JPS5825929A - Preparation of laminated polyolefine film - Google Patents

Preparation of laminated polyolefine film

Info

Publication number
JPS5825929A
JPS5825929A JP56124749A JP12474981A JPS5825929A JP S5825929 A JPS5825929 A JP S5825929A JP 56124749 A JP56124749 A JP 56124749A JP 12474981 A JP12474981 A JP 12474981A JP S5825929 A JPS5825929 A JP S5825929A
Authority
JP
Japan
Prior art keywords
film
polyolefine
laminated
crystalline
polyolefin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP56124749A
Other languages
Japanese (ja)
Inventor
Kenji Tsunashima
研二 綱島
Toshiya Yoshii
吉井 俊哉
Takeo Fukuyama
福山 武男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP56124749A priority Critical patent/JPS5825929A/en
Publication of JPS5825929A publication Critical patent/JPS5825929A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C55/00Shaping by stretching, e.g. drawing through a die; Apparatus therefor
    • B29C55/02Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets
    • B29C55/10Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial
    • B29C55/12Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial biaxial
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2023/00Use of polyalkenes or derivatives thereof as moulding material

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)
  • Laminated Bodies (AREA)

Abstract

PURPOSE:To prepare a laminated film of even thickness and excellent transparency by such an arrangement wherein common extrusion is carried out so that a film of crystalline polyolefine of high melting point is laminated on both sides of a film of crystalline polyolefine of low molecular weight, and then bi-axial stretching and heat treatment are carried out. CONSTITUTION:At least one of crystalline low molecular weight polyolefine A of which extreme viscosity is 0.5-1.5 and crystalline polyolefine B of higher melt ing point is added with a crystal forming nuclear agent of 0.001-0.5wt% and they are simultaneously extruded so that films of polyolefine B are laminated on both sides of polyolefine A. Next, this laminated films is bi-axially stretched and then heat treated at a temperature higher than the melting point of polyolefine A and lower than that of polyolefine B. By this manner, uneven thickness at the time of two-shaft elongation is eliminated and a laminated film of polyolefine of good transparency can be manufactured.

Description

【発明の詳細な説明】 本発明は、積層ポリオレフィンフィルムの製造方法に関
し、特に任意方向の手切れ性と実用強さを兼ね備えたポ
リオレフィンフィルムを製造する際、二軸延伸時の厚み
むらをなくシ、透明性の良い積層ポリオレフィンフィル
ムを製造する方法に関するものである。
Detailed Description of the Invention The present invention relates to a method for producing a laminated polyolefin film, and in particular, when producing a polyolefin film that has both hand tearability in any direction and practical strength, it is possible to eliminate thickness unevenness during biaxial stretching. , relates to a method for producing a laminated polyolefin film with good transparency.

従来、手切れ性にすぐれたポリオレフィンフィルムを製
造する方法としては、二軸配向フィルム(BOフィルム
)の上に幅方向−軸配向フィルム(UOフィルム)を積
層する方法(例えば、実公昭50−44519号公報な
ど)や、二軸配向フィルムに電子線などの放射線を照射
する方法(例えば特開昭53−106779号公報など
)へ2層のポリプロピレン層の間にポリスチレン層をは
さみ込んだ積層フィルムにする方法などが知られており
、それらは粘着テープ用途、花の包装用途など、手切れ
性の必要な用途に使用されている。
Conventionally, as a method for producing a polyolefin film with excellent hand tearability, a method of laminating a width direction-axis oriented film (UO film) on a biaxially oriented film (BO film) (for example, Japanese Utility Model Publication No. 50-44519) (e.g., Japanese Unexamined Patent Publication No. 106779/1983), or a method of irradiating a biaxially oriented film with radiation such as an electron beam (e.g., Japanese Unexamined Patent Application Publication No. 53-106779). Methods of cutting are known, and these are used in applications that require easy tearing by hand, such as adhesive tapes and flower packaging.

しかしながら、かかる従来の積層フィルムには、それぞ
れ次の−ような致命的な欠陥が存在していた。すなわち
、BO/UOフィルムからなる積層フィルムの場合、カ
ット時に白濁や白化したり、カット部が一部残存したり
、ミスカットしたり、さらに、40〜50℃に昇温した
場合には手切れ性がほとんどなくなったり、サンプルが
カールしたりするのみならず、生産性が悪いという欠点
を有していた。また電子線対決の場合、手切れ性と強靭
性を満足できないばかりか、手切れ性のあるものはフィ
ルム表層が容易に襞間するという欠点を有していた。
However, such conventional laminated films each have the following fatal defects. In other words, in the case of a laminated film made of BO/UO film, it may become cloudy or white when cut, a portion of the cut portion may remain, or it may be miscut, and it may be cut by hand if the temperature rises to 40 to 50 degrees Celsius. This method has the disadvantages that not only the elasticity is almost lost and the sample curls, but also the productivity is poor. Furthermore, in the case of electron beam confrontation, not only are the properties of hand-cutting and toughness unsatisfactory, but also those that are hand-cuttable have the disadvantage that the surface layer of the film easily creases.

