J2210/62Liquefied natural gas [LNG]; Natural gas liquids [NGL]; Liquefied petroleum gas [LPG]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2220/00Processes or apparatus involving steps for the removal of impurities
    • F25J2220/40Separating high boiling, i.e. less volatile components from air, e.g. CO2, hydrocarbons
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2230/00Processes or apparatus involving steps for increasing the pressure of gaseous process streams
    • F25J2230/08Cold compressor, i.e. suction of the gas at cryogenic temperature and generally without afterstage-cooler
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2230/00Processes or apparatus involving steps for increasing the pressure of gaseous process streams
    • F25J2230/40Processes or apparatus involving steps for increasing the pressure of gaseous process streams the fluid being air

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Separation By Low-Temperature Treatments (AREA)

Description

【発明の詳細な説明】 本発明は液化天然ガスの寒冷を利用して液体空気を製造
する方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing liquid air by utilizing the refrigeration of liquefied natural gas.

近年液化天然ガスが都市ガス、火力発電等に大量に用い
られる様になったが、使用に際しては海水等によって再
気化しているためその寒冷は殆ど利用されずに無駄にさ
れている。
In recent years, liquefied natural gas has come to be used in large quantities for city gas, thermal power generation, etc., but when it is used, it is re-vaporized by seawater etc., so the cold water is hardly used and is wasted.

液体空気は冷凍食品、冷凍倉庫、冷凍輸送、低温破砕お
よび粉砕、冷凍土木工事等に大量使用が見込まれ、また
病院、大集会場、工場等の空調用、更に将来実現が予想
されている各種の大規模な新産業分野に於ける寒冷供給
源として大量需要が見込まれている。
Liquid air is expected to be used in large quantities for frozen foods, frozen warehouses, frozen transportation, cryogenic crushing and pulverization, frozen civil engineering work, etc., as well as for air conditioning in hospitals, large gathering halls, factories, etc., and various other applications that are expected to be realized in the future. Large-scale demand is expected as a source of refrigeration for large-scale new industrial fields.

最も普遍的且つ大量に存在する空気によって寒冷を貯溜
し得ること、放出しても無害安全であることも液体空気
を利用して上記用途に大量需要が見込まれる理由であり
、従って安価な液体空気が製造され供給されればその需
要は急激に伸びると予想される。
The fact that air can store cold air, which is the most universal and abundant, and that it is harmless and safe even when released, is another reason why liquid air is expected to be used in large quantities for the above applications. Once manufactured and supplied, demand is expected to increase rapidly.

しかし従来液化天然ガスの寒冷を利用した液体空気製造
装置は実際稼動している例が無い。
However, there are no examples of conventional liquid air production equipment that utilizes the refrigeration of liquefied natural gas actually operating.

本発明の目的は上記の要求に従い、液化天然ガスの寒冷
を利用して安価な液体空気を製造する方法に関し、その
製造工程を精製工程、低温圧縮工程および液化工程の3
工程より構成し、該工程のいづれに於ても液化天然ガス
の寒冷を利用することにより極めて効率よく且つ経済的
に液体空気を得るプロセスを提供することにある。
In accordance with the above-mentioned requirements, the object of the present invention is to provide a method for producing inexpensive liquid air by utilizing the refrigeration of liquefied natural gas, and to process the production process into three steps: a purification process, a low-temperature compression process, and a liquefaction process.
The object of the present invention is to provide a process for obtaining liquid air extremely efficiently and economically by utilizing the refrigeration of liquefied natural gas in each of the steps.

更に本発明の目的は周期的に切替え使用する対で成る2
個以上の熱交換器群によって原料空気より易凝縮性成分
を凝縮固化分離する方法に関し、上記熱交換器に於て原
料空気と向流して液化天然ガスを流すことにより空気流
路に上記易凝縮性成分を凝縮固化せしめて該成分を分離
し、更に固化分離した該易凝縮性成分を真空排気するこ
とにより効果的に除去し装置外に排出する方法を提供す
ることにある。
Furthermore, it is an object of the present invention to provide two
Regarding a method of condensing and solidifying easily condensable components from feed air using a group of two or more heat exchangers, the easily condensable components are caused to flow into the air flow path by flowing liquefied natural gas countercurrently to the feed air in the heat exchanger. It is an object of the present invention to provide a method for condensing and solidifying a highly condensable component, separating the component, and then evacuation of the solidified and separated easily condensable component to effectively remove it and discharge it to the outside of the apparatus.

