JPS5825413A - Monitoring method for slag formation in refining furnace - Google Patents

Monitoring method for slag formation in refining furnace

Info

Publication number
JPS5825413A
JPS5825413A JP56122745A JP12274581A JPS5825413A JP S5825413 A JPS5825413 A JP S5825413A JP 56122745 A JP56122745 A JP 56122745A JP 12274581 A JP12274581 A JP 12274581A JP S5825413 A JPS5825413 A JP S5825413A
Authority
JP
Japan
Prior art keywords
slag
level
gas
converter
density
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP56122745A
Other languages
Japanese (ja)
Inventor
Hayaharu Ishimoto
石本 早治
Yoshimichi Okita
大喜多 義道
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP56122745A priority Critical patent/JPS5825413A/en
Publication of JPS5825413A publication Critical patent/JPS5825413A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/28Manufacture of steel in the converter
    • C21C5/42Constructional features of converters
    • C21C5/46Details or accessories
    • C21C5/4673Measuring and sampling devices

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)

Abstract

PURPOSE:To monitor the slag forming conditions in a converter by detection of the level and density of molten slag in steel making and refining with the converter by blowing an inert gas through gas blowing ports provided in the positions upper than the level of molten steel and measuring the flow rate and back pressure of the gas. CONSTITUTION:Gas blowing ports 5, 6 consisting of porous bricks are installed above the level of the molten steel 2 in a converter 1. An inert gas such as Ar having no influence upon a refining effect is blown through the ports 5, 6 with air feed pipes 10, 20 provided with flowmeters 11, 21, flow regulating valves 12, 22 and pressure gags 14, 24. The back pressure values measured with the gauges 14, 24 when the flow rate of the gaseous Ar is kept constant are inputted to an arithmetic circuit 7, which detects the level and density of the molten slag 3 in the coverter. It is possible to control the slag formation precisely in the converter operation in accordance with the detected values.

Description

【発明の詳細な説明】 本発明は転炉等の精錬炉における造滓監視方法に関し、
更に詳述すれば、スラグレベル、スラグ密度の測定精度
を高めて所望の造滓制御を可能とする監視方法を提案す
るものである。
[Detailed description of the invention] The present invention relates to a slag monitoring method in a refining furnace such as a converter,
More specifically, the present invention proposes a monitoring method that improves the measurement accuracy of slag level and slag density and enables desired slag control.

転炉内の滓化状況監視方法としてはランスノズルから吹
出される酸素のジェット音を炉口上方にて検出し、その
音響データ解析による方法、ランス等炉内装入物の水平
方向振動の加速度を検出してこれを解析する方法、炉口
上方からマイクロ波を投射し、その反射波を検出して解
析する方法等が知らnている。本発明Fiこれらの方法
とはその発想を全く異にし、よシ直接的に滓化状況を検
出して精細な造滓制御を可能とする監視方法を提供する
ことを目的とする0 即ち本発明に係る精錬炉の造滓監視方法は、転炉等の精
錬炉の側壁における溶鋼レベルより上の、つまシスラグ
が位置する部分にポーラスレンガ又はノズル等を設ける
ことにより、気体吹込口を形成しておき、溶製中にこの
気体吹込口からアルゴン等、精錬に関して影餐のない気
体(精錬を補助する目的で酸素を含む気体、空気等を用
いてもよい)を吹込み、この際の気体流量と、背圧との
関係に基きスラグレベル、密度を検出することとする。
The method of monitoring the slag formation inside the converter is to detect the jet sound of oxygen blown out from the lance nozzle above the furnace mouth, and analyze the acoustic data. There are known methods of detecting and analyzing the waves, and methods of projecting microwaves from above the furnace mouth and detecting and analyzing the reflected waves. The present invention is completely different in concept from these methods, and aims to provide a monitoring method that more directly detects the slag formation situation and enables precise slag control. The method for monitoring slag in a smelting furnace is to form a gas inlet by providing a porous brick or a nozzle, etc. in the side wall of a smelting furnace such as a converter, above the molten steel level, in the part where the slag slag is located. During melting, a gas that does not affect refining, such as argon, is blown from this gas inlet (gas containing oxygen, air, etc. may be used to assist refining), and the gas flow rate at this time is The slag level and density will be detected based on the relationship between this and the back pressure.

