JPS5824718B2 - Equipment heat dissipation method - Google Patents

Equipment heat dissipation method

Info

Publication number
JPS5824718B2
JPS5824718B2 JP3194376A JP3194376A JPS5824718B2 JP S5824718 B2 JPS5824718 B2 JP S5824718B2 JP 3194376 A JP3194376 A JP 3194376A JP 3194376 A JP3194376 A JP 3194376A JP S5824718 B2 JPS5824718 B2 JP S5824718B2
Authority
JP
Japan
Prior art keywords
ozone
water
seawater
circulating water
containing liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP3194376A
Other languages
Japanese (ja)
Other versions
JPS52115462A (en
Inventor
信好 大塚
太一 武知
雅史 秋葉
勝也 大井
祐一 佐藤
淳次 肥塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP3194376A priority Critical patent/JPS5824718B2/en
Publication of JPS52115462A publication Critical patent/JPS52115462A/en
Publication of JPS5824718B2 publication Critical patent/JPS5824718B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Preventing Corrosion Or Incrustation Of Metals (AREA)

Description

【発明の詳細な説明】 本発明は機器の放熱方法に係り、特に海水、河川水もし
くは地下水を冷却水として熱交換器に流通せしめるもの
の改良に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for dissipating heat from equipment, and more particularly to an improvement in a method in which seawater, river water, or groundwater is passed through a heat exchanger as cooling water.

; 例えば発電プラントにおいては、各種熱交換器が用
いられこれらに大量の海水、河川水もしくは地下用など
の冷却水を使用する。
For example, in power generation plants, various heat exchangers are used, and large amounts of seawater, river water, or underground cooling water are used for these.

その際復水器、海水冷却器などの冷却管、各種配管およ
びその他の上記の水が接触する部分において、適切な処
置を施さないと、貝類、微生物などの水中生物が繁殖し
、各種の障害を起す。
If appropriate measures are not taken in condensers, cooling pipes such as seawater coolers, various piping, and other parts that come into contact with the above water, aquatic organisms such as shellfish and microorganisms will breed, causing various problems. wake up

一般には取水口にスクリーンを設置して水中の固形物を
除去しているが、これを通過する微小の水中生物、例え
ば動物性プランクトンとして知られている貝の幼生、フ
ジッボの幼生更に微生物、藻類が循環水系統に入り、循
環水管および各種熱交換器、水密室、冷却管などの内壁
に耐着し、流入して(ろ水中栄養物を取り込み生育、繁
殖する。
Generally, a screen is installed at the water intake to remove solid matter from the water, but microscopic aquatic organisms that pass through this screen, such as shellfish larvae known as zooplankton, Fujibo larvae, microorganisms, and algae. enters the circulating water system, adheres to the inner walls of circulating water pipes, various heat exchangers, watertight chambers, cooling pipes, etc., flows in (takes in nutrients from the filtrate, grows, and reproduces).

例えば貝類の生育は著しく、後に述べるような処置を施
さないと貝殻層は厚さ10CIII以上にも達し、循環
水管をせばめ水量を減少させ熱交換器の性能を大幅に低
下させる。
For example, the growth of shellfish is remarkable, and unless the measures described below are taken, the shell layer will reach a thickness of 10 CIII or more, constricting the circulating water pipes and reducing the amount of water, which will significantly reduce the performance of the heat exchanger.

更に材質表面に乱流をつくり、局部腐食を増大させ、生
育後、局部的な剥離を起すが、剥離した貝殻の固りによ
る冷却管の閉塞、あるいは貝殻が循環水と共に高流速で
流れる際、冷却管内壁を摩耗、破損させ、循環水漏洩に
よる重大な事故を招き、重大な経済的、社会的損害を与
える。
Furthermore, it creates turbulent flow on the material surface, increases local corrosion, and causes local separation after growth. This wears out and damages the inner walls of the cooling pipes, leading to serious accidents due to leakage of circulating water, and causing serious economic and social damage.

従来、このような水中生物の耐着あるいは生育にもとす
く障害を除くため塩素の注入が行なわれていた。
Conventionally, chlorine has been injected to eliminate obstacles to the attachment or growth of such aquatic organisms.

