JPS582483B2 - Monolithic Crystal Rohaki Yosei Souchi - Google Patents

Monolithic Crystal Rohaki Yosei Souchi

Info

Publication number
JPS582483B2
JPS582483B2 JP50083944A JP8394475A JPS582483B2 JP S582483 B2 JPS582483 B2 JP S582483B2 JP 50083944 A JP50083944 A JP 50083944A JP 8394475 A JP8394475 A JP 8394475A JP S582483 B2 JPS582483 B2 JP S582483B2
Authority
JP
Japan
Prior art keywords
mask
electrode
adjusted
electrodes
mcf
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP50083944A
Other languages
Japanese (ja)
Other versions
JPS528750A (en
Inventor
小林正樹
大西法生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oki Electric Industry Co Ltd
Original Assignee
Oki Electric Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oki Electric Industry Co Ltd filed Critical Oki Electric Industry Co Ltd
Priority to JP50083944A priority Critical patent/JPS582483B2/en
Publication of JPS528750A publication Critical patent/JPS528750A/en
Publication of JPS582483B2 publication Critical patent/JPS582483B2/en
Expired legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H3/00Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators
    • H03H3/007Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks
    • H03H3/02Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of piezoelectric or electrostrictive resonators or networks
    • H03H3/04Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of piezoelectric or electrostrictive resonators or networks for obtaining desired frequency or temperature coefficient

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)
  • Physical Vapour Deposition (AREA)

Description

【発明の詳細な説明】 本発明は、良好な真空蒸着を行ってモノリシツククリス
タルろ波器などの電極の共振周波数を調整するモノリシ
ツククリスタルろ波器用調整装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a tuning device for a monolithic crystal filter, which adjusts the resonant frequency of the electrodes of a monolithic crystal filter, etc. by performing good vacuum deposition.

モノリシツククリスタルろ波器(以下MCFと称する)
は、1枚の圧電結晶板の上面および下面に相対向する電
極対を複数個設けた、エネルギーとじこめ現象を利用す
るろ波器で、第1図は複数個の電極対を1次元的に配置
した電極勾の数が比較的少ないMCFの例、第2図は複
数個の電極対を2次元的に配置した電極対の数が比較的
多いMCFの例であり、1は水晶板、2は水晶板の上面
,下面に対向している電極、3は上面の電極2の端子、
4は下面の電極2の端子、5はセラミック板を示す。
Monolithic crystal filter (hereinafter referred to as MCF)
is a filter that utilizes the energy confinement phenomenon, with multiple pairs of electrodes facing each other on the upper and lower surfaces of a single piezoelectric crystal plate. Figure 1 shows a one-dimensional arrangement of multiple pairs of electrodes. Figure 2 shows an example of an MCF with a relatively small number of electrode pairs, and Figure 2 shows an example of an MCF with a relatively large number of electrode pairs arranged two-dimensionally. Electrodes facing the top and bottom surfaces of the crystal plate, 3 is the terminal of electrode 2 on the top surface,
Reference numeral 4 indicates a terminal of the electrode 2 on the lower surface, and reference numeral 5 indicates a ceramic plate.

さて、従来のMCFの共振周波数調整装置は、第1図の
ような1次元的配置の電極対の数が比較的少ないMCF
の周波数調整を行うためのものであり、そのシャッター
機構の構造を第3A図、第3B図、第4図に示す。
Now, the conventional MCF resonant frequency adjustment device is an MCF with a relatively small number of electrode pairs in a one-dimensional arrangement as shown in Fig. 1.
The structure of the shutter mechanism is shown in FIGS. 3A, 3B, and 4.

ここで、第3B図は第3A図のA−A’断面図である。Here, FIG. 3B is a sectional view taken along line A-A' in FIG. 3A.

第3A図、第3B図において、1はMCFの水晶板、2
はMCFの電極、6は調整装置の本体、7はシャッター
用のガイド、8はシャッター、9は電極2の形状に対応
した小孔であり、シャッター8がガイド7に沿つてa方
向へ移動することにより蒸着物が小孔9を通過して電極
2に付着して電極2の膜厚は増加し、シャッター8がb
方向へ移動することにより蒸着物の通過が遮断されて電
極2の膜厚はそのままの状態となる。
In Figures 3A and 3B, 1 is an MCF crystal plate, 2
is the electrode of the MCF, 6 is the main body of the adjusting device, 7 is a guide for the shutter, 8 is the shutter, 9 is a small hole corresponding to the shape of the electrode 2, and the shutter 8 moves in the direction a along the guide 7. As a result, the deposit passes through the small hole 9 and adheres to the electrode 2, increasing the film thickness of the electrode 2, and the shutter 8 becomes b
By moving in this direction, the passage of the deposited material is blocked and the film thickness of the electrode 2 remains unchanged.