2層のポリプロピレン層の間にポリスチレン層をはさみ
込んだ3層フィルムの場合も、両者間の接着性が悪く、
襞間しやすいのみならず、透明性、耐薬品性および耐熱
性が悪く、さらにフィルム生産時等のくず回収が出来ず
、生産性の悪いものになってしまうという欠点を有して
いた。
Even in the case of a three-layer film in which a polystyrene layer is sandwiched between two polypropylene layers, the adhesion between the two is poor.
Not only is it prone to creases, but it also has poor transparency, chemical resistance, and heat resistance, and it also has the disadvantage of not being able to collect scraps during film production, resulting in poor productivity.

そこで本発明者らは、任意方向の手切れ性と実用強さを
備えたポリオレフィンフィルムとして、低分子量、低融
点のポリオレフィンを中心層とし、その両側にこれより
は高分子量で高融点のポリオレフィンフィルムを積層し
た3層積層ポリオレフィンフィルムをすでに提案した。
Therefore, the present inventors developed a polyolefin film that has practical strength and can be easily cut by hand in any direction, using a polyolefin with a low molecular weight and a low melting point as the center layer, and on both sides of the polyolefin film with a polyolefin with a higher molecular weight and a higher melting point. We have already proposed a three-layer laminated polyolefin film.

そしてこの積層フィルムを製造する方法としては、まず
上記の3層積層フィルムを共押出して二軸延伸後、中心
層のポリマ融点と両表層のポリマ融点との間の温度で熱
処理するものであるが、この場合使用されるポリオレフ
ィンの極限粘度が中心層で0.5〜1.5表層で0.5
〜2.0というように低分子量のものであるため、二軸
延伸性が悪く、フィルムに厚みむらが生じがちであった
。フィルムに厚みむらが生じると続く二次加工、たとえ
ばそのフィルムに接着層あるいはヒートシール層を設け
る加工性が悪くなり、またロールに巻いたときの形状が
不均一になり商品として価値が減少する。
The method for producing this laminated film is to first coextrude the three-layer laminated film described above, biaxially stretch it, and then heat treat it at a temperature between the polymer melting point of the center layer and the polymer melting points of both surface layers. In this case, the intrinsic viscosity of the polyolefin used is 0.5 to 1.5 in the center layer and 0.5 in the surface layer.
Since it has a low molecular weight of ~2.0, it has poor biaxial stretchability and tends to have uneven thickness in the film. When thickness unevenness occurs in a film, subsequent secondary processing, such as applying an adhesive layer or a heat-sealing layer to the film, becomes difficult, and the film becomes uneven in shape when wound into a roll, reducing its value as a product.

したがって本発明は、このような厚みむらを生じること
なく二輪延伸性にすぐれ、かつ任意方向の手切れ性と実
用強さを備えたポリオレフィンフィルムの製・遣方法を
提供するものである。
Therefore, the present invention provides a method for producing and distributing a polyolefin film that does not cause such thickness unevenness, has excellent two-wheel stretchability, is easy to cut by hand in any direction, and has practical strength.

即ち本発明は極限粘度0.5〜1.5の結晶性低分子量
ポリオレフィン(A)と、これより融点の高い結晶性ポ
リオレフィン(B)の少なくとも一方に結晶造核剤を0
.001〜0.5重量%添加し、上記結晶性低分子量ポ
リオレフィン(4)が中心層となり、その両面に上記結
晶性ポリオレフィン(B)が積層されるように、これら
を共押出しすることにより3層積層シートを形成し、こ
れを二軸延伸したのち、結晶性低分子量ポリオレフィン
(4)の融点以上かつ結晶性ポリオレフィン(B)の融
点以下の温度で熱処理することを特徴とする積層ポリオ
レフィンフィルムの製造方法である。
That is, in the present invention, a crystalline nucleating agent is added to at least one of a crystalline low molecular weight polyolefin (A) having an intrinsic viscosity of 0.5 to 1.5 and a crystalline polyolefin (B) having a higher melting point.
.. 001 to 0.5% by weight and co-extruded to form three layers such that the crystalline low molecular weight polyolefin (4) becomes the center layer and the crystalline polyolefin (B) is laminated on both sides. Production of a laminated polyolefin film, which is characterized by forming a laminated sheet, biaxially stretching it, and then heat-treating it at a temperature above the melting point of the crystalline low molecular weight polyolefin (4) and below the melting point of the crystalline polyolefin (B). It's a method.