空気中に含まれる易凝縮性成分は通常型として水分およ
び炭酸ガスであり上記方法はこの両成分を同時に除去す
る場合、あるいは炭酸ガスのみを単独除去する場合、い
づれの場合に於ても適用し得る。
The easily condensable components contained in the air are usually water and carbon dioxide gas, and the above method can be applied to both cases where both of these components are removed at the same time, or when only carbon dioxide gas is removed individually. obtain.

また原料ガスが空気に限らずエチレン等の石油分解ガス
あるいはコークス炉ガス等の場合も含有する易凝縮性成
分の除去方法として用いることが出来る。
Furthermore, the present invention can be used as a method for removing easily condensable components when the raw material gas is not only air but also petroleum cracked gas such as ethylene or coke oven gas.

以下本発明を図に従って詳細説明する。The present invention will be explained in detail below with reference to the drawings.

管1より導入された原料空気は水分離器2に入って向流
する零度に近い零度以上の一定温度の気化天然ガスに冷
却されてその温度に於ける飽和蒸気圧以上の水分を凝縮
分離して導出する。
The raw material air introduced from the pipe 1 enters the water separator 2, where it is cooled by vaporized natural gas at a constant temperature close to zero or above zero, which flows counter-currently, and condenses and separates moisture above the saturated vapor pressure at that temperature. and derive it.

該水分離器によって外気温、湿度の変化による原料空気
中の含有水分は常に一定の蒸気正分の水分のみを含んで
管3より三方切替弁4を経て切り替え使用する対で成る
易凝縮性成分除去熱交換器の一方5aに導入され向流す
る液化天然ガスに冷却されて約−157℃になって導出
する。
The moisture content in the raw material air due to changes in outside temperature and humidity is always controlled by the water separator by using a pair of easily condensable components that are switched from the pipe 3 through the three-way switching valve 4, containing only the moisture equivalent to a certain amount of steam. It is introduced into one side 5a of the removal heat exchanger, cooled by the liquefied natural gas flowing countercurrently, and discharged at about -157°C.

この際該易凝縮性成分除去熱交換器5aの空気流路6a
には原料空気中の易凝縮成分即ち主として水分および炭
酸ガスが凝縮固化する。
At this time, the air flow path 6a of the easily condensable component removal heat exchanger 5a
In this case, easily condensable components in the feed air, namely mainly water and carbon dioxide gas, condense and solidify.

易凝縮性成分除去熱交換器5aがこの様に易凝縮成分の
凝縮固化周期にある時効で成る他方の該熱交換器5bは
凝縮成分の蒸発除去即ち再生周期にある。
The easily condensable component removal heat exchanger 5a is thus aged in the condensation and solidification period of the easily condensable components, while the other heat exchanger 5b is in the evaporation removal or regeneration period of the condensed components.

前周期で該熱交換器5bの空気流路6b内に易凝縮成分
の凝縮固化が行われるが、この周期の終りに三方切替弁
4,7.9および10を切り替えることにより該空気流
路6bは凝縮固化周期より蒸発除去周期に切り替えられ
る。
In the previous cycle, easily condensable components are condensed and solidified in the air passage 6b of the heat exchanger 5b, and at the end of this cycle, by switching the three-way switching valves 4, 7.9, and 10, the air passage 6b is is switched from the condensation solidification cycle to the evaporation removal cycle.

また同時に液化天然ガス流路の三方切替弁36゜39を
切り替えて管35よりの液化天然ガスを管37bから管
37aを経て流路38aへ流し、流路38bへの液化天
然ガスは遮断する。
At the same time, the three-way switching valves 36 and 39 of the liquefied natural gas flow path are switched to allow the liquefied natural gas from the pipe 35 to flow from the pipe 37b to the flow path 38a via the pipe 37a, and the liquefied natural gas to the flow path 38b is cut off.

蒸発除去周期に入った流路6bは加熱器11、ブロワ−
12、管13、加熱器14、管15と循環流路を形成し
、該循環流路には弁16を介して真空ポンプ17を接続
する。
The flow path 6b that has entered the evaporation removal cycle is connected to the heater 11 and the blower.
12, a pipe 13, a heater 14, and a pipe 15 to form a circulation flow path, and a vacuum pump 17 is connected to the circulation flow path via a valve 16.

