JPS5825562B2 - Reinforcement method for wood-based materials - Google Patents

Reinforcement method for wood-based materials

Info

Publication number
JPS5825562B2
JPS5825562B2 JP8419780A JP8419780A JPS5825562B2 JP S5825562 B2 JPS5825562 B2 JP S5825562B2 JP 8419780 A JP8419780 A JP 8419780A JP 8419780 A JP8419780 A JP 8419780A JP S5825562 B2 JPS5825562 B2 JP S5825562B2
Authority
JP
Japan
Prior art keywords
wood
based materials
cyanoacrylate
composition
materials
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP8419780A
Other languages
Japanese (ja)
Other versions
JPS5711006A (en
Inventor
真 亀山
岩吉 杉山
和良 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Matsumoto Seiyaku Kogyo KK
Nippon Gakki Co Ltd
Original Assignee
Matsumoto Seiyaku Kogyo KK
Nippon Gakki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsumoto Seiyaku Kogyo KK, Nippon Gakki Co Ltd filed Critical Matsumoto Seiyaku Kogyo KK
Priority to JP8419780A priority Critical patent/JPS5825562B2/en
Publication of JPS5711006A publication Critical patent/JPS5711006A/en
Publication of JPS5825562B2 publication Critical patent/JPS5825562B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Chemical And Physical Treatments For Wood And The Like (AREA)
  • Dry Formation Of Fiberboard And The Like (AREA)

Description

【発明の詳細な説明】 本発明は新規な木質系材料の補強法に関するものである
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a novel method for reinforcing wood-based materials.

従来から各種木質系材料が家具建材をはじめ広範な用途
に占(から用いられている。
Various wood-based materials have traditionally been used for a wide range of purposes, including furniture construction materials.

ここに木質系材料とは通常の木材素材の外に各種の合板
、集成材或はパーティクルボード、ファイバーボード等
板状、小片状、繊維状等各種形状の木材をもとにしてつ
(られた材料も含まれる。
Wood-based materials here include not only ordinary wood materials, but also materials made from wood in various shapes such as plates, pieces, and fibers, such as various types of plywood, laminated wood, particle board, and fiberboard. Also included.

これらの木質系材料の中一般に軽軟材と呼ばれる軽比重
木質系材料が近年特にその機能性量産性の面から多用さ
れているが、その材質強度が小さいので釘、木ねじ、ダ
ボ等各種緊結具による接合作業をしたときその接合箇所
周辺の木質部に破壊が生じ易(必要な接合強度が得難か
った。
Among these wood-based materials, wood-based materials with low specific gravity, generally called light soft wood, have been widely used in recent years due to their functionality and mass productivity. When jointing work is carried out, the wooden parts around the joint are likely to break (it was difficult to obtain the necessary joint strength).

このため特に軽比重の木質系材料の接合箇所を補強する
ことが必要となり、種々の方法が提案されていた。
For this reason, it is necessary to particularly strengthen the joints of wood-based materials of light specific gravity, and various methods have been proposed.

かかる木質系材料の接合箇所を補強する方法としては、
ヘリサートオーブンナツト等の機械的補強法と接合箇所
又はその周辺に尿素樹脂で代表される合成樹脂を含浸し
て補強する樹脂補強法が知られている。
As a method of reinforcing the joints of such wood-based materials,
Mechanical reinforcement methods such as helisert oven nuts and resin reinforcement methods are known, which involve impregnating and reinforcing joints or their surroundings with synthetic resins such as urea resin.

樹脂補強法においては木質の結合共たるダボの場合、ダ
ボ又はダボ穴へ樹脂を塗布する方法、ねじや釘の場合は
接合予定箇所に案内孔を設けこの孔より樹脂液を注入す
る方法(実公昭37−6394号)等が具体的な例とし
て知られている。
In the resin reinforcing method, in the case of dowels that also bind wood, there is a method of applying resin to the dowel or dowel hole, and in the case of screws and nails, a method of creating a guide hole at the planned joint location and injecting resin liquid through this hole (in practice) Publication No. 37-6394) is known as a specific example.

このように樹脂液を注入して硬化する方法では耐振動性
、耐衝撃性は良好な結果が期待できるが、反面さして接
合強度を向上させることができず、接合補強性の面では
致命的な欠陥も有している。
This method of injecting and curing resin liquid can be expected to give good results in terms of vibration resistance and impact resistance, but on the other hand, it cannot significantly improve the joint strength, and is fatal in terms of joint reinforcement. It also has flaws.

樹脂補強には現在その点より主として尿素樹脂が単独で
又は各種添加剤と混合して用いられている。
For resin reinforcement, urea resins are currently mainly used alone or in combination with various additives.