第4図において、10はシャッター、11はシャッター
10の回転軸でありこの種のシャツター機構は、シャッ
ター10が回転軸11を支点とした開閉動作を行うこと
により上記の第3図の場合と同様に電極2の膜厚を変化
させるものである。
In FIG. 4, 10 is a shutter, and 11 is a rotation axis of the shutter 10. This type of shutter mechanism is similar to the case in FIG. The thickness of the electrode 2 is changed accordingly.

すなわち、従来の周波数調整装置は上記のようなシャッ
ター機構により電極2の膜厚を変化させ共振周波数の調
整を行っていた。
That is, the conventional frequency adjustment device adjusts the resonant frequency by changing the film thickness of the electrode 2 using the shutter mechanism as described above.

このように従来装置では各電極ごとに1個のシャツタ機
構を使用するため、第1図のような1次元的配置で電極
対の数が比較的少ないMCFの周波数調整を行う場合は
問題がないが、第2図のような2次元的配置や電極対の
数が比較的多いMCFの周波数調整を行う場合は、電極
対の数の増加に応じてシャッター機構数も増加するため
、装置の機構が非常に複雑となる欠点があった。
In this way, the conventional device uses one shutter mechanism for each electrode, so there is no problem when adjusting the frequency of an MCF with a relatively small number of electrode pairs in a one-dimensional arrangement as shown in Figure 1. However, when adjusting the frequency of an MCF with a two-dimensional arrangement or a relatively large number of electrode pairs as shown in Figure 2, the number of shutter mechanisms increases as the number of electrode pairs increases, so the mechanism of the device The disadvantage was that it was very complicated.

また、従来のシャッター機構を2次元的配置の電極に対
応するように配置した装置を設計することは、シャッタ
ーの構造上非常に困難であった。
Furthermore, it is extremely difficult to design a device in which a conventional shutter mechanism is arranged to correspond to two-dimensionally arranged electrodes due to the structure of the shutter.

そこで、2次元的配置のMCFの周波数調整を行う場合
に、1次元的配置のシャッター機構を有する従来装置を
何度かの工程に分けて用いる方法も考えられるが、この
方法によると各電極の蒸着膜の均一性が保てないばかり
か、工程中に汚染が生じてMCFの性能が劣化する欠点
があった。
Therefore, when adjusting the frequency of a two-dimensionally arranged MCF, it is possible to use a conventional device having a one-dimensionally arranged shutter mechanism in several steps, but according to this method, each electrode Not only is the uniformity of the deposited film not maintained, but the performance of the MCF is degraded due to contamination during the process.

本発明は、従来技術の上記欠点を除去するもので、その
目的は、1次元的配置で比較的多数の電極対あるいは2
次元的配置の電極対を有するMCFにおいても電極の共
振周波数調整を真空蒸着法により1工程で能率よく行う
ことができるモノリシツククリスタルろ波器用調整装置
を提供することにある。
The present invention obviates the above-mentioned drawbacks of the prior art, and its purpose is to provide a relatively large number of electrode pairs or two electrodes in a one-dimensional arrangement.
An object of the present invention is to provide an adjustment device for a monolithic crystal filter that can efficiently adjust the resonant frequency of the electrodes in one step using a vacuum evaporation method even in an MCF having electrode pairs arranged in a dimensional arrangement.