より具体的には゛気体吹込流量を一定にして背圧を測定
するか又は背圧を一定に維持しつつ気体を吹込み、その
流量を測定する0そしてスラグ密度が従来実績等により
既知であり、おラグレベルのみを求めるという場合忙は
気体吹込口は1つでよいが、一般的には上下に適長離隔
する2位置に気体吹込口を設けるのがよい。
More specifically, ``Measure the back pressure while keeping the gas blowing flow rate constant, or blow gas while keeping the back pressure constant and measure the flow rate.''Then, the slag density is known from past experience, etc. If only the lag level is to be determined, one gas inlet may be sufficient, but generally it is better to provide two gas inlets at the top and bottom, separated by a suitable length.

以下図面に基き具体的に説明する。A detailed explanation will be given below based on the drawings.

第1図は本発明方法の実施状態を示している。FIG. 1 shows the implementation of the method of the invention.

転炉l内の溶鋼2の上にはスラグ3が在り、ランス番か
ら酸素を吹込んで精錬が行われている。転炉1の側壁に
はポーラスレンガを嵌め込んで気体吹込口5,6を形成
してあり、気体吹込口5が下側に、気体吹込口6がそれ
、よphだけ上側に形成されている。気体吹込口5.6
の夫々にはアルゴンムrが気送管No、20を介して供
給されており気送管10.20の中途には流量計11.
21及び流量調整弁12..22を設け、前者からの入
力信号をもとに後者−の開度を制御して設定流量を維持
する流量指示調節計13.23が設けられておシ、両気
送管lo、20及び気体吹込口5,6を介して転炉内へ
吹込まれるムr流量を一定とするようにしである。流量
調整弁12,22と気体吹込口5゜6との間には圧力計
14.24が設けられておシ、吹込みの背圧が測定され
るようにしである。この測定圧力信号は演算回路フヘ入
カされ次のような演算を行う。
Slag 3 is present on top of the molten steel 2 in the converter 1, and refining is performed by blowing oxygen into the molten steel 2 from a lance. Porous bricks are fitted into the side wall of the converter 1 to form gas inlet ports 5 and 6. The gas inlet port 5 is formed on the lower side, and the gas inlet port 6 is formed on the upper side by a distance of ph. . Gas inlet 5.6
Argon gas is supplied to each of the pneumatic pipes 10 and 20 through pneumatic pipes No. 20, and a flow meter 11.
21 and flow rate adjustment valve 12. .. 22, and a flow rate indicating controller 13.23 for controlling the opening degree of the latter based on the input signal from the former to maintain the set flow rate. The flow rate blown into the converter through the inlet ports 5 and 6 is kept constant. A pressure gauge 14,24 is provided between the flow regulating valves 12, 22 and the gas inlet 5.6 to measure the back pressure of the inlet. This measured pressure signal is input to the calculation circuit and performs the following calculation.

スラグ表面と気体吹込口5,6夫々との垂直距離をLI
s L!とすると、圧力計14.24による測定背圧P
、、 P、との間に社下配の関係が成立する。
The vertical distance between the slag surface and the gas inlets 5 and 6 is LI
S L! Then, the back pressure P measured by the pressure gauge 14.24
A subordinate relationship is established between ,, P, and P.

L1=    0P1   ・・・(1)p、 −p。L1=      0P1  ...(1) p, -p.

L、=     ・馬子h ・・・(2)P、   P
L, = ・Umako h ... (2) P, P
.

演算回路7にて上記(1)? (2)式の一方を演算す
るか又は双方を演算してその平均値をとる等の処理を実
行することによってスラグレベルが測定されることにな
る。なおhが定数とし工与えられていることは勿論であ
る。
The above (1) in the arithmetic circuit 7? The slug level is measured by executing processing such as calculating one of the equations (2) or calculating both of them and taking the average value. It goes without saying that h is given as a constant.