加熱器11,14、循環ブロワ−12を作動させて、循
環流路内の残溜空気を加温しつつ循環し、流路6b内に
凝縮固化している易凝縮性成分、主として水および炭酸
ガスを該循環空気中に蒸発同伴させ、同時に弁16を開
は真空ポンプ17を作動させて循環系統内の空気および
これに含まれる蒸発品凝縮性成分を系外に排出する。
The heaters 11, 14 and the circulation blower 12 are operated to heat and circulate the residual air in the circulation channel to remove easily condensable components, mainly water and carbonic acid, which have condensed and solidified in the channel 6b. The gas is evaporated and entrained in the circulating air, and at the same time, the valve 16 is opened and the vacuum pump 17 is operated to discharge the air within the circulation system and the evaporated condensable components contained therein to the outside of the system.

この排出は固化している易凝縮性成分の蒸発に相当する
熱を供給しつつ、また圧力も蒸発を促進する様に徐々に
低下させるので固化成分は短時間に完全に系外に排出す
ることが出来る。
This discharge supplies heat equivalent to the evaporation of the solidified easily condensable components, and the pressure is gradually lowered to promote evaporation, so that the solidified components can be completely discharged from the system in a short period of time. I can do it.

上記系統中の加熱器11,14は定温加熱器、スチーム
加熱器、電熱器等を適宜使用する。
As the heaters 11 and 14 in the above-mentioned system, a constant temperature heater, a steam heater, an electric heater, etc. are appropriately used.

場合によっては配管部分を長くすることにより行う。In some cases, this can be done by lengthening the piping section.

循環ブロワ−12はスクリュ一式、ターボ式、ルーツ式
等を適宜使用する。
As the circulation blower 12, a screw set, a turbo type, a roots type, etc. are appropriately used.

真空ポンプは油回転式が適当である。An oil rotary type vacuum pump is suitable.

これらの容量は熱交換器5a 、 sbの容量および切
替時間に応じて決定する。
These capacities are determined depending on the capacity and switching time of the heat exchangers 5a and sb.

循環系統中の空気および易凝縮性成分が排出され真空度
が充分高くなった時、熱交換器5bは予冷に入る。
When air and easily condensable components in the circulation system are exhausted and the degree of vacuum becomes sufficiently high, the heat exchanger 5b enters precooling.

即ち三方切替弁36,39を両側開として熱交換器5a
の流路38aに液化天然ガスを流したまN熱交換器5b
の流路38bにも短時間液化天然ガスを導入して該熱交
換器5bを冷却する。
That is, with the three-way switching valves 36 and 39 open on both sides, the heat exchanger 5a
The liquefied natural gas is passed through the flow path 38a of the N heat exchanger 5b.
Liquefied natural gas is also introduced into the flow path 38b for a short time to cool the heat exchanger 5b.

この冷却に要する液化天然ガスは少量で良い。即ち蒸発
除去周期に於ける易凝縮性成分の蒸発は真空下で行って
いるためこの時の流路6bの温度上昇は少なくて良い、
従って熱履歴の巾が小さいためである。
Only a small amount of liquefied natural gas is required for this cooling. That is, since the easily condensable components are evaporated in a vacuum during the evaporation removal cycle, the temperature rise in the flow path 6b at this time may be small.
This is because the width of the thermal history is therefore small.

熱交換器5bの温度が所定温度迄低下した時、三方切替
弁4,7,9および10を切り替えまた両側開の三方切
替弁36.39の片側を閉じて流路38aの液化天然ガ
スを遮断し液化天然ガスの流れを流路38bのみとする
When the temperature of the heat exchanger 5b drops to a predetermined temperature, the three-way switching valves 4, 7, 9, and 10 are switched, and one side of the three-way switching valves 36 and 39, which are open on both sides, is closed to shut off the liquefied natural gas in the flow path 38a. The liquefied natural gas flows only through the flow path 38b.

これにより流路6aは凝縮固化周期から蒸発除去周期へ
、流路6bは蒸発除去周期から凝縮固化周期に切り替わ
る。
As a result, the flow path 6a switches from the condensation and solidification period to the evaporation removal period, and the flow path 6b switches from the evaporation and removal period to the condensation and solidification period.