この目的を満足する本発明の特徴は、調整対象物の各電
極とそれぞれ対応する複数の孔を設けた固定マスクと、
該固定マスクに微小空隙を介して近接し、該固定マスク
の各孔と孔軸を一致させることができる複数の孔を設け
た回転マスクと、該回転マスクを回転駆動する駆動機構
とを有し、前記回転マスクを回転駆動して前記回転マス
クの孔と前記固定マスクの各孔の孔軸とを順次一致させ
ることにより、上記一致した孔軸に対応する調整対象物
の電極に蒸着物を付着させ、該調整対象物の全電極の共
振周波数あるいは電極間結合量の調整を順次行うように
したことを特徴とするモノリシツククリスタルろ波器用
調整装置にある。
A feature of the present invention that satisfies this objective is that a fixed mask is provided with a plurality of holes corresponding to each electrode of the object to be adjusted;
A rotating mask is provided with a plurality of holes that are close to the fixed mask through a micro gap and whose hole axes can be aligned with each hole of the fixed mask, and a drive mechanism that rotationally drives the rotating mask. , by rotationally driving the rotating mask to sequentially align the hole axes of the holes of the rotating mask and each hole of the stationary mask, deposits are attached to the electrodes of the adjustment target corresponding to the aligned hole axes; The adjusting device for a monolithic crystal filter is characterized in that the resonant frequency of all the electrodes of the object to be adjusted or the amount of coupling between the electrodes is adjusted sequentially.

以下図面により本発明の実施例を説明する。Embodiments of the present invention will be described below with reference to the drawings.

第5図は、本発明による装置の実施例で、20は本装置
の本体、21は回転マスク、22はラチェット歯車、2
3は回転軸、24は蒸着物の通過する孔で回転マスク2
1の円周上に数個配置されているもの、25は回転マス
ク21とラチェット歯車22とを固定し孔24を作成す
る場合の基準となる固定ピン、26は調整すべきMCF
の保持部の挿入部、27はラチェット歯車22を駆動す
るソレノイドリレー、28はソレノイドリレー27のプ
ランジャー、29.30はリンク、31はリンク29.
30とプランジャー28とを結合するピン、32はリス
ク29.30の回転軸、33はリンク29,30の動作
範囲調整部、34は調整用小伴型孔、35はリンク30
に固定されたピン、36はプランジャー28の復起用ス
プリング、37は復起用スプリング36のストッパ、3
8はラチェット爪、39はソレノイドリレー27の電源
入力端子、40はソレノイドリレー27の駆動電源、C
はラチェツウ歯車22および回転マスク21の回転方向
、dはリンク29の駆動方向を示す。
FIG. 5 shows an embodiment of the device according to the present invention, in which 20 is the main body of the device, 21 is a rotating mask, 22 is a ratchet gear, 2
3 is a rotating shaft, 24 is a hole through which the deposit passes, and the rotating mask 2
Several pieces are arranged on the circumference of 1, 25 is a fixing pin that fixes the rotating mask 21 and the ratchet gear 22 and serves as a reference when creating the hole 24, and 26 is an MCF to be adjusted.
27 is a solenoid relay that drives the ratchet gear 22, 28 is a plunger of the solenoid relay 27, 29.30 is a link, and 31 is a link 29.
30 is a pin that connects the plunger 28, 32 is the rotation axis of the risk 29 and 30, 33 is the operating range adjustment part of the links 29 and 30, 34 is a small hole for adjustment, 35 is the link 30
36 is a spring for restoring the plunger 28; 37 is a stopper for the restoring spring 36;
8 is a ratchet pawl, 39 is a power input terminal for the solenoid relay 27, 40 is a drive power source for the solenoid relay 27, C
indicates the rotation direction of the ratchet gear 22 and the rotation mask 21, and d indicates the driving direction of the link 29.

ラチェット歯車22とリンク29の先端部がかみ合って
いるため、ソレノイドリレー27によりリンク29が矢
印d方向に移動すると回転マスク21は矢印C方向に回
転し、蒸着物の通過する孔24の移動が行われ、挿入部
26内に設置されているMCFの調整対象とする電極に
孔24を合わせることができる。
Since the ratchet gear 22 and the tip of the link 29 are engaged with each other, when the link 29 is moved in the direction of the arrow d by the solenoid relay 27, the rotating mask 21 is rotated in the direction of the arrow C, and the hole 24 through which the deposit passes is moved. Therefore, the hole 24 can be aligned with the electrode to be adjusted of the MCF installed in the insertion section 26.