本発明の積層フィルムの中心層(4)として用いる結晶
性低分子量ポリオレフィンとは、プロピレンと他のオレ
フィン(炭素数2および4〜10)との共重合体(プロ
ピレン含i70〜99.5重量%)、エチレンと他のオ
レフィン(炭素数3〜10)との共重合体(エチレン含
量70〜99.5重量%)、ブテン−1と他のオレフィ
ン(炭素数2,3 および5〜10)との共重合体(ブ
テン−1含量70〜99.5重量%)、4−メチルペン
テン−1と他のオレフィン(炭素数2〜10)との共重
合体(4−メチルペンテン−1含量70〜99.5重量
%)などのオレフィン共重合体(2元共重合体だけでな
く、3元あるいはそれ以上の共重合体も含む。共重合様
式はランダム共重合、ブロック共重合のいずれでもよい
)、およびプロピレン、エチレン、ブテン−1,4−メ
チルペンテン−1などの炭素数2〜10のオレフィンの
ホモポリマであり、極限粘度が0.5〜1.5の範囲、
好ましくは0.7〜1.2の範囲にあるものである。特
に好ましいのは、極限粘度0.5〜1.5の範囲の上記
オレフィン共重合体であり、さらに好ましいものとして
は、極限粘度0.5〜1.5の範囲の上記オレフィン共
重合体に、極限粘度0.5〜1.5の範囲の上記オレフ
ィンホモポリマを混合した混合組成物である(混合物重
量基準で、オレフィンホモポリマ量が2〜40%)0こ
のような結晶性低分子量ポリオレフィンの極限粘度は、
0.5〜1.5、好ましくは0.7〜1.2の範囲にあ
ることが必要である。この範囲より低い極限粘度では、
フィルムが脆くなりすぎて実用強さが不足となり、また
逆に、この範囲より高い極限粘度では、任意方向の手切
れ性がなくなってくる。
The crystalline low molecular weight polyolefin used as the center layer (4) of the laminated film of the present invention is a copolymer of propylene and other olefins (having 2 and 4 to 10 carbon atoms) (propylene content: 70 to 99.5% by weight). ), copolymers of ethylene and other olefins (3 to 10 carbon atoms) (ethylene content 70 to 99.5% by weight), butene-1 and other olefins (2,3 and 5 to 10 carbon atoms), Copolymers of 4-methylpentene-1 and other olefins (2-10 carbon atoms) (4-methylpentene-1 content of 70 to 99.5% by weight) (99.5% by weight) and other olefin copolymers (including not only binary copolymers but also tertiary or more copolymers.The copolymerization mode may be either random copolymerization or block copolymerization) , and a homopolymer of an olefin having 2 to 10 carbon atoms such as propylene, ethylene, butene-1,4-methylpentene-1, and having an intrinsic viscosity in the range of 0.5 to 1.5,
Preferably it is in the range of 0.7 to 1.2. Particularly preferred is the above olefin copolymer having an intrinsic viscosity in the range of 0.5 to 1.5, and even more preferred is the above olefin copolymer having an intrinsic viscosity in the range of 0.5 to 1.5. A mixed composition containing the above-mentioned olefin homopolymers having an intrinsic viscosity in the range of 0.5 to 1.5 (based on the weight of the mixture, the amount of olefin homopolymer is 2 to 40%). The intrinsic viscosity is
It needs to be in the range of 0.5 to 1.5, preferably 0.7 to 1.2. At intrinsic viscosity lower than this range,
The film becomes too brittle and lacks practical strength, and conversely, if the intrinsic viscosity is higher than this range, it becomes difficult to cut by hand in any direction.

次に、この結晶性低分子量ポリオレフィンからなる中心
層(4)の厚さは、5〜50μm1好ましくは10〜4
0μmの範囲にあることが望ましい。
Next, the thickness of the center layer (4) made of this crystalline low molecular weight polyolefin is 5 to 50 μm, preferably 10 to 4 μm.
It is desirable that the thickness be in the range of 0 μm.

この範囲より薄い場合は、実用強さが不足するとともに
、薄すぎるため取り扱い作業性が劣ったものとなってし
まう。一方、この範囲より厚い場合は、任意方向の手切
れ性が不足してくる。
If it is thinner than this range, it will lack practical strength and will be too thin, resulting in poor handling and workability. On the other hand, if it is thicker than this range, the ability to cut it by hand in any direction becomes insufficient.