これは塩素の殺菌力を利用して、貝類の生育防止、微生
物の殺菌を行なっており、塩素の効果を維持するため循
環水系統末端まで残留塩素をIPI)m以上に保つ必要
があった。
This utilizes the sterilizing power of chlorine to prevent the growth of shellfish and sterilize microorganisms, and in order to maintain the effectiveness of chlorine, it was necessary to maintain residual chlorine at or above IPI)m to the end of the circulating water system.

しかしこのような残留塩素を含んだ大量の循環水が未処
理のまま海あるいは河川へ放流されると生態系の破壊な
どの環境汚染といった憂慮すべき問題が発生する恐れが
あるため、何らかの対策がせまられている。
However, if large amounts of circulating water containing residual chlorine are discharged into the sea or rivers untreated, there is a risk of causing alarming problems such as destruction of the ecosystem and other environmental pollution, so it is important to take some countermeasures. I'm in a hurry.

また塩素を用いる際、残留塩素による金属腐食が加速さ
れるため、防食対策として2価の鉄イオンを循環水系統
に添加し、金属類表面に防食皮膜を形成させ腐食を防い
でいた。
Furthermore, when using chlorine, metal corrosion due to residual chlorine is accelerated, so as an anti-corrosion measure, divalent iron ions are added to the circulating water system to form an anti-corrosion film on the metal surface to prevent corrosion.

しかしながら、このような鉄イオンの添加も環境汚染の
観点からは好ましいものではない。
However, such addition of iron ions is also not preferable from the viewpoint of environmental pollution.

使用後の循環水から残留塩素および過剰の鉄イオンを除
去し放流することが望ましいが、循環水量が1000M
W発電プランドでは約12万ton / hrと重大な
量であるため処理はほとんど不可能である。
It is desirable to remove residual chlorine and excess iron ions from the recycled water after use and discharge it, but if the circulating water volume is 1000M
In the W power generation plan, it is almost impossible to process because it is a significant amount of about 120,000 tons/hr.

本発明は海水、河川水もしくは地下水を冷却水として熱
交換器に流通せしめて放熱するものにおいて、この冷却
水をオゾン含有液体として熱交換器への水中生物の耐着
や生育繁殖を防止する機器の放熱方法を提供することを
目的とする。
The present invention is a device that radiates heat by circulating seawater, river water, or groundwater as cooling water through a heat exchanger, and that uses this cooling water as an ozone-containing liquid to prevent aquatic organisms from adhering to the heat exchanger and from growing and breeding. The purpose is to provide a heat dissipation method.

オゾンは古くから上水の浄化を目的として、フランス、
ドイツなどで用いられており微生物に対する殺菌効果が
塩素より強いことは一般に広く知られている。
Ozone has been used for the purpose of purifying tap water since ancient times in France,
It is widely known that it is used in Germany and other countries and has a stronger sterilizing effect on microorganisms than chlorine.

例えばオゾン添力d o、 1 ppmで耐薬品性を持
つヴイールスでも10分間で99%の殺菌もしくは不活
性化する能力を持ち、また用廃水系統の配管内壁に耐着
繁殖したスライムも水中オゾン濃度0−2 pprr8
度を含むオゾン含有水を接触させると剥離分解すること
が確められた。
For example, it has the ability to sterilize or inactivate 99% of viruses that are resistant to chemicals in 10 minutes with an ozone additive of 1 ppm, and the ozone concentration in water can also be reduced by slime that has grown resistant to the inner walls of pipes in utility and wastewater systems. 0-2 pprr8
It was confirmed that the product peels off and decomposes when it comes into contact with ozone-containing water.

更に発電プラントで最も障害の太きかった貝類などの耐
着、生育にもオゾン含有水の接触により著しく抑制され
、循環水系統に望ましい状態が維持されることか判った
Furthermore, it was found that contact with ozone-containing water significantly suppressed the adhesion and growth of shellfish, which were the most common problem in power plants, and that desirable conditions were maintained in the circulating water system.

オゾンは空気あるいは酸素から放電のみで簡単に生成で
き、放電電圧の変化で任意のオゾン濃度が得られる。
Ozone can be easily generated from air or oxygen by simply discharging, and any ozone concentration can be obtained by changing the discharge voltage.

この点、塩素のような高圧容器での危険な運搬や取扱い
を必要とせず、また事故による大気中への漏漏も電源操
作で容易に防止できる。
In this respect, there is no need for dangerous transportation or handling in high-pressure containers, such as with chlorine, and leakage into the atmosphere due to accidents can be easily prevented by operating the power supply.