即ち、回転マスク21は、前回の調整完了後はあらかじ
め定めた初期位置に戻っており、ラチェット歯車22の
歯数を単位として、回転マスク21を初期位置からどれ
だけ回転駆動させればこの回転マスク21の孔24と固
定マスク43の孔42とが一致するかはあらかじめ設定
されている。
That is, the rotating mask 21 has returned to the predetermined initial position after the previous adjustment is completed, and the rotating mask 21 has to be rotated from the initial position by how much the rotating mask 21 is rotated from the initial position based on the number of teeth of the ratchet gear 22. Whether the holes 24 of 21 and the holes 42 of the fixed mask 43 match is determined in advance.

なお、駆動電源40からソレノイドリレー27に送り込
まれるパルスの数に応じた歯数だけラチェット歯車22
が回転せしめられることは周知の通りである。
Note that the number of teeth in the ratchet gear 22 corresponds to the number of pulses sent from the drive power source 40 to the solenoid relay 27.
It is well known that the

第6図は、第5図のB−B’断面を詳細に表わした図で
、41は第2図に示した11個の電極対を有するMCF
,42はMCF41の電極2の形状に対応して加工され
た11個の孔、43は孔42を有する固定マスク、44
は孔42が存在する範囲を切り抜いた絶縁板、45は電
極2と孔42との相互位置を決めるMCF41の位置決
め用ガイド、46は固定マスク43、絶縁板44、位置
決め用ガイド45の保持部、47はMCF41の取付バ
ネ、48は電極対の数に対応した11個のリードリレー
、49.50はリードリレー48の入力、出力端子、5
1 .52はリードリレー48の駆動端子、53はアー
ス板、66.67は共通アース線、54は共振周波数測
定部、55は電源部、56.57はスイッチ、58は蒸
着防止カバー、59は蒸着防止カバー58に設けられた
蒸着物通過用の孔である。
FIG. 6 is a detailed view of the BB' cross section in FIG. 5, and 41 is an MCF having 11 electrode pairs shown in FIG.
, 42 are 11 holes processed to correspond to the shape of the electrode 2 of the MCF 41, 43 is a fixed mask having the holes 42, 44
45 is a positioning guide for the MCF 41 that determines the mutual position of the electrode 2 and the hole 42; 46 is a holding portion for the fixed mask 43, the insulating plate 44, and the positioning guide 45; 47 is the mounting spring of MCF41, 48 is 11 reed relays corresponding to the number of electrode pairs, 49.50 is the input and output terminal of reed relay 48, 5
1. 52 is a drive terminal of the reed relay 48, 53 is a ground plate, 66.67 is a common ground wire, 54 is a resonance frequency measuring section, 55 is a power supply section, 56.57 is a switch, 58 is a vapor deposition prevention cover, 59 is a vapor deposition prevention This is a hole provided in the cover 58 for passing the deposit.

MCF41を本装置に取り付けるには、まず、保持部4
6の内部に固定マスク43、絶縁板44、位置決め用ガ
イド45を重ね合わせ、MCF41をセラミック板5の
面が上方となるように位置決め用ガイド45に沿って設
置し、取付バネ47で固定する。
To attach the MCF41 to this device, first attach the holding part 4.
A fixed mask 43, an insulating plate 44, and a positioning guide 45 are superimposed inside the ceramic plate 6, and the MCF 41 is installed along the positioning guide 45 with the surface of the ceramic plate 5 facing upward, and fixed with a mounting spring 47.

次に、MCFの端子3,4の入力側を11個のリードリ
レーの入力端子49に接続し、端子3,4の出力側を共
通アース線66に接続し、11個のリードリレー48の
出力端子50と共通アース線67および駆動端子51
.52はスイッチ56.57を介して測定部54、およ
び電源部55に接続すれば良い。
Next, the input sides of terminals 3 and 4 of the MCF are connected to the input terminals 49 of the 11 reed relays, the output sides of terminals 3 and 4 are connected to the common ground wire 66, and the output sides of the 11 reed relays 48 are connected. Terminal 50, common ground wire 67 and drive terminal 51
.. 52 may be connected to the measuring section 54 and the power supply section 55 via switches 56 and 57.