第2図は本発明方法によるスラグレベル測定結果(横軸
)とサブランスに取付けた電極により導電度を測定する
ことによってスラグレベルを求める方法に依った場合の
結果(縦軸)とを炉口からの距離にて表わしたものであ
る。この図から両者が良好な対応を示していることが分
る。
Figure 2 shows the results of slag level measurement using the method of the present invention (horizontal axis) and the results obtained using the method of determining the slag level by measuring conductivity with an electrode attached to a sublance (vertical axis) from the furnace mouth. It is expressed in terms of distance. It can be seen from this figure that the two show good correspondence.

なおサブランスによる結果が若干高目であるのはスラグ
のスプラッシュによるものと思わnる。
The slightly higher results obtained with Sublance are thought to be due to slag splash.

さてスラグ密度pが既知である場合は(1)式に替えて L!=P+/1’   ・・・(3) のように演算することが可能であシ気体吹込系を1系統
にすることが可能であるが、この密度を滓化進行状況の
監視情報とする場合は2系統の気体吹込が不可欠であり
、演算回路フにおいては下記(4)式の演算を行わせる
Now, if the slag density p is known, then L! =P+/1' (3) It is possible to calculate as follows, and it is possible to use one gas blowing system, but when this density is used as monitoring information for the progress of slag formation. In this case, two systems of gas blowing are essential, and the arithmetic circuit calculates the following equation (4).

P = (Pt  Pg )/h  ・・・(4)第3
図は本発明方法によってスラグ密度を測定した結果を示
しておシ、横軸には吹錬終点を100とする時間を、縦
軸には時間値20(脱81期相当)の時点の密度p0に
対する比率で表わしである。滓化進行に伴い密度pu低
下するからI)/P@ ti 1よシ小さくなっていく
ように変化し、゛図示の例では良好な滓化が進行してい
ったということができる。
P = (Pt Pg)/h...(4) Third
The figure shows the results of measuring the slag density using the method of the present invention. It is expressed as a ratio to Since the density pu decreases as the slag progresses, I)/P@ti 1 changes to become smaller, and it can be said that in the illustrated example, good slag formation progressed.

こ扛に対して1点鎖線で示す如くlから殆んど変化しな
い場合は滓化不良であり、また2点鎖線で示す如< P
/Paが極端に低下する場合は滓化過多というこトニな
9、スロッピングの虞れありと判断できる。
If there is almost no change from l as shown by the one-dot chain line, the slag formation is poor, and as shown by the two-dot chain line, < P
If /Pa decreases extremely, it can be determined that there is excessive slag formation, or that there is a risk of slopping.

1に4図は本発明方法によシ求めたスラグレベル(Lt
値による)と147Paとの関係を表わしたグラフであ
り、黒丸はスロッピング発生を示している。この結果か
ら理解されるようにスラグレベル−スラグ密にの関連に
て定まるスロッピング発生領域が存在する。従って演算
回路〒において、第4図に2点鎖線で示すスロッピング
防止線、その90チに相当する1点鎖線で示すス瞠ツビ
ング予防線を表す関数を設定しておき、これらよシスラ
グレベルが高くなる領域に入つ九場合には央々に応じた
警報を発せしめて、吹込酸素量の制御、ランス高さの制
御或は石灰石、螢石尋の鎮静剤の添加を手動で行わせ、
又は自動調整することによシ、スロッピングを有効に防
止できる。
Figures 1 and 4 show the slag level (Lt
This is a graph showing the relationship between (depending on the value) and 147 Pa, and black circles indicate the occurrence of slopping. As can be understood from this result, there is a slopping occurrence region determined by the relationship between slag level and slag density. Therefore, in the arithmetic circuit 〒, functions representing the slopping prevention line shown by the two-dot chain line in Fig. 4 and the slopping prevention line shown by the one-dot chain line corresponding to the 90th line are set, and the syslag level is determined by these functions. In the case of entering a high-rise area, a corresponding alarm is issued, and the amount of oxygen blown, the height of the lance, or the addition of sedatives such as limestone and fluorite are manually controlled.
Alternatively, slopping can be effectively prevented by automatic adjustment.