次に層(4)の両面に積層される層(B)について説明
する。層@)を構成するポリマは層囚を構成するポリマ
より融点の高い結晶性ポリオレフィンである。そして層
(4)と層(B)のポリマの融点差は1〜50℃が好ま
しく、更に好ましくは5〜30℃の範囲である。層(B
)に用いる結晶性ポリオレフィンとしてはプロピレン、
エチレン、ブテン−1,4−メチルペンテン−1、ある
いはこれら以外の炭素数10以下のオレフィンのホモポ
リマ、コポリマ、あるいはブロックコポリマチある。そ
して極限粘度は0.5〜2.01好ましくは0.7〜1
.5の範囲のものが望ましい。この層(B)の一枚の厚
さは0.5〜8μm1好ましくは1〜5μmの範囲であ
ることが望ましい。この範囲より薄い場合は、実用強さ
の不足したフィルムとなり、逆にこの範囲より厚くなる
と任意方向の手切れ性がなくなる。
Next, the layer (B) laminated on both sides of the layer (4) will be explained. The polymer constituting the layer (@) is a crystalline polyolefin having a higher melting point than the polymer constituting the layer. The melting point difference between the polymers of layer (4) and layer (B) is preferably 1 to 50°C, more preferably 5 to 30°C. Layer (B
) as the crystalline polyolefin used in propylene,
Homopolymers, copolymers, or block copolymers of ethylene, butene-1,4-methylpentene-1, or other olefins having 10 or less carbon atoms. And the intrinsic viscosity is 0.5-2.01 preferably 0.7-1
.. A value in the range of 5 is desirable. The thickness of this layer (B) is preferably in the range of 0.5 to 8 μm, preferably 1 to 5 μm. If it is thinner than this range, the film will lack practical strength, and if it is thicker than this range, it will not be easy to cut by hand in any direction.

次に上記結晶性低分子量ポリオレフィン(4)または結
晶性ポリオレフィン(B)に添2加する結晶造核剤につ
いて説明する。本発明でいう結晶造核剤とは走査型差動
熱量計(DSC)で、あるポリマな完全溶融したのち、
これを徐々に降温していくと、降温の過程でそのポリマ
の結晶化に起因する発熱ピークが現われるが、このポリ
マにある種の物質を予め添加しておくと発熱ピークの温
度が高温側へ移行する。そしてこのようにポリマの発熱
ピーク温度を高温側へ移行させる作用を有する物質を結
晶造核剤を定義する。たとえばポリプロピレンをDSC
で溶融後、降温していくと約95℃で発熱ピークが現わ
れるがジベンジリデンソルビトールをポリプロピレンに
対して約0.2重量%添加しておくと発熱ピークは約1
5℃高温側に移行する。
Next, the crystal nucleating agent to be added to the crystalline low molecular weight polyolefin (4) or crystalline polyolefin (B) will be explained. The crystal nucleating agent referred to in the present invention is a scanning differential calorimeter (DSC), and after completely melting a certain polymer,
When the temperature of this polymer is gradually lowered, an exothermic peak due to crystallization of the polymer appears during the cooling process, but if a certain substance is added to this polymer in advance, the temperature of the exothermic peak shifts to the higher temperature side. Transition. A crystal nucleating agent is defined as a substance that has the effect of shifting the exothermic peak temperature of the polymer to a higher temperature side in this way. For example, DSC polypropylene
After melting, an exothermic peak appears at about 95°C as the temperature is lowered, but if dibenzylidene sorbitol is added at about 0.2% by weight to the polypropylene, the exothermic peak becomes about 1.
Move to the high temperature side of 5℃.

したがってジベンジリデンソルビトールは結晶造核剤で
あるということができるのである。
Therefore, dibenzylidene sorbitol can be said to be a crystal nucleating agent.

そして結晶造5核剤として本発明に使用できるものは、
ジベンジリデンソルビトールまた°はその誘導体、安息
香酸ナトリウム、安息香酸アルミニウム、ナフテン酸ナ
トリウム、シクロヘキシルカルボン酸ナトリウム、シリ
カ、タルク、ゼオライト、カオリン等であるが中でもジ
ベンジリデンソルビトールの誘導体が特に好ましい。
And those that can be used in the present invention as crystallization pentanucleating agents are:
Dibenzylidene sorbitol or its derivatives, sodium benzoate, aluminum benzoate, sodium naphthenate, sodium cyclohexylcarboxylate, silica, talc, zeolite, kaolin, etc., among which derivatives of dibenzylidene sorbitol are particularly preferred.

結晶造核剤は前記ポリオレフィン(4)または(B)の
どちらか一方、あるいはその両方に添加することができ
るが、好ましくは、表層部のポリオレフィン(B)に添
加する方が効果が大きい。結晶造核剤の添加量はポリオ
レフィン(4)または(B)に対し、0.001〜0.
5重量%、好ましくは0.05〜0.3重量%である。
The crystal nucleating agent can be added to either the polyolefin (4) or (B), or both, but preferably, the effect is greater when added to the surface layer polyolefin (B). The amount of the crystal nucleating agent added is 0.001 to 0.001 to polyolefin (4) or (B).
5% by weight, preferably 0.05-0.3% by weight.