第7図は、本実施例の装置を真空蒸着機のガラス鐘内に
設置したもので、58は蒸着防止カバー、60はガラス
鐘、61はヒーター、62はシャッター、63は本装置
の本体20の支柱、64はリード線の束、65はガラス
鐘の外に位置する共振用波数測定部54、電源部55、
および駆動電源40を示す。
FIG. 7 shows the device of this embodiment installed in a glass bell of a vacuum evaporation machine, where 58 is a vapor deposition prevention cover, 60 is a glass bell, 61 is a heater, 62 is a shutter, and 63 is a main body 20 of the device. 64 is a bundle of lead wires, 65 is a resonance wave number measuring section 54 located outside the glass bell, a power supply section 55,
and a drive power source 40.

以上のような構成の共振周波数調整装置により、第2図
に示した11個の電極対を有するMCF41の周波数調
整を行うには、MCF41を前記の如く本装置の本体2
0に設置して結線を行った後、蒸着防止カバー58をか
け、回転マスク21の始点を設定し、ガラス鐘内を真空
にし、調整すべき電極に対応するスイッチ56.57を
投入して蒸着調整を行う。
In order to adjust the frequency of the MCF 41 having 11 electrode pairs shown in FIG. 2 using the resonant frequency adjustment device configured as described above, the MCF 41 is connected to the main body 2 of the device as described above.
0 and connect the wires, put on the vapor deposition prevention cover 58, set the starting point of the rotating mask 21, make the inside of the glass bell a vacuum, and turn on the switches 56 and 57 corresponding to the electrodes to be adjusted to start vapor deposition. Make adjustments.

蒸着物はヒーター61から開放されたシャッター62を
通り、蒸着防止カバー58の孔59および回転マスク2
1の孔24および固定マスク43の孔42を介して電極
2に到達し、これに付着する。
The vapor deposit passes through the shutter 62 opened from the heater 61, and passes through the hole 59 of the vapor deposition prevention cover 58 and the rotating mask 2.
1 and the hole 42 of the fixed mask 43 to reach the electrode 2 and adhere thereto.

従って、調整すべき電極2に対応する固定マスク43の
孔42と回転マスク21の孔24とが重なるようにソレ
ノイドリレー27を駆動して、ラチェット歯車22を回
転させることにより、11個の電極対を有するMCF4
1のすべての電極が順次調整できる。
Therefore, by driving the solenoid relay 27 and rotating the ratchet gear 22 so that the hole 42 of the fixed mask 43 corresponding to the electrode 2 to be adjusted and the hole 24 of the rotating mask 21 overlap, the 11 electrode pairs can be adjusted. MCF4 with
All electrodes of 1 can be adjusted sequentially.

すなわち、ガラス鐘外のスイッチ操作により、上記のす
べての電極の共振周波数が同一真空中で簡単に能率良く
調整できる。
That is, by operating a switch outside the bell, the resonance frequencies of all the electrodes mentioned above can be easily and efficiently adjusted in the same vacuum.

同様にして、固定マスク43と回転マスク21を交換す
ることにより、1次元的配置で電極対の数が多いMCF
や2次元的配置で電極対の数が多いMCFについても共
振周波数の調整および共振子間結合量の調整を行うこと
が可能である。
Similarly, by exchanging the fixed mask 43 and the rotating mask 21, an MCF with a large number of electrode pairs in a one-dimensional arrangement can be created.
It is also possible to adjust the resonance frequency and the amount of coupling between resonators even for an MCF having a large number of electrode pairs in a two-dimensional arrangement.