この樹脂又はそれと添加剤との混合物は水又はアルコー
ルを溶剤として水溶液又はアルコール溶液の形で使用さ
れるが、水溶液の形で用いるときは塗布又は注入部周辺
が吸水膨張して表面や端面のふくれ変形を起す原因とな
り又内部歪力の為に逆に材料強度を低下させる惧れがあ
った。
This resin or a mixture of it and additives is used in the form of an aqueous or alcoholic solution using water or alcohol as a solvent, but when used in the form of an aqueous solution, the area around the coating or injection part absorbs water and expands, causing blisters on the surface and edges. This may cause deformation, and there is a risk that the strength of the material may be reduced due to internal strain.

又アルコール溶液の形で使用したときには水溶液の場合
と同様に塗布乃至注入部周辺の表面や塗装面の変色を起
す慣れがあり、更に後工程での塗料、接着剤の密着性減
少を来すなどの問題があった。
In addition, when used in the form of an alcohol solution, it tends to cause discoloration of the surface around the application or injection part and the painted surface, as with the case of an aqueous solution, and it also causes a decrease in the adhesion of paints and adhesives in subsequent processes. There was a problem.

尿素樹脂を塩化アンモニウム、塩酸等を硬化触媒として
用いる場合は短時間で加工するためには加熱を必要とす
ることが多く、作業性、現場施工性に欠けていた。
When ammonium chloride, hydrochloric acid, or the like is used as a curing catalyst for urea resin, heating is often required to process it in a short time, and workability and on-site construction are lacking.

その上ホルマリンが経口的に発生し易く、塗布部周辺の
機器や配線などを腐食、劣化させるだけでなく、その毒
性も問題とされていた。
Furthermore, formalin is easily generated orally, and not only corrodes and deteriorates equipment and wiring around the application area, but also its toxicity has been a problem.

このような種々の欠点に加えて上記の如き硬化触媒を用
いる従来の樹脂補強法では、その硬化触媒によってねじ
や釘などの緊結用金具の発錆腐蝕が促進されるという不
都合があった。
In addition to these various drawbacks, the conventional resin reinforcing method using a curing catalyst as described above has the disadvantage that the curing catalyst accelerates rusting and corrosion of fastening fittings such as screws and nails.

そして上記のような周辺部の汚染変色だけでなく、接合
強度を経口的に低下させるという実用上特に好ましくな
い難点を有していた。
In addition to staining and discoloring the surrounding area as described above, this method also has the drawback of reducing bonding strength, which is particularly undesirable from a practical standpoint.

このように従来の樹脂補強法の種々の難点は溶剤を用い
ること、酸型硬化触媒を用いることそしてホルマリンが
発生することが主な原因となっており、そのためかかる
難点を解決するためには上記の如き因子をそなえない樹
脂を用いることが考えられる。
As described above, the various drawbacks of conventional resin reinforcement methods are mainly due to the use of solvents, the use of acid-type curing catalysts, and the generation of formalin. It is conceivable to use a resin that does not have such factors.

しかし本発明者によれば、溶剤を用いない、酸型触媒を
用いない樹脂補強法がすべて適用できるとは限らずその
殆どすべてはまた種々の難点を有することが見出された
However, the inventors have discovered that not all resin reinforcing methods that do not use solvents or acid catalysts are applicable, and that almost all of them also have various drawbacks.

例えばホットメルト型の樹脂を用いる場合は溶剤や触媒
を用いないが凝固速度、溶融速度の点で充分な深さにま
で含浸加工ができず必要な結合強度が期待できない。
For example, when using a hot-melt type resin, no solvent or catalyst is used, but the required bonding strength cannot be expected because the impregnation process cannot be performed to a sufficient depth in terms of solidification rate and melting rate.

又酸型触媒を用いていないアクリレート系化合物例えば
ポリエチレングリコールジメタクリレートを含む嫌気重
合性や光重合性の組成物は無溶剤で含浸性も良く硬化後
の生成樹脂物性も良好であるが、空気接触面等の硬化性
が悪く表面層に未硬化物層が残り不都合であった。
In addition, anaerobically polymerizable or photopolymerizable compositions containing acrylate compounds that do not use acid catalysts, such as polyethylene glycol dimethacrylate, are solvent-free, have good impregnating properties, and have good physical properties of the resulting resin after curing. The surface curability was poor and an uncured material layer remained on the surface layer, which was inconvenient.