添加量が0.001重量%より少ないとフィルムの延伸
性改良効果が小さく、また0、5重量%より多いとフィ
ルムの透明性が悪くなり、品、質の経時変化が起って好
ましくな% )0 次に本発明の製造方法について説明する。
If the amount added is less than 0.001% by weight, the effect of improving the stretchability of the film will be small, and if it is more than 0.5% by weight, the transparency of the film will deteriorate and the product and quality will change over time, so this is not a preferable percentage. )0 Next, the manufacturing method of the present invention will be explained.

まず、結晶性低分子量ポリオレフィン囚と結晶造核剤0
.001〜0.5重量%を溶融混練した結晶性ポリオレ
フィン(B)を、B/A/Bの形の3層積層シートとし
て共押出しする。このとき、回層のポリマは極限粘度0
.5〜1.5、(B)層のポリマの極限粘度は0.5〜
2.0が好ましい。また(B)層のポリマ融点は仏)層
の融点より1〜50℃、好ましくは5〜30℃高いよう
Kしておく。
First, a crystalline low molecular weight polyolefin prisoner and a crystal nucleating agent 0
.. 001 to 0.5% by weight of the crystalline polyolefin (B) is coextruded as a three-layer laminated sheet in the form of B/A/B. At this time, the polymer of the circuit layer has an intrinsic viscosity of 0
.. 5-1.5, the intrinsic viscosity of the polymer of layer (B) is 0.5-1.5
2.0 is preferred. Further, the polymer melting point of layer (B) is set to be 1 to 50° C., preferably 5 to 30° C. higher than that of layer (B).

このような3層積層シートを、同時二軸延伸あるいは逐
次二軸延伸のような公知の二軸延伸方法で、長手方向お
よび幅方向に各々1.5〜15倍、好ましくは2〜10
倍二軸延伸する。この時の延伸温度は、((4)層ポリ
マの融点−10)’C以上、(B)層ポリマの融点以下
の範囲とすることが好ましい。次いで、この二軸延伸さ
れたフィルムを、(ト)層ポリマの融点以上、(B)層
ポリマの融点以下の温度範囲で、1〜100秒間、好ま
しくは3〜30秒間熱処理する。この熱処理は、フィル
ムを緊張状態に保って行なう緊張熱処理でもよく、ある
いは、フィルムの長手方向および/または幅方向に、元
の長さの1〜20%弛緩を許しつつ行なう弛緩熱処理で
もよく、あるいはこれらの組合せでもよい。
Such a three-layer laminated sheet is stretched 1.5 to 15 times, preferably 2 to 10 times, in the longitudinal direction and the width direction by a known biaxial stretching method such as simultaneous biaxial stretching or sequential biaxial stretching.
Double-biaxially stretched. The stretching temperature at this time is preferably within the range of ((4) melting point of layer polymer -10'C) or higher and (B) layer polymer's melting point or lower. Next, this biaxially stretched film is heat-treated for 1 to 100 seconds, preferably for 3 to 30 seconds, at a temperature range that is above the melting point of the (G) layer polymer and below the melting point of the (B) layer polymer. This heat treatment may be a tension heat treatment in which the film is kept under tension, or a relaxation heat treatment in which the film is allowed to relax by 1 to 20% of its original length in the longitudinal and/or width directions, or A combination of these may also be used.

次いで必要に応じてこのフィルムの片面または両面にコ
ロナ放電処理などの公知の表面活性化処理を行なうこと
もできる。
Next, if necessary, one or both sides of this film may be subjected to a known surface activation treatment such as a corona discharge treatment.

かくして得られた3層積層フィルムは任意方向の手切れ
性と実用強さを備えかつ厚みむらのない均一なものであ
る。
The three-layer laminated film thus obtained has the ability to be cut by hand in any direction, has practical strength, and is uniform with no uneven thickness.

本発明で言う任意方向の手切れ性と、実用強さは、本積
層フィルムの落球衝撃強さでうまく表現することができ
る。つまり、任意方向の手切れ性を持つためには、この
落球衝撃強さが25kg・α以下、好ましくは20kg
・α以下であることが極めて望ましいことである。また
逆に、実用強さを持つためには、落球衝撃強さが2に9
・α以上、好ましくは5kl?・α以下あることが極め
て望ましい。従って、本発明の目的である任意方向の手
切れ性と実用強さを兼ね備えると℃・うことを数値で言
いかえれば、落球衝撃強さが2〜25kg・傭、好まし
くは5〜20klil・αの範囲の値を持つ3層積層ポ
リオレフィンフィルムと表現することもできる。
Hand tearability in any direction and practical strength as used in the present invention can be well expressed by the falling ball impact strength of the laminated film. In other words, in order to have the ability to cut the ball by hand in any direction, the impact strength of the falling ball must be 25 kg・α or less, preferably 20 kg.
- It is extremely desirable that it be less than or equal to α. Conversely, in order to have practical strength, the falling ball impact strength must be 2 to 9.
・Above α, preferably 5kl?・It is extremely desirable that the value be less than or equal to α. Therefore, if the objective of the present invention is to achieve both hand cutability in any direction and practical strength, the falling ball impact strength is 2 to 25 kg, preferably 5 to 20 klil. It can also be expressed as a 3-layer laminated polyolefin film having a value in the range of .