以上説明したように、本発明によるモノリシッククリス
タルろ波器用調整装置は、固定マスクと回転マスクとを
交換するのみで種々のモノリシッククリスタルろ波器に
ついて共振周波数の調整が容易に能率良く行える利点を
有すると共に、同一真空中ですべての共振周波数調整が
行えるため、調整工程中に汚染されて共振周波数の変動
あるいは共振尖鋭度の劣化が生じることがなく、均一な
電極を作成することができる利点がある。
As explained above, the adjustment device for monolithic crystal filters according to the present invention has the advantage that the resonant frequencies of various monolithic crystal filters can be easily and efficiently adjusted by simply replacing the fixed mask and the rotating mask. In addition, since all the resonance frequencies can be adjusted in the same vacuum, there is no possibility of contamination during the adjustment process, causing fluctuations in the resonance frequency or deterioration of the resonance sharpness, and it is possible to create a uniform electrode. .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は1次元的配置の電極を有するモノリシツククリ
スタルろ波器の一例を示す構造図、第2図は2次元的配
置の電極を有するモノリシッククリスタルろ波器の一例
を示す構造図、第3A図は従来の調整装置のシャッター
機構部の一例を示す構造図、第3B図は第3A図の断面
図、第4図は従来の調整装置のシャッター機構部の一例
を示す断面図、第5図は本発明による調整装置の一実施
例を示す構造図、第6図は第5図の一断面図、第7図は
本発明による調整装置を実際に動作させる状態の説明図
である。 1…水晶板、2…電極、3,4…端子、5…セラミック
板、6,20…本体、7…ガイド、8,10.62…シ
ャッター、9…小孔、11…回転軸、21…回転マスク
、22…ラチェット歯車、23…回転軸、24,42.
59…孔、25…固定ピン、26…挿入部、27…ソレ
ノイドリレー、28…プランジャー、29.30…リン
ク、31,35…ピン、32…回転軸、33…動作調整
部、34…小判型孔、36…復起用スプリング、37…
ストツパ、38…ラチェット爪、39…電源入力端子、
40…駆動電源、41…モノリシッククリスタルろ波器
、43…固定マスク、44…絶縁板、45…位置決めガ
イド、46…保持部、47…取付バネ、48…リードリ
レー、49,50…入力、出力端子、51 .52…駆
動端子、53…アース板、54…共振周波数測定部、5
5…電源部、56.57…スイッチ、58…蒸着防止カ
バー、60…ガラス鐘、61…ヒーター、63…支柱、
64…リード線の束、65…共振周波数測定部および電
源部、66.67…共通アース線。
Fig. 1 is a structural diagram showing an example of a monolithic crystal filter having electrodes arranged one-dimensionally; Fig. 2 is a structural diagram showing an example of a monolithic crystal filter having electrodes arranged two-dimensionally; 3A is a structural diagram showing an example of a shutter mechanism section of a conventional adjustment device, FIG. 3B is a sectional view of FIG. 3A, FIG. 4 is a sectional view showing an example of a shutter mechanism section of a conventional adjustment device, and FIG. 6 is a sectional view of FIG. 5, and FIG. 7 is an explanatory diagram of a state in which the adjusting device of the present invention is actually operated. 1... Crystal plate, 2... Electrode, 3, 4... Terminal, 5... Ceramic plate, 6, 20... Main body, 7... Guide, 8, 10. 62... Shutter, 9... Small hole, 11... Rotating shaft, 21... Rotating mask, 22... Ratchet gear, 23... Rotating shaft, 24, 42.
59... Hole, 25... Fixing pin, 26... Insertion part, 27... Solenoid relay, 28... Plunger, 29.30... Link, 31, 35... Pin, 32... Rotating shaft, 33... Operation adjustment part, 34... Oval Mold hole, 36...Returning spring, 37...
Stopper, 38... Ratchet pawl, 39... Power input terminal,
40... Drive power supply, 41... Monolithic crystal filter, 43... Fixed mask, 44... Insulating plate, 45... Positioning guide, 46... Holding section, 47... Mounting spring, 48... Reed relay, 49, 50... Input, output Terminal, 51. 52... Drive terminal, 53... Earth plate, 54... Resonance frequency measuring section, 5
5...Power supply section, 56.57...Switch, 58...Vapor deposition prevention cover, 60...Glass bell, 61...Heater, 63...Strut,
64...Bundle of lead wires, 65...Resonance frequency measurement section and power supply section, 66.67...Common ground wire.

Claims (1)