更にオゾンが従来の化学薬品添加に比較して最も優れて
いる点は、余剰オゾン自身が次の反応により 203−÷ 302 自己分解し毒性のない酸素に戻るため、放流水の浄化、
後処理の必要が全くなく、そのまま放流できることであ
る。
Furthermore, the greatest advantage of ozone compared to conventional chemical additives is that surplus ozone itself self-decomposes into non-toxic oxygen through the following reaction, making it possible to purify effluent water,
There is no need for post-treatment and it can be discharged as is.

水中における溶存オゾンの自己分解は溶存物質にもよる
室温付近で半減期20〜30分程度であり、大量の循環
水を短い滞留時間で使用する発電プラントには最適であ
る。
Self-decomposition of dissolved ozone in water has a half-life of about 20 to 30 minutes at room temperature, depending on the dissolved substance, and is optimal for power plants that use a large amount of circulating water for a short residence time.

次にオゾンは塩素注入による金属腐食促進という好まし
くない現象もほとんどなく、一般に使用されている構造
用圧延鋼材(例えば材料記号5S41)の腐食速度も金
属表面流速が5〜10(Jmjnと比較的遅い場合には
、オゾンを含有しないものに比較して約1.3倍の腐食
増加が認められるが、実際の使用条件に近い表面流速1
rrL/Bec程度にすると、逆に防食効果を示し、オ
ゾンを含まないものに対する腐食速度の比は、水中オゾ
ン濃度0.2〜0.7ppmで0.9〜0.6倍となり
、塩素使ン用時に考慮したような防食処理、例えば2価
鉄イオンの添加といった操作は不要であり、著しく操作
が簡便化される。
Next, ozone has almost no undesirable phenomenon of promoting metal corrosion due to chlorine injection, and the corrosion rate of commonly used structural rolled steel materials (for example, material code 5S41) is relatively slow, with the metal surface velocity being 5 to 10 (Jmjn). When the surface flow rate is 1.3 times higher than that without ozone, the surface flow rate is close to the actual usage conditions.
On the contrary, when it is around rrL/Bec, it shows a corrosion prevention effect, and the ratio of corrosion rate to that without ozone is 0.9 to 0.6 times when the ozone concentration in water is 0.2 to 0.7 ppm. There is no need for anti-corrosion treatment, such as addition of divalent iron ions, which is considered during use, and the operation is significantly simplified.

以下、海水における貝類耐着生育防止の効果を証明する
実験例を示す。
Below is an example of an experiment proving the effect of preventing the growth of shellfish in seawater.

1実験例 海水を用いた一過式の水路実験でオゾン含有水体による
貝類の耐着生育防止効果を調べた。
1 Experimental Example The effect of an ozone-containing water body on preventing the growth of shellfish from adhesion was investigated in a one-off waterway experiment using seawater.

第1図にその実験装置を示す。Figure 1 shows the experimental equipment.

約2メツシユのスクリーン1を通過して取水された海水
は、ポンプ2に;より各実験水槽3に導かれる。
Seawater taken through a screen 1 of about 2 meshes is guided to each experimental water tank 3 by a pump 2.

実験水槽3(50x50x100t7!りには5メツシ
ユのナイロン製の網を木枠(30X30a!りに張った
ものを流れと平行に浸漬し固定した。
In experimental water tank 3 (50 x 50 x 100 tons), a 5-mesh nylon net stretched over a wooden frame (30 x 30 tons) was immersed parallel to the flow and fixed.

更に木枠の次に発電プラント循環水系統に利用されてい
る各種材質構造用圧延鋼材、ネーバル黄銅、アルミニウ
ム黄銅、チタンの内径約10備、長さ301の管を流れ
と平行に放置して網と同様に貝類の耐着を観察した。
Next to the wooden frame, pipes with an inner diameter of about 10mm and a length of 30mm made of rolled steel for structural use, naval brass, aluminum brass, and titanium, which are used in power plant circulating water systems, are placed parallel to the flow and placed in a net. The adhesion resistance of shellfish was observed in the same manner.

海水の流量は各実験水槽で60nf/hrとし、一方は
無処理のまま、他方は1回/日海水を止めオゾン含有水
を注入し、30分間の処理を繰り返し、合計20日間の
浸漬実験を行なった。
The flow rate of seawater was 60nf/hr in each experimental tank, and one tank was left untreated, and the other tank was stopped once a day and ozone-containing water was injected, and the treatment was repeated for 30 minutes, for a total of 20 days of immersion experiment. I did it.

