JPS5824609B2 - Air-fuel ratio feedback type fuel injection control device - Google Patents

Air-fuel ratio feedback type fuel injection control device

Info

Publication number
JPS5824609B2
JPS5824609B2 JP50073969A JP7396975A JPS5824609B2 JP S5824609 B2 JPS5824609 B2 JP S5824609B2 JP 50073969 A JP50073969 A JP 50073969A JP 7396975 A JP7396975 A JP 7396975A JP S5824609 B2 JPS5824609 B2 JP S5824609B2
Authority
JP
Japan
Prior art keywords
output
air
fuel ratio
fuel injection
integral
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP50073969A
Other languages
Japanese (ja)
Other versions
JPS51149423A (en
Inventor
昭雄 小林
秀明 乗松
明 益田
重則 北島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
NipponDenso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NipponDenso Co Ltd filed Critical NipponDenso Co Ltd
Priority to JP50073969A priority Critical patent/JPS5824609B2/en
Priority to US05/690,628 priority patent/US4111162A/en
Publication of JPS51149423A publication Critical patent/JPS51149423A/en
Publication of JPS5824609B2 publication Critical patent/JPS5824609B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Description

【発明の詳細な説明】 本発明は内燃機関の排気ガス中の酸素濃度を検出しその
検出信号を燃料供給系に帰還して前記酸素濃度が一定と
なる一定の空燃比で機関を作動せしめる空燃比帰還式燃
料噴射制御装置の改良に関するものである。
Detailed Description of the Invention The present invention detects the oxygen concentration in the exhaust gas of an internal combustion engine and returns the detection signal to the fuel supply system to operate the engine at a constant air-fuel ratio at which the oxygen concentration is constant. This invention relates to an improvement of a fuel ratio feedback type fuel injection control device.

従来周知の電子式燃料噴射装置は、吸入空気流量計によ
って得られたエンジンの吸入空気量に見合った燃料が計
算されて燃料噴射が行なわれていた。
In conventional electronic fuel injection devices, fuel injection is performed by calculating the amount of fuel commensurate with the intake air amount of the engine as determined by an intake air flow meter.

しかし、空燃比をきびしく一定に保つためには排気管に
設けられた酸素濃度検出器でもって検出した酸素濃度の
値により混合気が濃いか、薄いかを判定し、燃料噴射パ
ルスの時間幅に帰還補正をかけていたが、その方法は酸
素濃度検出器の出力による帰還制御回路の帰還補正出力
は積分出力であり、定常状態で目的値即ちこの場合空気
過剰率λ−1で燃料と空気中の酸素の量が完全燃焼でき
る理論空燃比となる値を中心としてリミットサイクルを
生じる。
However, in order to keep the air-fuel ratio strictly constant, it is necessary to determine whether the air-fuel mixture is rich or lean based on the oxygen concentration value detected by the oxygen concentration detector installed in the exhaust pipe, and to adjust the time width of the fuel injection pulse. Feedback correction was applied, but the method was that the feedback correction output of the feedback control circuit based on the output of the oxygen concentration detector was an integral output, and in a steady state, the target value, that is, in this case, the excess air ratio λ-1, was applied between the fuel and air. A limit cycle is generated around the value that is the stoichiometric air-fuel ratio that allows complete combustion of the amount of oxygen.

この場合、従来では機関の運転領域全体において、空燃
比を濃くする際の積分出力の積分定数と、薄くする際の
積分定数を同じにし、かつ一定のまま排気ガスの高浄化
率を得ようとした。
In this case, conventional methods have attempted to keep the integral constant of the integral output when enriching the air-fuel ratio the same as the integral constant when decreasing the air-fuel ratio throughout the engine's operating range, and to obtain a high exhaust gas purification rate while keeping the ratio constant. did.

しかしながら、この帰還系には時間おくれがあり混合気
の濃くするRich側から混合気を薄(するLean側
への遅れ時間と、Lean側からRich側への遅れ時
間は同一でなく、また、機関の運転状態によっても変化
するので平均空燃比は排気ガスの高浄化率を得られる領
域からずれる場合がある。
However, there is a time lag in this feedback system, and the delay time from the Rich side that enriches the mixture to the Lean side that makes the mixture lean is not the same as the delay time from the Lean side to the Rich side. Since the average air-fuel ratio also changes depending on the operating state of the engine, the average air-fuel ratio may deviate from a region where a high exhaust gas purification rate can be obtained.

また、平均空燃比を一定にするにしても第1図の:3w
ay触媒の浄化率特性を見てわかるように中心となる空
気過剰率λをλ−1よりRich側にずらすとNOx
は高浄化率になるがHC,Coは浄化率が悪(なる。
Also, even if the average air-fuel ratio is kept constant, the equation in Figure 1 is: 3w
As can be seen from the purification rate characteristics of the ay catalyst, if the central excess air ratio λ is shifted from λ-1 to the Rich side, NOx
has a high purification rate, but HC and Co have poor purification rates.

一方、Lean側にずらすとHCCOは高浄化率になる
が、NOxは浄化率が悪くなる。
On the other hand, when shifted to the Lean side, HCCO has a high purification rate, but NOx has a poor purification rate.

又、空気過剰率λ−1の理論空燃比近辺に固定するとN
Oxの浄化率が不安定になる。
Also, if the excess air ratio is fixed near the stoichiometric air-fuel ratio of λ-1, N
Ox purification rate becomes unstable.