このため一般的には短時間で硬化させるためには加熱、
紫外線照射等の硬化補助手段が必要であり、従って作業
性も不良で不都合であった。
For this reason, in order to cure in a short time, heating,
A curing aid such as ultraviolet irradiation is required, and therefore the workability is also poor and inconvenient.

かくて本発明はかかる硬化補助手段を要せず又発錆腐食
、変形、変色等を生ずることなく、作業性よ(必要な接
合強度を得ることができる木質系材料の補強法を提供す
ることを目的とするものであり、本発明者らの実験、研
究によれば、従来各種物質の瞬間接着剤として有効であ
ることが知られていたα−シアノアクリレート又はそれ
を主成分とする組成物を含浸することによりはからずも
木質系材料特に軽比重材料の接合箇所の内部で短時間に
硬化し且つ均一透明な層を形成してその箇所を良好に補
強しうろことが見出されたのである。
Thus, the present invention provides a method for reinforcing wood-based materials that does not require such hardening auxiliary means, does not cause rusting, corrosion, deformation, discoloration, etc., and can improve workability (and obtain the necessary bonding strength). According to the experiments and research conducted by the present inventors, α-cyanoacrylate or a composition mainly composed of α-cyanoacrylate, which has been known to be effective as an instant adhesive for various substances. It has been unexpectedly discovered that by impregnating wood-based materials, particularly light specific gravity materials, it can harden within a short time and form a uniform transparent layer inside the joints, thereby effectively reinforcing the joints.

従って、本発明は、木質系材料の接合箇所にα−シアノ
アクリレート又はそれを主成分とする組成物を含浸、硬
化させて前記接合箇所を補強するものである。
Therefore, the present invention impregnates and hardens α-cyanoacrylate or a composition containing α-cyanoacrylate as a main component into the joints of wood-based materials, thereby reinforcing the joints.

以下本発明について詳しく説明すれば、まずα−ジアノ
アクリレートは一般式 CH2=C−CN−C0ORで表わされ、アニオン重合
性を有する通常のエステル類が本発明方法で全く良好に
用いられる。
To explain the present invention in detail below, α-dianoacrylate is represented by the general formula CH2=C-CN-COOR, and ordinary esters having anionic polymerizability can be used quite satisfactorily in the method of the present invention.

尚ここに前記式中Rはメチル・エチル、n−7”ロピル
、イソプロピル、n−ブチル、S−ブチル、t−ブチル
、n−アミル、t−アミル、ヘキシル、シクロヘキシル
、オクチル、2−エチルヘキシル、ドデシル、ベンジル
、フェニル、クロロメチル、クロロエチル、エトキシエ
チル、クロロフェニルで例示される置換されない又は置
換されたアルキル基又はアリール基を示し、これらのエ
ステルを1種用いてもよく又2種以上混合して用いても
よい。
In the above formula, R is methyl ethyl, n-7"ropyl, isopropyl, n-butyl, S-butyl, t-butyl, n-amyl, t-amyl, hexyl, cyclohexyl, octyl, 2-ethylhexyl, Indicates an unsubstituted or substituted alkyl group or aryl group exemplified by dodecyl, benzyl, phenyl, chloromethyl, chloroethyl, ethoxyethyl, and chlorophenyl, and these esters may be used alone or in a mixture of two or more. May be used.

このα−シアノアクリレートは他の合成樹脂系高分子化
合物とは本質的に異なりモノマ・−型化合物である。
This α-cyanoacrylate is essentially a monomer-type compound, unlike other synthetic resin-based polymer compounds.

そして他のアクリレート系化合物ともまた異なり、特別
な重合開始剤を必要としないアニオン重合性、無触媒型
、そして無溶剤型の常温硬化性化合物である。
And, unlike other acrylate compounds, it is an anionically polymerizable, catalyst-free, and solvent-free room-temperature curable compound that does not require a special polymerization initiator.

かくてこれらのα−シアノアクリレートを1種又は数種
用いるのみで、触媒、溶剤を必要とせず又他の改質剤を
も用いることなく、いわばα−シアノアクリレ−ト単独
で良好に用いることができるが、触媒、溶剤を用いない
ものの安定剤、可塑剤、増粘剤、粘性調節剤、着色剤等
の改質剤を加えてα−シアノアクリレートを主成分とす
る組成物のかたちに調製して用いることができる。
Thus, by using one or more of these α-cyanoacrylates, it is possible to use α-cyanoacrylate alone without the need for catalysts, solvents, or other modifiers. However, it can be prepared in the form of a composition mainly composed of α-cyanoacrylate by adding modifiers such as stabilizers, plasticizers, thickeners, viscosity modifiers, and colorants without using catalysts or solvents. It can be used as

調製された組成物の物性は対象とする材質や希望する物
性に応じて任意に設定することができるが、一般的には
浸透性を高め硬化速度を促進しうる改質剤を加えると木
質系材料の補強に使用しやすい組成物を得ることができ
る。
The physical properties of the prepared composition can be set arbitrarily depending on the target material and desired physical properties, but in general, adding a modifier that increases permeability and accelerates the curing rate will improve the wood-based composition. A composition that is easy to use for reinforcing materials can be obtained.