また、フィルムの厚みむらは測定方向に長さ3m以上の
試料をサンプリングし、接触式の連続厚さ測定器で厚さ
を測定し、その最大厚みと最小厚みの差を平均厚みで割
り、%で表示することができる。この厚みむらが0〜1
0%であれば優秀品、20%を越えると商品として問題
がある。
In addition, the thickness unevenness of the film can be measured by sampling a sample with a length of 3 m or more in the measurement direction, measuring the thickness with a contact-type continuous thickness measuring device, and dividing the difference between the maximum thickness and minimum thickness by the average thickness. It can be displayed in This thickness unevenness is 0 to 1
If it is 0%, it is an excellent product; if it exceeds 20%, the product is problematic.

以下、実施例を挙げて本発明を具体的に説明するが、本
実施例における極限粘度、融点、落球衝撃強さ、および
厚みむらは次のようにして測定した。
Hereinafter, the present invention will be specifically explained with reference to Examples. In the Examples, the intrinsic viscosity, melting point, falling ball impact strength, and thickness unevenness were measured as follows.

(1)極限粘度 ポリマ0.IIを135℃のテトラリン100m1lに
完全溶解させ、この溶液をFitz −8immons
型の粘゛度計で135±0.05℃の恒温槽中で測定し
て比粘度Sを求める。これより、次式によって、極限粘
度を計算する。
(1) Intrinsic viscosity polymer 0. II was completely dissolved in 100ml of tetralin at 135°C, and this solution was dissolved in Fitz-8immons
The specific viscosity S is determined by measuring with a type viscometer in a constant temperature bath at 135±0.05°C. From this, the intrinsic viscosity is calculated using the following formula.

極限粘度= S / [0,1(1+0.228 ) 
]なお、本発明で、中心層(4)層あるいは(B)層の
ポリマの極限粘度とは、該層を構成しているポリマo、
if1を採取して、上記方法で測定した値である。従っ
て、該層がポリマの混合物から成る場合でも、該ポリマ
混合物0.I IIを用いて測定した値をフィルム各層
の極限粘度とする。
Intrinsic viscosity = S / [0,1 (1 + 0.228)
] In the present invention, the intrinsic viscosity of the polymer of the central layer (4) layer or (B) layer refers to the polymer o,
This is the value obtained by collecting if1 and measuring it by the above method. Therefore, even if the layer consists of a mixture of polymers, the polymer mixture 0. The value measured using I II is taken as the intrinsic viscosity of each layer of the film.

(2)   融  点 走査型熱分析装置(パーキン・エルマー社製のDSC−
II型)中に、ポリマ5 mgをセットし、窒素雰囲気
下で加熱し、290℃まで昇温する(昇温速度20℃/
分)。この温度に60秒間保持した後、該サンプルを取
り出して、ただちに液体窒素中に投入して急冷する。こ
のサンプルを再び測定セルにセットし、昇温速度り0℃
/分で昇温していき、結晶の融解に伴なう吸熱ピークの
ピーク部の温度を該ポリマの融点とする。なお、ポリマ
が混合物やブロック共重合体から成るために、2つ以上
のピークがあられれる場合には、ピーク高さが最も高い
ピークのピーク部の温度を該ポリマの融点とみなす0(
3)  落球衝撃強さ 20±0.5℃の恒湿室中にフィルムを一昼装置き、そ
の状態で測定する。フィルムを5crrL直径の枠にぴ
んと張った状態で固定する。その真上の2rrLの高さ
から鋼球(直径38.1■)を落す。鋼球がフィルムを
破壊した直後の鋼球の落下速度を光電管で測定し、この
速度を■(、cm/ s e c )とする。また、フ
ィルムがない場合の該当部での落下速度をV。(crr
L/5eC)とする。すると、フィルムを破るのに要し
たエネルギー(これを落球衝撃強さとする)は次式で求
められる。
(2) Melting point scanning thermal analyzer (DSC- manufactured by Perkin Elmer)
Set 5 mg of polymer in Type II), heat in a nitrogen atmosphere, and raise the temperature to 290°C (heating rate 20°C/
minutes). After holding this temperature for 60 seconds, the sample is removed and immediately placed in liquid nitrogen for quenching. Set this sample in the measurement cell again, and the temperature increase rate was 0℃.
The temperature is raised at a rate of 1/min, and the temperature at the endothermic peak accompanying the melting of the crystals is taken as the melting point of the polymer. In addition, if two or more peaks occur because the polymer is composed of a mixture or a block copolymer, the temperature of the peak with the highest peak height is regarded as the melting point of the polymer.
3) Falling ball impact strength: Place the film in a constant humidity chamber at 20±0.5°C for one day, and measure in that state. The film is held taut in a 5 crrL diameter frame. A steel ball (diameter 38.1 square meters) is dropped from a height of 2rrL directly above it. Immediately after the steel ball breaks the film, the falling speed of the steel ball is measured with a phototube, and this speed is defined as ■(, cm/sec). Also, the falling speed at the relevant part when there is no film is V. (crr
L/5eC). Then, the energy required to break the film (this is taken as the falling ball impact strength) can be calculated using the following formula.