以上易凝縮性成分除去工程は凝縮固化、切り替、蒸発、
真空排気、予冷のサイクルが対で成る熱交換器に於て周
期をずらせて繰り返えことにより連続的に行われる。
The above easily condensable component removal process includes condensation solidification, switching, evaporation,
The vacuum evacuation and precooling cycles are repeated in a pair of heat exchangers with different cycles, thereby performing the cycle continuously.

易凝縮性成分除去熱交換器5aを導出した約157℃の
低温精製空気は三方切替弁7、管8を経、管18を経て
来る液体空気貯槽24よりの低温蒸発空気と合流して約
−158℃で低温圧縮機19に導入される。
The low-temperature purified air of approximately 157° C. led out of the easily condensable component removal heat exchanger 5a passes through the three-way switching valve 7, the pipe 8, and joins with the low-temperature evaporated air from the liquid air storage tank 24 coming through the pipe 18, resulting in approximately - It is introduced into the low temperature compressor 19 at 158°C.

低温圧縮機19に於て上記空気は圧縮され約20気圧に
なる。
The air is compressed in the low-temperature compressor 19 to approximately 20 atmospheres.

該低温圧縮機を駆動する電動機20の所要動力は通常の
場合の約半分で良い。
The required power of the electric motor 20 for driving the low-temperature compressor may be about half that of a normal case.

低温圧縮機19を出た加圧空気は液化器21に導入され
て向流する液化天然ガスによって約−157℃迄冷却液
化されて次いで適冷器22に導入されて液体空気貯槽2
4よりの蒸発空気に冷却されて約−163℃になって該
適冷器22を導出し、膨張弁23によって20気圧から
約1.2気圧に降圧して約−193℃になり液体空気貯
槽24に導入される。
The pressurized air coming out of the low-temperature compressor 19 is introduced into the liquefier 21 where it is cooled and liquefied to approximately -157°C by liquefied natural gas flowing countercurrently, and then introduced into the appropriate cooler 22 where it is stored in the liquid air storage tank 2.
The temperature is cooled by the evaporative air from 4 to about -163°C, and the appropriate cooler 22 is taken out, and the pressure is lowered from 20 atm to about 1.2 atm by the expansion valve 23, and the temperature reaches about -193°C, and the liquid air storage tank is discharged. It will be introduced on 24th.

該液体空気貯槽24に貯えられた液体空気は管27より
弁28を経て取り出され使用に供される。
The liquid air stored in the liquid air storage tank 24 is taken out from the pipe 27 through the valve 28 and is made available for use.

膨張弁23および液体空気貯槽24に於て発生した蒸発
空気は管25より弁26を介して更に1気圧に降圧、僅
かに降温しで一191℃になり適冷器22に導入される
The evaporated air generated in the expansion valve 23 and the liquid air storage tank 24 is further lowered in pressure to 1 atm through a pipe 25 and a valve 26, and the temperature is slightly lowered to -191° C., and then introduced into the appropriate cooler 22.

該蒸発空気は適冷器22に於て向流する液体空気を適冷
して自身は昇温しで約−160℃どなり適冷器22を導
出し管18を経て管8よりの精製空気と合流し低温圧縮
機19に導入される。
The evaporated air cools the liquid air flowing countercurrently in the suitable cooler 22, and its temperature rises to about -160°C, which is led out of the suitable cooler 22 and passes through the pipe 18 to the purified air from the pipe 8. They are combined and introduced into the low-temperature compressor 19.

一方寒冷供給源である液化天然ガスは次の如く供給され
る。
On the other hand, liquefied natural gas, which is a cold supply source, is supplied as follows.

即ち管30より導入された液化天然ガスはポンプ31に
より1.2気圧で圧送され管32を経て2分しその1部
は弁33を経て液化器21に導入され向流する圧縮空気
を液化し、自身は気化して管34より導出する。
That is, the liquefied natural gas introduced from the pipe 30 is pumped at 1.2 atmospheres by the pump 31, divided into two parts through the pipe 32, and one part is introduced into the liquefier 21 through the valve 33, where it liquefies the compressed air flowing in the opposite direction. , itself is vaporized and led out from the tube 34.