本発明方法においてかかるα−シアノアクリレート又は
これを主成分とする組成物を含浸、硬化させる木質系材
料としては、緊結具で接合の際破壊を生じ易く補強を必
要とする材料であり、前記のα−シアノアクリレート又
はこれを主成分とする組成物が速かに内部にまで含浸し
、表面に接着層が実質的に残留しないような軽比重、多
孔性木質系材料があげられる。
In the method of the present invention, the wood material to be impregnated and cured with α-cyanoacrylate or a composition containing it as a main component is a material that easily breaks when joined with a binding tool and requires reinforcement. Examples include light specific gravity, porous wood-based materials that are quickly impregnated with α-cyanoacrylate or a composition containing it as a main component and that substantially leave no adhesive layer on the surface.

このような木質系材料としてはたとえばバルサ、桐、メ
ランテイ等のような素材類の外に合板、集成材、或はパ
ーティクルボード、ファイバーボードなどをあげること
ができる。
Examples of such wood-based materials include materials such as balsa, paulownia, and merantei, as well as plywood, laminated wood, particle board, and fiberboard.

これらはほぼ比重(みかけの比重)が1.0以下で一般
に軽軟材と呼ばれるものであり、これ以上のものは実質
上補強を必要としないが、特に限定するものではない。
These materials have a specific gravity (apparent specific gravity) of 1.0 or less and are generally referred to as light soft materials, and materials exceeding this do not require substantial reinforcement, but are not particularly limited.

上記の材料の中本発明は特にパーティクルボードに適用
するともつとも有効である。
Among the above materials, the present invention is particularly effective when applied to particle board.

このような木質系材料の接合箇所にα−シアノアクリレ
ート又はそれを主成分とする組成物を含浸、硬化させる
に当っては、前記接合箇所の表面又は端面(木口面)に
α−シアノアクリレート又はそれを主成分とする組成物
を直接塗布して内部に含浸させるか又はその接合箇所に
適宜大きさ、深さの案内孔をあけてそこに注入して含浸
させるか等の方法で行なう。
When impregnating and curing the joints of such wood-based materials with α-cyanoacrylate or a composition containing it as a main component, it is necessary to apply α-cyanoacrylate or This can be done by directly applying a composition containing it as a main component and impregnating it inside, or by making a guide hole of an appropriate size and depth at the joint and injecting it into the hole to impregnate it.

その際の塗布乃至含浸量は適用する材種含水率、材質密
度、温度、或は含浸させる化合物又は組成物の種類等に
よって異なり、一定ではない。
The amount of coating or impregnation at this time varies depending on the type of material to be applied, moisture content, material density, temperature, or the type of compound or composition to be impregnated, and is not constant.

同様にその硬化速度も前記の如き各種条件によって異な
り一定でないが、短時間に含浸、硬化させることができ
、しかも溶剤も触媒も加熱等の補助手段も用いず作業性
よく常温で補強処理を行なうことができる。
Similarly, the curing speed varies depending on the various conditions mentioned above and is not constant, but it can be impregnated and cured in a short time, and the reinforcing treatment can be performed at room temperature with good workability without using solvents, catalysts, or auxiliary means such as heating. be able to.

今−例として比重0.60の25mm厚3層パーティク
ルボード(含水率10.1)の端面に任意のα−シアノ
アクリレートを0.06P塗布、含浸させた場合、2〜
3秒で吸収されて15〜20mmの深さに浸透し、4〜
5分で実質的に重合が終了し、補強処理できた。
As an example, if 0.06P of an arbitrary α-cyanoacrylate is applied and impregnated on the end face of a 25mm thick three-layer particle board (moisture content 10.1) with a specific gravity of 0.60,
It is absorbed in 3 seconds and penetrates to a depth of 15-20 mm, and
Polymerization was substantially completed in 5 minutes, and the reinforcing treatment was completed.

木ねじの保持力を比較すると、未処理時20kgの保持
力が上述の如(処理したときは40〜50に9迄に増大
し、内層剥離もなく脱着繰返し作業が可能であった。
Comparing the holding power of wood screws, the holding power was 20 kg when untreated, but as mentioned above (when treated, it increased to 40-50 to 9, and repeated attachment and detachment work was possible without inner layer peeling.