落球衝撃強さく〜・crIL)=M(■3−v2)/2
9但し、M:鋼球の重量(kg) 9二重力加速度(980crrv′see” )実施例
1 次の2種類のポリマを用意した0 ポリマA:プロピレン・ブテン−1ランダム共重合体。
Falling ball impact strength~・crIL)=M(■3-v2)/2
9 However, M: Weight of steel ball (kg) 9 Double force acceleration (980 crrv'see") Example 1 The following two types of polymers were prepared. Polymer A: Propylene-butene-1 random copolymer.

ブテン−1含有量7重量%、極限粘度0.90、融点1
51℃。結晶化に伴なう発熱ピーク温度は、該融解に伴
なう吸熱ピークが出たのちも昇温をつづけ、280℃で
降温に切りかえ、冷却速度20℃/分で冷却し、発熱に
伴なうサーモグラフのピーク温度をとる。酸化防止剤と
して、2,6−ジー1−ブチル−p−クレゾール0.2
重量%および帯電防止剤として、純度99%以上のステ
アリン酸モノグリャリドを0.6重量%含有させた。
Butene-1 content 7% by weight, intrinsic viscosity 0.90, melting point 1
51℃. The exothermic peak temperature associated with crystallization continued to rise even after the endothermic peak associated with the melting appeared, and then the temperature was lowered at 280°C, and the temperature was cooled at a cooling rate of 20°C/min. Take the peak temperature of the thermograph. As an antioxidant, 2,6-di-1-butyl-p-cresol 0.2
As an antistatic agent, 0.6% by weight of stearic acid monoglyalide having a purity of 99% or more was contained.

ポリマB:極限粘度1.15 、融点164.5℃アイ
ソタクチック度97.2%のプロピレンホモポリマにジ
ベンジリデンソルビトールを所定量溶融混練した。
Polymer B: A predetermined amount of dibenzylidene sorbitol was melt-kneaded into a propylene homopolymer having an intrinsic viscosity of 1.15 and a melting point of 164.5° C. and an isotactic degree of 97.2%.

これら2種のポリマを2台の別々の押出機に供給して、
200℃で溶融押出し、3個のマニホルドを有する3層
積層用口金の中で溶融体同志を合流せしめて、中心層が
ポリマAからなり、両表面層がポリマBからなる3層積
層シートの形とした。これを口金から出して、ただちに
表面温度35℃の冷却用ドラムに接触せしめて、冷却固
化した。この3層積層シートを、145℃の予熱ロール
に接触させて十分に予熱した後、赤外線ヒータで急速に
加熱しつつ、長手方向に5倍延伸し、ただちに20℃の
冷却ロールに接触させて急冷した。この−軸延伸シート
を再び150°Cの熱風で十分に予熱した後、幅方向に
8倍延伸し、その緊張状態を保ったまま、155℃の熱
風中で5秒間熱処理し、次いで同じ熱風中でフィルムを
元の幅の6%分の弛緩を許容しつつ、3秒間弛緩熱処理
し、次いで再度同じ熱風中で3秒間の緊張熱処理をし、
しかる後、室温までゆるやかに冷却した(平均冷却速度
30℃ん)。
These two polymers are fed into two separate extruders,
Melt extrusion is performed at 200°C, and the melts are merged in a three-layer lamination die having three manifolds to form a three-layer laminated sheet in which the center layer is made of polymer A and both surface layers are made of polymer B. And so. This was taken out from the nozzle and immediately brought into contact with a cooling drum whose surface temperature was 35°C to cool and solidify. This three-layer laminated sheet was sufficiently preheated by contacting with a 145°C preheating roll, then stretched 5 times in the longitudinal direction while being rapidly heated with an infrared heater, and immediately brought into contact with a 20°C cooling roll to be rapidly cooled. did. This -axially stretched sheet was sufficiently preheated again with hot air at 150°C, then stretched 8 times in the width direction, and while maintaining the tension, was heat treated in hot air at 155°C for 5 seconds, and then in the same hot air. The film was then subjected to a relaxation heat treatment for 3 seconds while allowing it to relax by 6% of its original width, and then subjected to a tension heat treatment again in the same hot air for 3 seconds.
Thereafter, it was slowly cooled to room temperature (average cooling rate: 30°C).