オゾン含有水は、空気を原料としてオゾン発生装置4で
発生させたオゾン化空気をオゾン吸収塔5に導き、ディ
フュザーにより水道水と気液接触を行ないオゾン含有水
とした。
Ozone-containing water was produced by introducing ozonized air generated by an ozone generator 4 using air as a raw material into an ozone absorption tower 5, and bringing it into gas-liquid contact with tap water through a diffuser to obtain ozone-containing water.

このときの溶存オゾン濃度は約3 ppmであった。The dissolved ozone concentration at this time was approximately 3 ppm.

無処理の網は20日間の実験で1關以下のムラサキ貝が
多数発生しており、網表面積1にあたり約3500個の
耐着が認められたが、オゾン含有水で1回/日処理した
ものには全(耐着していなかった。
The untreated net had a large number of mussels of less than one size during the 20-day experiment, and approximately 3,500 mussels were observed per net surface area, but the net treated with ozone-containing water once a day It didn't hold up at all.

更に金属材質への貝の耐着も20日間で多少認められた
が材質による耐着の違いはあまり認められず、オゾン含
有水で処理した管には網と同様全く耐着していなかった
Furthermore, although some resistance to adhesion of shellfish to metal materials was observed after 20 days, there was not much difference in adhesion resistance depending on the material, and the pipes treated with ozone-containing water had no adhesion resistance at all, similar to the net.

次に発電プラント循環水系統へのオゾン含有液体による
水中生物耐着、生育防止方法および装置を第2図につい
て詳細に説明する。
Next, a method and apparatus for preventing the adhesion and growth of aquatic organisms by using an ozone-containing liquid in the circulating water system of a power plant will be explained in detail with reference to FIG.

第2図は従来の海水を用いた発電プラントの一個のユニ
ットの循環水系統に本発明を応用した装置の一例である
FIG. 2 is an example of a device in which the present invention is applied to a circulating water system of one unit of a conventional power generation plant using seawater.

同図において、復水器11は図示しないタービンから排
出された蒸気を海水で冷却し復水にするためのものであ
り、海水冷却器112は軸受冷却水系統の水を海水で冷
却するものである。
In the figure, a condenser 11 is for cooling steam discharged from a turbine (not shown) with seawater to condensate water, and a seawater cooler 112 is for cooling water in the bearing cooling water system with seawater. be.

これらの復水器11、海水冷却器12に必要な冷却水は
、循環ポンプ13、海水ブースタポンプ14によって海
水を取水し、循環水管15を経て送水され、復水器11
、海水冷却器12を通過後再び循環水管15を経て放流
される。
The cooling water required for the condenser 11 and the seawater cooler 12 is obtained by taking seawater by a circulation pump 13 and a seawater booster pump 14, and is sent through a circulation water pipe 15 to the condenser 11.
After passing through the seawater cooler 12, the water is discharged again through the circulating water pipe 15.

海水中より貝、魚、くらげ、海草、更に石、木片、プラ
スチックなどの比較的大きな固形物は約2メツシユの網
目状のスクリーン16で除かれる。
Shells, fish, jellyfish, seaweed, and relatively large solid objects such as stones, wood chips, and plastics are removed from the seawater by a mesh screen 16 of about 2 meshes.

貝類あるいはフジッボなどの幼生あるいは微生物、藻類
など比較的小さなものはスクリーン16を通り循環水管
15、水室11、海水冷却器12、復水器11の冷却管
11A、11Bの内壁に耐着し、生育または繁殖して障
害を起す。
Relatively small objects such as larvae such as shellfish or barnacles, microorganisms, and algae pass through the screen 16 and adhere to the inner walls of the circulating water pipe 15, the water chamber 11, the seawater cooler 12, and the cooling pipes 11A and 11B of the condenser 11, Grows or reproduces and causes damage.

そこで本発明は、海水あるいは河川水、地下水の一部を
オゾン吸収塔18に導き、空気または酸素を原料として
周知のオゾン発生装置19から生成されるオゾン化気体
をディフューザもしくはインジェクタを用いて、オゾン
吸収塔18にて気液接触を行ないオゾン含有液体を作り
導入管20より循環水系統に注入接触させる。
Therefore, the present invention introduces a part of seawater, river water, or groundwater to the ozone absorption tower 18, and uses a diffuser or an injector to generate ozonized gas generated from a well-known ozone generator 19 using air or oxygen as a raw material, and ozone the ozone. Gas-liquid contact is carried out in the absorption tower 18 to produce an ozone-containing liquid, which is then injected into the circulating water system through the introduction pipe 20.