又このように補強処理した木ねじ接合箇所を有する木質
系材料を60±2%RH125℃の雰囲気下で1年保存
したとき何ら錆の発生は認められなかったが、未処理の
場合は木ねじの周囲で発錆が認められ、周辺の変色があ
り又尿素樹脂を塩化アンモニウム触媒存在下に用いて補
強したものの場合も接合乃至補強箇所に著しい錆の発生
が認められた。
Furthermore, when a wood-based material with reinforced wood screw joints was stored for one year in an atmosphere of 60±2% RH and 125°C, no rust was observed; Rust was observed, and discoloration was observed in the surrounding areas.Also, in the case where urea resin was used for reinforcement in the presence of an ammonium chloride catalyst, significant rust was observed in the joints or reinforced areas.

か(て本発明方法によれば、木質系材料の接合箇所にα
−シアノアクリレート又はそれを主成分とする組成物を
含浸、硬化させることによって、尿素樹脂、メラミン樹
脂による如き従来の樹脂補強法に比して、材質の変形、
変色、塗膜変質がなく、又硬化のための触媒や熱を要せ
ず常温で作業しうるため作業がし易く信頼性の高い処理
ができ現場作業性もよく、工業的に有用な木質系材料の
補強方法を提供することができるのである。
(According to the method of the present invention, α
- By impregnating and curing cyanoacrylate or a composition containing it as a main component, material deformation is reduced compared to conventional resin reinforcement methods such as urea resin or melamine resin.
It is an industrially useful wood-based material that does not cause discoloration or deterioration of the paint film, and can be worked at room temperature without requiring catalysts or heat for curing, making it easy to work with, providing highly reliable processing, and being easy to work on-site. This provides a method for reinforcing materials.

尚前述のように本発明の補強法にて用いられるα−シア
ノアクリレートは瞬間接着剤として周知のものであり、
金属、樹脂、ゴム、ガラス、そして生体等の各種の接着
に用いられている。
As mentioned above, the α-cyanoacrylate used in the reinforcing method of the present invention is well-known as an instant adhesive.
It is used to bond various materials such as metals, resins, rubber, glass, and living organisms.

しかし、この化合物は微量水分や固体表面により重合が
開始される低粘度化合物であるため木質系材料等多孔材
料には適用し難いとされこれを木質系材料の接着剤とし
て用いるには種々の提案がなされていた。
However, since this compound is a low-viscosity compound whose polymerization is initiated by trace amounts of moisture or the solid surface, it is difficult to apply to porous materials such as wood-based materials, and various proposals have been made to use it as an adhesive for wood-based materials. was being done.

例えば接着さるべき木質系材料の表面を予め浸透防止等
の目的でプライマー処理又は目止め処理をした後この接
着剤を塗付するようにしたり、また増粘やチキントロピ
ー又はゲル構造を与えて木質系材料を接着作業ができる
ようにしたりしていた。
For example, the surface of the wood-based material to be bonded may be primed or sealed in advance for the purpose of preventing penetration, etc., before being applied, or the adhesive may be applied to the surface of the wood-based material by giving it a thickening, chicken-tropy, or gel structure. It also made it possible to bond various materials together.

併しこのような手段をとってもこの化合物はその浸透性
のために木質系材料の接着には良好に用いることができ
なかった。
However, even with such measures, this compound could not be used satisfactorily for bonding wood-based materials due to its permeability.

これに対して本発明ではこのα−シアノアクリレート又
はそれを含む組成物は逆にその浸透性を活用することに
より木質系材料特に内部まで速かに浸透し表面に接着層
が実質的に残留しないような俗に軽軟材とよばれる比重
が1.0以下の軽比重、多孔性木質系材料の接合箇所の
補強に良好に使用しうろことが見出されたのであり本発
明は工業的にまことに有用ということができよう。
In contrast, in the present invention, this α-cyanoacrylate or a composition containing it utilizes its permeability to quickly penetrate into wood-based materials, especially into the interior, and substantially leaves no adhesive layer on the surface. It has been found that the present invention can be effectively used for reinforcing the joints of porous wood-based materials with a specific gravity of 1.0 or less, commonly called light soft wood. You could say it's really useful.

以下に本発明の実施例をあげるが、本発明はこれにのみ
に限定さるべきではない。
Examples of the present invention are given below, but the present invention should not be limited thereto.