2分した他部は管35より三方切替弁36を経て切り替
え使用する易凝縮性成分除去熱交換器の一方に導入して
向流する原料空気を冷却し自身は昇温気化して零度附近
の一定温度で導出し三方切替弁39管、40を経た後、
水分離器2に入って原料空気を一定温度に冷却すること
によって含有水分を凝縮させて導出し、管34よりの気
化天然ガスと合流して管41より糸外へ導出して使用に
供される。
The other part of the two halves is introduced from the pipe 35 through the three-way switching valve 36 into one side of the heat exchanger for removing easily condensable components, which cools the raw material air flowing in the opposite direction, and the air itself is heated and vaporized to a temperature near zero. After being led out at a constant temperature and passing through a three-way switching valve 39 pipes and 40,
The raw material air enters the water separator 2 and is cooled to a constant temperature to condense the moisture contained therein and lead it out, join with the vaporized natural gas coming from the pipe 34, and lead it out of the thread through the pipe 41 for use. .

同局凝縮性成分除去熱交換器5a 、5bの出口または
水分離器2の出口に於ける液化天然ガスの温度が一定に
なる様に管35より導入される液化天然ガスの量を調節
する装置をとりつける。
A device is provided for adjusting the amount of liquefied natural gas introduced through the pipe 35 so that the temperature of the liquefied natural gas at the outlet of the condensable component removal heat exchangers 5a and 5b or the outlet of the water separator 2 is constant. Attach.

即ち熱交換器5a 、5bの出口または水分離器2の出
口に検出端を設けこれにより作動する流量調節弁を管3
5に設けることにより(図示せず)天候の変化による空
気中の水分の含有量の変化を水分離器2に於て吸収し熱
交換器5a、5bに於ける凝縮水分量を一定にする。
That is, a detection end is provided at the outlet of the heat exchangers 5a, 5b or the outlet of the water separator 2, and a flow rate regulating valve operated by the detection end is connected to the pipe 3.
5 (not shown), the water separator 2 absorbs changes in the moisture content in the air due to changes in weather, and makes the amount of condensed moisture constant in the heat exchangers 5a and 5b.

本発明は以上の如く構成され実施されるがこれによる特
徴効果は次の通りである。
The present invention is constructed and implemented as described above, and its characteristic effects are as follows.

第1に液体空気を製造するに際し原料空気の不純物除去
工程、液化工程共成化天然ガスの寒冷を有効に利用して
冷却を行うので極めて経済的である。
First, when producing liquid air, cooling is performed by effectively utilizing the cooling of the co-produced natural gas in the process of removing impurities from the raw air and the process of liquefaction, so it is extremely economical.

第2に圧縮工程を低温精製工程の後にしたことにより低
温圧縮を行い、これによって圧縮に要する動力を通常の
場合に比較してはマ半減させた。
Second, by placing the compression step after the low-temperature refining step, low-temperature compression was performed, thereby reducing the power required for compression by half compared to a normal case.

第3に空気中に含まれる水分、炭酸ガス等の不純物の除
去を液化天然ガスの寒冷を利用し且つ真空ポンプを使用
して簡単に一工程で除去しているため他の方法に比較し
て装置全体が簡単になり運転も容易で経済的である。
Third, impurities such as moisture and carbon dioxide contained in the air can be easily removed in one step by using the cold of liquefied natural gas and by using a vacuum pump, making it easier to remove than other methods. The entire device is simple, easy to operate, and economical.

第4に上記易凝縮性成分除去方法は空気分離装置の不純
物除去工程に用いられているリパーシング熱交換器によ
る方法と異なり再生ガスを必要としないため原料空気を
100℃製品液体空気とすることが出来無駄がない。
Fourth, unlike the method using a reparsing heat exchanger used in the impurity removal process of an air separation device, the above method for removing easily condensable components does not require regeneration gas, so it is possible to convert the feed air into 100°C product liquid air. There is no waste.

且つ使用する熱交換器も2流路で良くまた容量が小さく
て済む。
Moreover, the heat exchanger used only needs to have two channels and has a small capacity.

第5に膨張弁および液体空気貯槽に於て発生した蒸発空
気を全量再液化するので常に大気と同一組成の液体空気
が得られる等の特徴効果がある。
Fifth, since the entire amount of evaporated air generated in the expansion valve and liquid air storage tank is reliquefied, there are characteristic effects such as always obtaining liquid air having the same composition as the atmosphere.