このオゾン含有液体の循環水系統への接触は、循環水と
置換させる場合が最も効果が大きいが、濃厚オゾン含有
液体を注入し海水で希釈しながら循環水系統に流すよう
にしてもよい。
The most effective contact of this ozone-containing liquid to the circulating water system is when it is replaced with circulating water, but it is also possible to inject a concentrated ozone-containing liquid and diluting it with seawater before flowing it into the circulating water system.

この方法は発電プラントの運転中でも行なうことが出来
るが、多量のオゾン含有液体を必要とする。
This method can be carried out while the power plant is in operation, but requires large amounts of ozone-containing liquid.

更に発電プラントへの水中生物の耐着が起るのは季節。Furthermore, the attachment of aquatic organisms to power plants occurs depending on the season.

的変動があり、貝類の幼生は春の初めあるいは秋に多く
発生し、これらが障害を起すまでに生育するには数日あ
るいは数週間の日数を必要とするため、オゾン含有液体
との接触は間歇的に行なってもよ(、夜間あるいは休日
などの電力需用の少ない時に行なえる利点を有する。
Because shellfish larvae occur in large numbers in early spring or fall, and it takes several days or weeks for them to develop before causing damage, contact with ozone-containing liquids should be intermittent. It has the advantage that it can be carried out at times of low demand for electricity, such as at night or on holidays.

発電プラントの通常運転において、前述の事故原因とな
る生物の付着、生育が問題視されるのは循環水系統中で
復水器11および海水冷却器12のいわゆる熱交換器と
、ここに流入する循環水の上流側の部分であり、従って
オゾン含有液体の流入はこの系統中でも、熱交換器の上
流側に注入することが最も効果的であるため、循環水ポ
ンプ13あるいはバルブ21の直後が好ましい。
In the normal operation of a power generation plant, the attachment and growth of organisms that cause the above-mentioned accidents is a problem in the circulating water system at the so-called heat exchangers of the condenser 11 and the seawater cooler 12, and on the heat exchangers that flow into these. This is the upstream part of the circulating water, and therefore, it is most effective to inject the ozone-containing liquid to the upstream side of the heat exchanger in this system, so it is preferably immediately after the circulating water pump 13 or the valve 21. .

更に小容量オゾン発生装置で効果的な処理を行なうため
には、循環水系統中のバルブの操作により対象となる部
分を分割し、オゾン含有液体の通水あるいは注入も可能
である。
Furthermore, in order to perform effective treatment with a small-capacity ozone generator, it is possible to divide the target portion by operating a valve in the circulating water system, and to pass water or inject ozone-containing liquid into the target portion.

その具体的手段として復水器11の一方の冷却管11A
を処理する場合、バルブ22Aを閉じX部よりオゾン含
有液体を注入すればよい。
As a specific means, one cooling pipe 11A of the condenser 11
When treating the ozone-containing liquid, the valve 22A may be closed and the ozone-containing liquid may be injected from the X section.

この操作は発電プラントの軽負荷時の運転でも行なうこ
とができる。
This operation can be performed even when the power plant is operating under light load.

またこの注入部は他の位置でもよい。Moreover, this injection part may be located at another position.

一般の発電プラントにおいては、数個の発電ユニットか
らなり各ユニットは、それぞれ前述した循環水系統を備
えている。
A typical power generation plant consists of several power generation units, and each unit is equipped with the above-mentioned circulating water system.

オゾン含有液体による処理は間歇的に行なっても充分効
果があるため、数個の発電ユニットで共用することも可
能となり、経済的利益はさらに大きくなる。
Since treatment with an ozone-containing liquid is sufficiently effective even if performed intermittently, it can be shared by several power generation units, resulting in even greater economic benefits.