実施例 1 両面みがき多層パーティクルボード(25mm普通、ラ
ワン材1.比重0.66、含水率9.0%〕の端面中央
部にシアノアクリレート組成物〔組成;α−シアノエチ
ルアクリレート95%以上、可塑剤4%以下、改質材1
%以下、ハイドロキノン500ppm 、SO220p
pm :以下シアン系組成物穴と略す〕を1ケ所に5
滴〔約0.07S’)を滴下したところ速やかに浸透さ
れ5秒後には端面にシアン系組成物(A)層は残留して
なかった。
Example 1 A cyanoacrylate composition [composition: α-cyanoethyl acrylate 95% or more, plasticizer] was applied to the center of the end face of a double-sided polished multilayer particle board (25 mm normal, lauan material 1. Specific gravity 0.66, water content 9.0%). 4% or less, modified material 1
% or less, hydroquinone 500ppm, SO220p
pm: hereinafter abbreviated as cyanide composition hole] in one place.
When a droplet (approximately 0.07 S') was added, it penetrated quickly and 5 seconds later, no cyanide composition (A) layer remained on the end surface.

塗布部分及びその周辺には白濁や変色変化や膨張等の形
状の変化は認められなかった。
No changes in shape such as clouding, discoloration, or swelling were observed in the applied area or its surroundings.

63部2%RH25部1℃(以下室温と略す)で3ケ月
、6ケ月、1年保管したものも同様であり塗布部周辺の
変色形状変化は認められなかった。
The same was true for the samples stored at 63 parts, 2% RH, 25 parts, and 1° C. (hereinafter referred to as room temperature) for 3 months, 6 months, and 1 year, and no discoloration or change in shape was observed around the coated area.

塗布5分後に裁断したところシアン系組成物(5)は2
0mmの深さに浸透して居り浸透部分はタックが認めら
れない程度に重合して居り良好な補強がされていた。
When cut 5 minutes after application, the cyan composition (5) was 2
It penetrated to a depth of 0 mm, and the penetrated portion was polymerized to the extent that no tack was observed, indicating that good reinforcement was achieved.

案内孔(穴径ドリル2.6、深さ5 mm )をあげて
塗布した場合も同様であった。
The same result was obtained when the guide hole (hole diameter drill 2.6, depth 5 mm) was raised and coated.

比較例 1 実施例1に於いてシアン系組成物(5)の代りに尿素樹
脂(市販品キゲタライムUA−105住友ベークライト
■硬化剤NH4Cl20%水溶液なUA−105,10
0部に対し10部加えて使用)を用い1ケ所約0.5f
塗布した。
Comparative Example 1 In Example 1, instead of cyanide composition (5), urea resin (commercial product Kigetalime UA-105 Sumitomo Bakelite ■ Hardening agent NH4Cl 20% aqueous solution UA-105,10)
Add 10 parts to 0 parts) and apply approximately 0.5 f at one location.
Coated.

実施例1と同様な条件で保管したところ10分後には塗
布部周辺の膨張変形が認められ、この変形は3ケ月、6
ケ月、1年後でも完全には復旧しなかった。
When stored under the same conditions as in Example 1, expansion and deformation around the applied area was observed after 10 minutes, and this deformation continued for 3 months and 6 months.
Even after several months and a year, it was not completely recovered.

裁断して調べたところ157711!の深さに浸透して
いたが、浸透個所は50分では硬化が充分でなく150
分後でタックが消えた。
When I cut it up and looked it up, it was 157,711! However, the penetrated areas were not sufficiently cured in 50 minutes and the
Minutes later the tack disappeared.

案内孔をあけた時も同様であった。The same thing happened when I opened the guide hole.

実施例 2 実施例1と同様にして作製したパーティクルボード端面
に、シアン系組成物(5)塗布5分後にJIS平頭3.
lX12.9木ネジを所定の状態にネジ込み、60分後
にネジのとり外しをしたことろネジの固着はなくとり外
す事が出来、保持力を測定したところ58.5kgであ
った。
Example 2 After 5 minutes of applying the cyan composition (5) to the end surface of a particle board produced in the same manner as in Example 1, JIS flat head 3.
A lX12.9 wood screw was screwed into the predetermined state, and the screw was removed after 60 minutes.The screw did not stick and could be removed, and the holding force was measured to be 58.5 kg.

20回脱着くり返した後の保持力も57.Okyであり
良好であった。
The holding power after being removed and turned over 20 times was also 57. It was OK and good.

シアン系組成分を塗布しない時の保持力は34kgであ
ったが20回脱着くり返しを行った後の保持力は1ik
eであった。
The holding power when no cyanide component was applied was 34 kg, but after removing and repeating 20 times, the holding power was 1 ik.
It was e.