なお以上いずれも2つの気体吹込口について正常な背圧
が測定さnた場合について記したが上方の気体吹込口6
又は双方の気体吹込口6,6にまでスラグが達していな
い場合は測定背圧P、又はPI。
Note that in all cases above, normal back pressure was measured for the two gas inlets, but the upper gas inlet 6
Or, if the slag has not reached both gas inlets 6, 6, the measured back pressure P or PI.

P、が過小な値となシこのことから滓化不良が検知でき
ることは勿論である。
Of course, if P is too small, poor slag formation can be detected.

斯かる本発明方法によfi 160 )ン転炉にて溶銑
配合比を85〜100%の条件で0.03〜0.10%
〔C〕の低炭素鋼溶製の際の滓化制御を行ったところフ
C〕の適、1lP4!:が向上したことは勿論、スロッ
ピング発生率が従来65%程度であったのが15%[ま
で減少し、また滓化状況も格段に向上し、特にスラグ過
多になる割合が大幅に減少した。
According to the method of the present invention, the hot metal blending ratio is 0.03 to 0.10% in a fi 160) converter under conditions of 85 to 100%.
When we controlled slag formation during the melting of low carbon steel [C], the result was 1lP4! : Not only has the slagging rate improved, but the slopping rate has decreased from about 65% to 15%, and the slag situation has also been significantly improved, and in particular, the rate of excessive slag has decreased significantly. .

以上詳述した如く本発明に依る場合は安定した吹錬が可
能にカシスロッピングが防止でき、吹針の適中率が向上
して出鋼歩留が向上する。更に滓化状況の精細な制御が
可能になるに伴い副原料の節減が図nるなど本発明は優
れた効果を奏する0なお本発明は転炉以外の精錬炉にも
適用できることは言うまでもない。
As described in detail above, according to the present invention, stable blowing is possible and black sloping can be prevented, the accuracy of the blowing needle is improved, and the tapping yield is improved. Furthermore, the present invention has excellent effects such as the reduction of auxiliary raw materials as it becomes possible to precisely control the slag formation state.It goes without saying that the present invention can also be applied to smelting furnaces other than converters.

【図面の簡単な説明】[Brief explanation of the drawing]

91図は本発明の実施状態を示す模式図、第2図は本発
明方法とサブランス利用による方法とのスラグレベル測
定結果比較図、N3図はスラグ密度の経時変化を示すグ
ラフ、第4図はスシグレペルースラグ密度の関係を示す
グラフである。 1・・・転炉 5,6・・・気体吹込口 10,20・
・・気送管 11.21・・・流量計 12.22川流
蓋調整弁 14,24・・・圧力計 特許出願人  住友金属工業株式会社 代オ人弁ヨ士  河  野  登  鼻第1図 碑q屹七門方追1謙ろ」91岸ゴ直(η)第2図 ょ、       第3図 第 4 図
Figure 91 is a schematic diagram showing the implementation state of the present invention, Figure 2 is a comparison diagram of slag level measurement results between the method of the present invention and the method using sublance, Figure N3 is a graph showing the change in slag density over time, and Figure 4 is a graph showing the change in slag density over time. It is a graph showing the relationship between Sushigreperu slag density. 1... Converter 5, 6... Gas inlet 10, 20.
... Pneumatic pipe 11.21 ... Flowmeter 12.22 Stream cover adjustment valve 14,24 ... Pressure gauge Patent applicant Sumitomo Metal Industries Co., Ltd. representative Noboru Kono Hana Figure 1 91 Kishigo Nao (η) Figure 2, Figure 3, Figure 4

Claims (1)