かくして得られたフィルムの中心層の厚さは29μm1
両表面層の厚さは各々3μmで、合計厚さは35μmの
3層積層フィルムであった。
The thickness of the central layer of the film thus obtained was 29 μm.
The thickness of both surface layers was 3 μm each, and the total thickness was 35 μm, making it a three-layer laminated film.

結晶造核剤の添加量を変えた場合の各評価結果を表1に
示した。
Table 1 shows the evaluation results when the amount of crystal nucleating agent added was changed.

表  1 なお、厚みむらは長手方向/巾方向の値で示した。Table 1 Incidentally, the thickness unevenness is shown as a value in the longitudinal direction/width direction.

代理人 弁理士 小 川 信 − 弁理士 野 口 賢 照 弁理士 斎 下 和 彦Agent: Patent Attorney Nobuo Kogawa - Patent attorney Kenteru Noguchi Patent Attorney Kazuhiko Sai

Claims (1)

【特許請求の範囲】[Claims] 極限粘度0.5〜1゜5の結晶性低分子量ポリオレフィ
ン(5)と、これより融点の高い結晶性ポリオレフィン
(B)め少なくとも一方に結晶造核剤を0゜001〜0
.5重量%添加し上記結晶性低分子量ポリオレフィン(
4)が中心層となり、その両面に上記結晶性ポリオレフ
ィン(B)が積層されるように、これらを共押出しする
ことにより3層積層シートを形成し、これを二軸延伸し
たのち、結晶性低分子量ポリオレフィン■の融点以上か
つ結晶性ポリオレフィン(B)の融点以下の温度で熱処
理することを特徴とする積層ポリオレフィンフィルムの
製造方法。
A crystalline low molecular weight polyolefin (5) having an intrinsic viscosity of 0.5 to 1.5 degrees and a crystalline polyolefin (B) having a higher melting point than the crystalline polyolefin (B) having a crystal nucleating agent of 0.001 to 0.0 degrees
.. 5% by weight of the above crystalline low molecular weight polyolefin (
A three-layer laminated sheet is formed by coextruding these so that 4) becomes the center layer and the crystalline polyolefin (B) is laminated on both sides, and this is biaxially stretched. A method for producing a laminated polyolefin film, characterized by heat treatment at a temperature above the melting point of the molecular weight polyolefin (1) and below the melting point of the crystalline polyolefin (B).
JP56124749A 1981-08-11 1981-08-11 Preparation of laminated polyolefine film Pending JPS5825929A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56124749A JPS5825929A (en) 1981-08-11 1981-08-11 Preparation of laminated polyolefine film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56124749A JPS5825929A (en) 1981-08-11 1981-08-11 Preparation of laminated polyolefine film

Publications (1)

Publication Number Publication Date
JPS5825929A true JPS5825929A (en) 1983-02-16

Family

ID=14893155

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56124749A Pending JPS5825929A (en) 1981-08-11 1981-08-11 Preparation of laminated polyolefine film

Country Status (1)

Country Link
JP (1) JPS5825929A (en)

Similar Documents

Publication Publication Date Title
JP7459919B2 (en) Biaxially oriented laminated polypropylene film
US4410582A (en) Multi-layered polyolefin laminated film
JPH09272188A (en) Polyolefin film containing cycloolefin polymer and its preparation and use
JPH0430347B2 (en)
JPH0343436A (en) Biaxially oriented polypropylene film having high mechanical strength
JPS64995B2 (en)
US11420430B2 (en) Polypropylene-based laminated film
JP7205462B2 (en) biaxially oriented polypropylene film
JPH11192680A (en) Polypropylene film and its manufacture
JPH0347177B2 (en)
JPS5825929A (en) Preparation of laminated polyolefine film
JP2001040112A (en) Easily tearable biaxial orientation polypropylene film
JP2002248719A (en) Multi-layer biaxially stretched polypropylene film
JP4150957B2 (en) Polyester film and method for producing the same
TW202204495A (en) Biaxially-oriented polypropylene film
TW202204494A (en) Biaxially-oriented polypropylene film
JP2000025173A (en) Laminated polypropylene film
JPS5825930A (en) Preparation of polyolefine laminated film
JPH04216829A (en) Polypropylene film for double-side metallizing
JP4254289B2 (en) Laminated polypropylene film and fusing sealed package comprising the same
JPH071570A (en) Crystallizing method for crystalline poly (alkylene carbonate) and non-crystalline poly (alkylene carbonate), and high oxygen shielding highly transparent laminated sheet and its preparation
JPS6174819A (en) Manufacture of polyethylene oriented film
JPH0523938B2 (en)
JP7405099B2 (en) Method for manufacturing biaxially oriented polypropylene film
JPS6135533Y2 (en)