【図面の簡単な説明】[Brief explanation of the drawing]

図は本発明方法を説明する系統図である。 1.3,8,13,15,18,25,27゜30.3
2,34,35,37a、37b、40及び41は管、
2は水分離器、4,7,9,10゜36及び39は三方
切替弁、5a、5bは易凝縮性成分除去熱交換器、6a
、6bは空気流路、11゜14は加熱器、12は循環
ブロワ−116、26゜28及び33は弁、17は真空
ポンプ、19は低温圧縮機、20は電動機、21は液化
器、22は適冷器、23は膨張弁、24は液体空気貯槽
、31はポンプ、38a、38bは流路である。
The figure is a system diagram explaining the method of the present invention. 1.3, 8, 13, 15, 18, 25, 27°30.3
2, 34, 35, 37a, 37b, 40 and 41 are pipes,
2 is a water separator, 4, 7, 9, 10° 36 and 39 are three-way switching valves, 5a and 5b are easily condensable component removal heat exchangers, 6a
, 6b is an air flow path, 11° 14 is a heater, 12 is a circulation blower 116, 26° 28 and 33 are valves, 17 is a vacuum pump, 19 is a low temperature compressor, 20 is an electric motor, 21 is a liquefier, 22 23 is an expansion valve, 24 is a liquid air storage tank, 31 is a pump, and 38a and 38b are channels.

Claims (1)

【特許請求の範囲】 1 液化天然ガスの寒冷を利用して液体空気を製造する
方法において、空気を冷却して空気中に含有する易凝縮
性成分を固化流路に凝縮固化させる固化分離周期と、易
凝縮性成分固化流路に、加熱器、循環ブロワ−を介して
循環流路を接続し、該流路の空気を加熱しつつ循環する
ことにより固化成分を蒸発同伴して導出し、且つこれを
循環流路に接続した真空ポンプにより糸外に排出する蒸
発除去周期との両周期を、対を成す熱交換器によって交
互にくり返す精製工程によって低温精製空気を得、次い
で低温圧縮工程、液化工程を経て液体空気を得ると共に
上記精製工程、液化工程に液化天然ガスを供給して冷却
する様にしたことを特徴とする液体空気の製造方法。 2 液化天然ガスの寒冷を利用して液体空気を製造する
方法において、空気を冷却して空気中に含有する易凝縮
性成分を固化流路に凝縮固化させる固化分離周期と、易
凝縮性成分固化流路に、加熱器、循環ブロワ−を介して
循環流路を接続し、該流路の空気を加熱しつつ循環する
ことにより固化成分を蒸発同伴して導出し、且つこれを
循環流路に接続した真空ポンプにより系外に排出する蒸
発除去周期との両周期を、対を成す熱交換器によって交
互にくり返す精製工程によって低温精製空気を得た後、
これを後記する液体空気貯槽よりの蒸発空気と合流した
上、低温圧縮工程により15〜35気圧に圧縮し、次い
で液化器に導入して液化し更に液体空気貯槽よりの蒸発
空気により適冷した後、膨張弁を介して液体空気貯槽に
導入する液化工程により、液体空気を得るようにすると
共に上記精製工程、液化工程に液化天然ガスを供給して
冷却するようにしたことを特徴とする液体空気の製造方
法。
[Claims] 1. A method for producing liquid air using the cooling of liquefied natural gas, which includes a solidification separation cycle in which air is cooled and easily condensable components contained in the air are condensed and solidified in a solidification channel. , a circulation flow path is connected to the easily condensable component solidification flow path via a heater and a circulation blower, and the air in the flow path is heated and circulated to evaporate and entrain the solidified component, and Low-temperature purified air is obtained through a purification process in which both cycles of evaporation and removal, in which the air is discharged to the outside of the thread by a vacuum pump connected to a circulation channel, are repeated alternately using a pair of heat exchangers, followed by a low-temperature compression process, A method for producing liquid air, characterized in that liquid air is obtained through a liquefaction step, and liquefied natural gas is supplied to the purification and liquefaction steps for cooling. 2. In a method for producing liquid air using the refrigeration of liquefied natural gas, there is a solidification separation cycle in which air is cooled and easily condensable components contained in the air are condensed and solidified in a solidification channel, and a solidification cycle in which easily condensable components are solidified. A circulation flow path is connected to the flow path via a heater and a circulation blower, and by heating and circulating the air in the flow path, the solidified components are evaporated and entrained, and this is introduced into the circulation flow path. After obtaining low-temperature purified air through a purification process in which both the evaporation removal cycle and the evaporation removal cycle in which air is discharged outside the system by a connected vacuum pump are alternately repeated using a pair of heat exchangers,
This is combined with evaporated air from the liquid air storage tank (described later), compressed to 15 to 35 atmospheres in a low-temperature compression process, then introduced into a liquefier to liquefy, and further cooled appropriately with evaporated air from the liquid air storage tank. Liquid air is obtained by a liquefaction process that is introduced into a liquid air storage tank through an expansion valve, and is also cooled by supplying liquefied natural gas to the purification process and liquefaction process. manufacturing method.
JP50092924A 1975-07-30 1975-07-30 Exhaust air system Expired JPS5825953B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP50092924A JPS5825953B2 (en) 1975-07-30 1975-07-30 Exhaust air system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP50092924A JPS5825953B2 (en) 1975-07-30 1975-07-30 Exhaust air system