【特許請求の範囲】 1、精錬炉内溶鋼レベル以上の位置に側壁から気体を吹
込み、吹込み流量、背圧に基きスラグレベルを検出し、
滓化状況を監視することを特徴とする造滓監視方法0 2、精錬炉内溶鋼レベル以上の位置に側壁から気体を吹
込み、吹込み流量、背圧に基きスラグ密度を検出し、滓
化状況を監視することを特徴とする造滓監視方法。
[Claims] 1. Gas is blown from the side wall to a position above the molten steel level in the refining furnace, and the slag level is detected based on the blown flow rate and back pressure;
Slag monitoring method 0 characterized by monitoring the slag formation status 2. Gas is blown from the side wall to a position above the molten steel level in the smelting furnace, the slag density is detected based on the blown flow rate and back pressure, and slag formation is performed. A slag monitoring method characterized by monitoring the situation.
JP56122745A 1981-08-04 1981-08-04 Monitoring method for slag formation in refining furnace Pending JPS5825413A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56122745A JPS5825413A (en) 1981-08-04 1981-08-04 Monitoring method for slag formation in refining furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56122745A JPS5825413A (en) 1981-08-04 1981-08-04 Monitoring method for slag formation in refining furnace

Publications (1)

Publication Number Publication Date
JPS5825413A true JPS5825413A (en) 1983-02-15

Family

ID=14843545

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56122745A Pending JPS5825413A (en) 1981-08-04 1981-08-04 Monitoring method for slag formation in refining furnace

Country Status (1)

Country Link
JP (1) JPS5825413A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62248449A (en) * 1986-04-23 1987-10-29 Taiji Kiyomoto Solid material of ume (pickled plum) flesh and production thereof
EP0359828A1 (en) * 1988-03-09 1990-03-28 Kawasaki Steel Corporation Method for detecting slag flow

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5240132Y2 (en) * 1972-11-15 1977-09-10
JPS53121342U (en) * 1977-03-07 1978-09-27

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5240132Y2 (en) * 1972-11-15 1977-09-10
JPS53121342U (en) * 1977-03-07 1978-09-27

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62248449A (en) * 1986-04-23 1987-10-29 Taiji Kiyomoto Solid material of ume (pickled plum) flesh and production thereof
EP0359828A1 (en) * 1988-03-09 1990-03-28 Kawasaki Steel Corporation Method for detecting slag flow
US5028033A (en) * 1988-03-09 1991-07-02 Kawasaki Steel Corporation Process for detecting outflow of slag

Similar Documents

Publication Publication Date Title
US4359211A (en) Method of and apparatus for measuring level and characteristics of a slag layer overlying a metallurgical metal
US3463631A (en) Method and arrangement for determining the oxidation reactions during refining of metals
JPS5825413A (en) Monitoring method for slag formation in refining furnace
EP0359828B1 (en) Method for detecting slag flow
US3432288A (en) Process control of top-blown oxygen converter
CN112157240B (en) Method for detecting blockage of submerged nozzle of crystallizer
US3719469A (en) Control for basic oxygen steelmaking furnace
US8192521B2 (en) Method of suppressing slag foaming in continuous melting furnace
US4149877A (en) Controlling pig iron refining
US4055212A (en) Control system and method for controlling the oxygen content in continuously cast metal
JPS6360844B2 (en)
JP3151803B2 (en) How to diagnose tuyere damage
JP2619161B2 (en) Lance clogging detection device
KR20190076573A (en) Monitoring apparatus for splash status of molten steel
JPH0419282B2 (en)
JPS6221447A (en) Method for controlling blowing of gas with immersion nozzle for continuous casting
JPH07112253A (en) Device for controlling flow rate of inert gas in continuous casting apparatus
JPH01242711A (en) Method for controlling converter blowing
JPS63290212A (en) Method for detecting molten slag quantity
KR960004425B1 (en) Method for detecting slag flow
CN113009103A (en) On-line calculation method for carbon content of converter mouth
JPH0341884Y2 (en)
US3610599A (en) System for controlling phosphorus removal in a basic oxygen furnace
JPH0219411A (en) Converter blow-refining method
JPS58136730A (en) Blowing gas control device for reflux type vacuum degassing device