比較例 2 実施例1の案内孔をあける方法で比較例1の尿素系接着
剤を1孔約0.51塗布し、10分間室温に保管した後
実施例2と同じ木ネジを所定の状態にネジ込み2時間後
とり外そうとした時ネジが固着し、ネジ山が一部変形し
てしまい再使用し難く好ましくなかった。
Comparative Example 2 Approximately 0.51 of the urea-based adhesive of Comparative Example 1 was applied per hole using the method of drilling guide holes in Example 1, and after being stored at room temperature for 10 minutes, the same wood screws as in Example 2 were placed in the specified state. When I tried to remove the screws after screwing them in for two hours, the screws stuck and some of the screw threads were deformed, making it difficult to reuse, which was undesirable.

又、2時間の保持力は57.5kgであった。Moreover, the holding power for 2 hours was 57.5 kg.

実施例 3 実施例2で作製した木ネジを所定の状態にネジ込んだ試
料を室温で保管し経口変化の測定をした。
Example 3 A sample in which the wood screw produced in Example 2 was screwed into a predetermined state was stored at room temperature, and oral changes were measured.

この結果実施例20本発明の方法による試料では6ケ月
後でも木ネジ周辺の変色はなく保持力は58kyで木ネ
ジの錆も実質的に認められず良好であった。
As a result, in the sample prepared by the method of the present invention in Example 20, there was no discoloration around the wood screws even after 6 months, the holding strength was 58 ky, and the wood screws were good with virtually no rust observed.

比較例 3 比較例2で作業した試料を同様に保管して経口的変化を
調べたところ、2週間後保持力は58に9であったが木
ネジに強い発錆が認められ2ケ月後にはネジ込み部周辺
の変色も観察され好ましくなかった。
Comparative Example 3 When the sample worked in Comparative Example 2 was stored in the same manner and the oral changes were examined, the retention strength was 58 to 9 after 2 weeks, but strong rust was observed on the wood screws, and after 2 months Discoloration around the screw-in part was also observed, which was unfavorable.

実施例 4 材質として杉(厚さ3011L7IL1比重0.38、
含水量10.5%)の木口面にシアノアクリレート組成
物(組成;α−シアノエチルアクリレ・−ト96%以上
、可塑剤4%以下、ハイドロキノン500ppm 、S
O□15ppm :以下シアン系組成物(B)と略す
Example 4 The material was cedar (thickness 3011L7IL1 specific gravity 0.38,
Cyanoacrylate composition (composition: α-cyanoethyl acrylate 96% or more, plasticizer 4% or less, hydroquinone 500 ppm, S
O□15ppm: Hereinafter abbreviated as cyanide composition (B).

)を1ケ所約0.07P塗布したところ5秒後には浸透
し木口面には残留層はなく又、実質的に変色及び変形は
認められなかった。
) was applied to one place, and it penetrated after 5 seconds, leaving no residual layer on the end surface, and virtually no discoloration or deformation was observed.

この塗布部分に塗布10分後くぎ径2.4 urn、く
ぎ長さ5.50mmのくぎをくぎ長さの2/3の深さに
打ち込み60分後くぎの保持力を測定したところ、14
.0kgであった。
After 10 minutes of application, a nail with a nail diameter of 2.4 urn and nail length of 5.50 mm was driven into the coated area to a depth of 2/3 of the nail length, and the holding force of the nail was measured after 60 minutes.
.. It was 0 kg.

又、同様にして作製した試料を室温で6ケ月保管したと
ころ、打込み部周辺の変色はなく保持力は11.5k1
7で打込みの発錆は認められなかった。
In addition, when a sample prepared in the same manner was stored at room temperature for 6 months, there was no discoloration around the implanted part and the holding force was 11.5k1.
At No. 7, no rust was observed in the drive.

シアノアクリレート組成物を塗布しない試料のくぎの保
持力は4.3kgであった。
The nail holding force of the sample without the cyanoacrylate composition applied was 4.3 kg.

比較例 4 実施例4に於いてシアノアクリレート組成物の代りに比
較例2で用いた尿素樹脂を用いて同様な試験を行なった
ところ経日的にくぎの強い発錆が認められた。
Comparative Example 4 When a similar test was conducted in Example 4 using the urea resin used in Comparative Example 2 instead of the cyanoacrylate composition, strong rusting of the nails was observed over time.

実施例 5 実施例4に於いて杉材の代りに桐を用いて同様な試験を
したところ、室温で1年放置後でもくぎの打込み部分の
錆の発生及び変色はなく良好であった。
Example 5 A similar test was carried out in Example 4 using paulownia wood instead of cedar wood, and the result was that there was no rust or discoloration in the nail driven portions even after one year at room temperature.