Publications (2)

Publication Number Publication Date
JPS5216479A JPS5216479A (en) 1977-02-07
JPS5825953B2 true JPS5825953B2 (en) 1983-05-31

Family

ID=14068025

Family Applications (1)

Application Number Title Priority Date Filing Date
JP50092924A Expired JPS5825953B2 (en) 1975-07-30 1975-07-30 Exhaust air system

Country Status (1)

Country Link
JP (1) JPS5825953B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55146372A (en) * 1979-05-02 1980-11-14 Nippon Oxygen Co Ltd Method of liquefying air by liquefied natural gas
JPS5634083A (en) * 1979-08-23 1981-04-06 Nippon Oxygen Co Ltd Method of liquefying air by low temperature of liquefied natural gas
US7165422B2 (en) * 2004-11-08 2007-01-23 Mmr Technologies, Inc. Small-scale gas liquefier

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3364686A (en) * 1963-08-17 1968-01-23 Linde Ag Process and installation for the removal of easily condensable components from gas mixtures
JPS4945054A (en) * 1972-08-03 1974-04-27
JPS5056392A (en) * 1973-09-19 1975-05-17

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3364686A (en) * 1963-08-17 1968-01-23 Linde Ag Process and installation for the removal of easily condensable components from gas mixtures
JPS4945054A (en) * 1972-08-03 1974-04-27
JPS5056392A (en) * 1973-09-19 1975-05-17

Also Published As

Publication number Publication date
JPS5216479A (en) 1977-02-07

Similar Documents

Publication Publication Date Title
US3894856A (en) Liquefaction of natural gas with product used as adsorber
US2496380A (en) Gas purifying method and apparatus
US4699642A (en) Purification of carbon dioxide for use in brewing
US3608323A (en) Natural gas liquefaction process
US4367082A (en) Air separating system
JPS5939671B2 (en) Air separation method and device
CN101981399B (en) Distillation method and apparatus
US1989190A (en) Apparatus for separating low boiling gas mixtures
BR112020021060A2 (en) air separation unit, and, air separation method.
US2619810A (en) Low-pressure process of and apparatus for separating gas mixtures
US20080289362A1 (en) Process and apparatus for low-temperature air fractionation
US4192662A (en) Process for liquefying and rectifying air
US4732597A (en) Low energy consumption method for separating gaseous mixtures and in particular for medium purity oxygen production
JP4276520B2 (en) Operation method of air separation device
TWI628401B (en) Verfahren und vorrichtung zur sauerstoffgewinnung durch tieftemperaturzerlegung von luft mit variablem energieverbrauch
US2918801A (en) Process and apparatus for separating gas mixtures
US3233418A (en) Apparatus for liquefying helium
CN104185767B (en) For the method and apparatus producing two strands of partial air flow purified
KR19990014225A (en) Separation method of air by cryogenic rectification
CN103109145B (en) For compressing the method and apparatus with cooling-air
US3057167A (en) Process and apparatus for separating helium from helium-air mixtures
JPS5825953B2 (en) Exhaust air system
US1810312A (en) Pro ess of separating gases
US2213338A (en) Method and apparatus for fractionating gaseous mixtures
JPH10170144A (en) Device and method for cleaning raw air of air liquefaction and separation device