以上説明したように本発明を発電プラントの循環水系統
へ応用すれば、残留性、腐食性の強い塩素を使用するこ
となく、水中生物の耐着や生育をオゾン含有液体で防止
でき、長期にわたり安全な運転が可能となる。
As explained above, if the present invention is applied to the circulating water system of a power generation plant, ozone-containing liquid can prevent the adhesion and growth of aquatic organisms without using chlorine, which is highly persistent and corrosive, and will last for a long time. Safe driving becomes possible.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実験装置を示す管系線図、第2図は本
発明の一実施例を示す管系線図である。 11・・・復水器、12・・・海水冷却器、18・・・
オゾン吸収塔、19・・・オゾン発生装置。
FIG. 1 is a pipe system diagram showing an experimental apparatus of the present invention, and FIG. 2 is a pipe system diagram showing an embodiment of the present invention. 11... Condenser, 12... Seawater cooler, 18...
Ozone absorption tower, 19... ozone generator.

Claims (1)

【特許請求の範囲】 1 機器の排出熱を海水、河川水もしくは地下水を冷却
水として熱交換器に流通せしめ放熱するものにおいて、
前記冷却水にオゾンを含有させ前記熱交換器に水中生物
の耐着や生育繁殖を防止したことを特徴とする機器の放
熱方法。 2 上記冷冷却水に濃厚オゾン含有液体を注入してオゾ
ン含有液体とすることを特徴とする特許請求の範囲第1
項記載の機器の放熱方法。
[Claims] 1. A device that radiates heat exhausted from equipment by circulating seawater, river water, or groundwater as cooling water through a heat exchanger,
A heat dissipation method for equipment, characterized in that the cooling water contains ozone to prevent aquatic organisms from adhering to the heat exchanger and from growing and breeding. 2 Claim 1, characterized in that a concentrated ozone-containing liquid is injected into the cold cooling water to obtain an ozone-containing liquid.
Heat dissipation method for the equipment described in section.
JP3194376A 1976-03-25 1976-03-25 Equipment heat dissipation method Expired JPS5824718B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3194376A JPS5824718B2 (en) 1976-03-25 1976-03-25 Equipment heat dissipation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3194376A JPS5824718B2 (en) 1976-03-25 1976-03-25 Equipment heat dissipation method

Publications (2)

Publication Number Publication Date
JPS52115462A JPS52115462A (en) 1977-09-28
JPS5824718B2 true JPS5824718B2 (en) 1983-05-23

Family

ID=12345036

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3194376A Expired JPS5824718B2 (en) 1976-03-25 1976-03-25 Equipment heat dissipation method

Country Status (1)

Country Link
JP (1) JPS5824718B2 (en)

Also Published As

Publication number Publication date
JPS52115462A (en) 1977-09-28

Similar Documents

Publication Publication Date Title
KR19990029085A (en) Bioadhesion Reduction Device
AU2014233782A1 (en) A system and a process for water descaling
US20020096456A1 (en) Wastewater treatment system using cavitating waterjet
KR20140024302A (en) System for treating ballast water in ballast tanks
Turner et al. Chlorine and sodium pentachlorophenate as fouling preventives in sea water conduits
US5252300A (en) Corrosion inhibition process
US3247054A (en) Inhibiting the growth of algae in water with amino-substituted higher alkanol containing from about 8 to 18 carbon atoms
Nair et al. Biofouling Control; Current Methods and New Approaches with Emphasis on Power Plant Cooling Water Systems
Ma et al. Environmental management of coastal cooling water discharges in Hong Kong
US6955766B2 (en) Method for reducing harmful organisms in currents of water
JPS5824718B2 (en) Equipment heat dissipation method
JP5874245B2 (en) Ship ballast water treatment method
JPS5934279B2 (en) Method for preventing aquatic organisms from adhering to heat exchangers using cooling water
CA2094348C (en) Method to prevent adherence of marine organisms on surfaces of submerged components
CN203112640U (en) Rotational flow partition type ship ballast water treatment device
JP2787185B2 (en) Slime adhesion prevention method for seawater piping
CN204714623U (en) A kind of apparatus for treating ship ballast water
Kaiga et al. Ozone treatment in cooling water systems
JPH0194997A (en) Method for preventing fouling by marine organisms
Asano et al. Evaluation of industrial cooling systems using reclaimed municipal wastewater
JPH06153759A (en) Elimination of organism stuck to waterline
Khalanski Testing of five methods for the control of zebra mussels in cooling circuits of power plants located on the Moselle River
Mizgiryov et al. USE OF AN EJECTOR-CAVITATOR FOR EFFICIENT TREATMENT OF SHIP BALLAST WATER
Mizgiryov et al. Treatment and conditioning of drinking water using a complex ship plant
JPH0371195B2 (en)