【特許請求の範囲】[Claims] 1 調整対象物の各電極形状にそれぞれ一致する形状の
複数の開口部を有しかつ各開口部が対応する各電極に対
向するように固定される固定マスクと、該固定マスクに
微小空隙を介して近接し、該固定マスクの所望の開口部
と開口位置を一致させることができる複数の開口部を設
けた回転マスクと、該回転マスクを回転駆動する駆動機
構とを有し、前記回転マスクを回転駆動して前記回転マ
スクの開口部のうちの一つと前記固定マスクの所望の開
口部とを一致させ両開口部の相互位置を固定することに
より、上記一致固定した開口部に対応ずる調整対象物の
電極に蒸着物を付着させ、該調調対象物の電極の共振周
波数あるいは電極間結合量の調整を行うようにしたこと
を特徴とするモノリシツククリスタルろ波器用調整装置
1. A fixed mask having a plurality of openings each having a shape corresponding to the shape of each electrode of the object to be adjusted, and fixed so that each opening faces a corresponding electrode, and a a rotating mask provided with a plurality of openings that are close to each other and whose opening positions can match desired openings of the fixed mask; and a drive mechanism that rotationally drives the rotating mask; By rotationally driving one of the apertures of the rotary mask and a desired aperture of the fixed mask and fixing the mutual positions of both apertures, an adjustment target corresponding to the aperture that has been aligned and fixed is adjusted. 1. An adjustment device for a monolithic crystal filter, characterized in that the resonant frequency of the electrodes of the object to be adjusted or the amount of coupling between the electrodes is adjusted by attaching a vapor deposit to the electrodes of the object.
JP50083944A 1975-07-10 1975-07-10 Monolithic Crystal Rohaki Yosei Souchi Expired JPS582483B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP50083944A JPS582483B2 (en) 1975-07-10 1975-07-10 Monolithic Crystal Rohaki Yosei Souchi

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP50083944A JPS582483B2 (en) 1975-07-10 1975-07-10 Monolithic Crystal Rohaki Yosei Souchi

Publications (2)

Publication Number Publication Date
JPS528750A JPS528750A (en) 1977-01-22
JPS582483B2 true JPS582483B2 (en) 1983-01-17

Family

ID=13816684

Family Applications (1)

Application Number Title Priority Date Filing Date
JP50083944A Expired JPS582483B2 (en) 1975-07-10 1975-07-10 Monolithic Crystal Rohaki Yosei Souchi

Country Status (1)

Country Link
JP (1) JPS582483B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2611371A (en) * 2020-10-08 2023-04-05 Nvidia Corp Datacenter cooling fluid quality analysis and mitigation

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4883341B2 (en) * 2005-08-24 2012-02-22 アイシン精機株式会社 Seat reclining device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS509670A (en) * 1973-05-30 1975-01-31

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS509670A (en) * 1973-05-30 1975-01-31

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2611371A (en) * 2020-10-08 2023-04-05 Nvidia Corp Datacenter cooling fluid quality analysis and mitigation
US11991865B2 (en) 2020-10-08 2024-05-21 Nvidia Corporation Datacenter cooling fluid quality analysis and mitigation

Also Published As

Publication number Publication date
JPS528750A (en) 1977-01-22

Similar Documents

Publication Publication Date Title
US5894647A (en) Method for fabricating piezoelectric resonators and product
JP4171241B2 (en) Method and system for tuning a bulk acoustic wave resonator and filter at wafer level
US20070139140A1 (en) Frequency tuning of film bulk acoustic resonators (FBAR)
US3864161A (en) Method and apparatus for adjusting resonators formed on a piezoelectric wafer
GB2152281A (en) Process for producing miniature piezoelectric devices using laser machining and devices obtained by this process
GB2102199A (en) Piezo-electric resonator
EP0483358A1 (en) Ultra thin quartz crystal filter element of multiple mode
JP2001036370A (en) Device and method for controlling frequency of piezoelectric component
JPS582483B2 (en) Monolithic Crystal Rohaki Yosei Souchi
US4363990A (en) Surface acoustic wave transducer
JPS6051282B2 (en) Piezoelectric resonator and its manufacturing method
JP2002217675A (en) Electrode structure of piezoelectric vibration element, and manufacturing apparatus therefor
GB1602155A (en) Quartz resonators
US4012648A (en) Process for manufacturing piezoelectric resonators and resonators resulting from such process
JPH0918270A (en) Production of end face reflection type surface acoustic wave device
JP2007173906A (en) Method of manufacturing piezoelectric resonator chip and piezoelectric device
JPH09256155A (en) Film forming device
AU703795B2 (en) Low temperature formed thin film actuated mirror array
JPS6057052B2 (en) light deflection element
JPH09162667A (en) Frequency controller for piezoelectric device
JP3552056B2 (en) Multi-mode piezoelectric filter element
JPS62109415A (en) Control method for frequency of piezoelectric oscillator
JPS6258170B2 (en)
JPS644694B2 (en)
JP2005191988A (en) Frequency regulation method of piezoelectric oscillating device and piezoelectric oscillating device whose oscillation frequency is regulated by the same frequency regulation method