実施例 6 メラミン−尿素共縮合接着剤を用いた5プライ9mrI
Lのラワン1類合板の板面にシアン系組成物(B)を1
ケ所約0.071塗布し10分後に径2.4 mm。
Example 6 5-ply 9mrI with melamine-urea co-condensation adhesive
Apply 1 part of cyanide composition (B) to the board surface of lauan type 1 plywood of L.
The diameter was 2.4 mm after 10 minutes after applying approximately 0.071 mm.

長さ5.50mmυくぎを2/3の深さに打込み室温で
6ケ月保存した後、保持力を測定したところ71kgで
あり、くぎの打込み部分には錆の発生は認められず、良
好であった。
After driving nails with a length of 5.50 mm to 2/3 of the depth and storing them at room temperature for 6 months, the holding force was measured to be 71 kg, and the nail was in good condition with no rust observed in the nail driving area. Ta.

シアノ系組成物を用いない試料を同様に処理したところ
保持力は6ケ月後41kgで、くぎの打込み部分及び周
辺には錆の発生と変色が認められた。
When a sample without the cyano-based composition was treated in the same manner, the holding force was 41 kg after 6 months, and rust and discoloration were observed in and around the nail driven area.

Claims (1)

【特許請求の範囲】 1 木質系材料の接合箇所にα−シアノアクリレート又
はそれを主成分とする組成物を含浸、硬化させて前記接
合箇所を補強することを特徴とする木質系材料の補強法
。 2 木質系材料が比重1.0以下のものである特許請求
の範囲第1項記載の方法。 3 木質系材料がパーティクルボードである特許請求の
範囲第1項記載の方法。
[Scope of Claims] 1. A method for reinforcing wood-based materials, which comprises impregnating α-cyanoacrylate or a composition containing α-cyanoacrylate as a main component into joints of wood-based materials and curing the joints to strengthen the joints. . 2. The method according to claim 1, wherein the wood-based material has a specific gravity of 1.0 or less. 3. The method according to claim 1, wherein the wood-based material is particle board.
JP8419780A 1980-06-21 1980-06-21 Reinforcement method for wood-based materials Expired JPS5825562B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8419780A JPS5825562B2 (en) 1980-06-21 1980-06-21 Reinforcement method for wood-based materials

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8419780A JPS5825562B2 (en) 1980-06-21 1980-06-21 Reinforcement method for wood-based materials

Publications (2)

Publication Number Publication Date
JPS5711006A JPS5711006A (en) 1982-01-20
JPS5825562B2 true JPS5825562B2 (en) 1983-05-28

Family

ID=13823739

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8419780A Expired JPS5825562B2 (en) 1980-06-21 1980-06-21 Reinforcement method for wood-based materials

Country Status (1)

Country Link
JP (1) JPS5825562B2 (en)

Also Published As

Publication number Publication date
JPS5711006A (en) 1982-01-20

Similar Documents

Publication Publication Date Title
JP5847876B2 (en) Structural adhesive composition
ES2332213T3 (en) ADHESIVES TO JOIN COMPOSITE MATERIALS.
KR100656723B1 (en) Activator for cyanacrylate adhesives
KR101592837B1 (en) Composition for structural adhesive
DE2425930A1 (en) ADHESIVE
US5003016A (en) Surface activator for redox-initiated adhesives
US6475331B1 (en) Cyanoacrylate compositions
KR101487037B1 (en) Composition for structural adhesive
KR20210036932A (en) Structural adhesive composition
KR20140037066A (en) Structural adhesives, process for the preparation thereof, and application thereof
JPS5825562B2 (en) Reinforcement method for wood-based materials
US5106808A (en) Surface activator for redox-initiated adhesives
JPS63175092A (en) Sealant coating method and two-component type sealant composition
JPS6117873B2 (en)
CN113557275B (en) Two-part curable composition
JP2018119120A (en) Composition
JPS58219281A (en) Bonding between steel plate and copper plates in structure brought into contact with water
RU2148593C1 (en) Method of joining materials
JPH09183950A (en) Two-pack acrylic adhesive composition
JP3563725B2 (en) Composite members
JPH0417139B2 (en)
JPS62265314A (en) Anaerobically curable composition
PL223469B1 (en) Method for improving adhesion of self-adhesive structural transfer precursors of glue films
JPS62113546A (en) Metal reinforced panel and manufacture thereof
FR2988397A1 (en) Use of composition, comprising polymeric system implemented in methacrylate matrix, for caulking of bridge and/or ship hull on materials such as wood, where polymeric system contains block copolymers without styrene