従って、機関の定常時、及び過渡時等の常時HC、CO
,NOx 3成分の高浄化を得るためにはRich側に
ずらすかL ean側にずらすか、又は空気過剰率λ−
1の理論空燃比にするかが大きな問題となった。
Therefore, HC and CO are always
, NOx In order to obtain high purification of the three components, it is necessary to shift it to the Rich side or to the Lean side, or to change the excess air ratio λ-
The big question was whether to set the stoichiometric air-fuel ratio to 1.

ここで、従来装置は酸素濃度検出器の出力により、燃料
供給量が濃いか薄いかを知り積分器の積分出力により燃
料噴射量の増減制御を行っているが、この際、積分器の
積分定数をRichからLeanの定数と、L ean
からRichの定数を変えれば平均空燃比を変化させる
ことができる。
Here, the conventional device uses the output of the oxygen concentration detector to determine whether the fuel supply amount is rich or thin, and controls the increase or decrease of the fuel injection amount based on the integral output of the integrator. from Rich to Lean's constant, and Lean
By changing Rich's constant from , the average air-fuel ratio can be changed.

たとえばLeanからRichの積分定数をRichか
らLeanの積分定数より大きく(傾斜を大きくすれば
、帰還系の応答お(れ時間の間によりRichになるの
で平均空燃比は濃い側即ちRich側に移行する。
For example, if the integral constant from Lean to Rich is made larger than the integral constant from Rich to Lean (increasing the slope), the response of the feedback system becomes richer during the response time, so the average air-fuel ratio shifts to the rich side, that is, to the Rich side. .

逆に、RichからLeanの積分定数をLeanから
Richの積分定数より大きくすれば平均空燃比を薄い
側即ちLean にできることは同様である。
Conversely, if the integral constant from Rich to Lean is made larger than the integral constant from Lean to Rich, the average air-fuel ratio can be made on the lean side, that is, Lean.

本発明は上述の点に鑑みてなされたものであり排気ガス
中の酸素濃度を検出する酸素濃度検出器の出力と設定値
とを比較する比較手段と積分手段を備え、例えば定常時
、加速時及び減速時の如く機関の運転状態に応じて、こ
の積分手段の出力の増加方向と減少方向とでは出力勾配
を異ならしめるように、前記積分手段の積分定数を変化
させることにより、機関Q運転状態に応じた平均空燃比
に変更することができ、従って3way触媒による排気
ガス(HC,Co、N0x)の高浄化率を可能にできる
空燃比帰還式燃料噴射制御装置を提供することを目的と
するものである。
The present invention has been made in view of the above points, and includes a comparison means and an integration means for comparing the output of an oxygen concentration detector that detects the oxygen concentration in exhaust gas with a set value. The engine Q operating state is changed by changing the integral constant of the integrating means so that the output slope is different between the increasing direction and the decreasing direction of the output of the integrating means depending on the engine operating state such as during deceleration. An object of the present invention is to provide an air-fuel ratio feedback type fuel injection control device that can change the average air-fuel ratio according to It is something.

以下本発明を図に示す一実施例について説明する。An embodiment of the present invention shown in the drawings will be described below.

第2図の空燃比帰還式燃料噴射制御系を示すブロック線
図において、1は内燃機関であるエンジン本体、2は吸
気管、3は排気管、4はスロットバルブで、全閉を検出
する全閉検出スイッチ4aを有している。
In the block diagram shown in Fig. 2, which shows the air-fuel ratio feedback type fuel injection control system, 1 is the engine body which is an internal combustion engine, 2 is the intake pipe, 3 is the exhaust pipe, and 4 is the slot valve, which detects the fully closed state. It has a close detection switch 4a.

5は吸気管2の前部に取付けられた機関の吸入する空気
量を計測する吸入空気流量計、6は酸化ジルコン等の固
体電解質よりなる酸素濃度検出器で、排気管3に配設し
て排気ガス中の酸素濃度を検出するものであり、排気ガ
スの温度が450℃〜600℃の許容温度以上になると
前記酸素濃度に応答して正常作動し、濃度検出信号を発
生するものである。
5 is an intake air flow meter installed at the front of the intake pipe 2 to measure the amount of air taken into the engine; 6 is an oxygen concentration detector made of a solid electrolyte such as zirconium oxide, and is installed in the exhaust pipe 3. It detects the oxygen concentration in the exhaust gas, and when the temperature of the exhaust gas exceeds a permissible temperature of 450° C. to 600° C., it operates normally in response to the oxygen concentration and generates a concentration detection signal.

7は燃料を吸気管2内に噴射する噴射弁で、後述する燃
料噴射制御装置が出力する燃料噴射パルス信号により開
弁作動するものである。
Reference numeral 7 denotes an injection valve for injecting fuel into the intake pipe 2, which is opened by a fuel injection pulse signal output from a fuel injection control device to be described later.

8はエンジン回転数等の機関状態を検出する検出手段、
9はエアクリーナ、10は電子式燃料噴射制御装置で、
前記吸気管2の前部に取付けた吸入空気流量計5の出力
に見合った燃料量を前記噴射弁7より供給するため、こ
の噴射弁7を開弁作動させる所定時間巾の燃料噴射パル
ス信号を発生する。
8 is a detection means for detecting engine conditions such as engine speed;
9 is an air cleaner, 10 is an electronic fuel injection control device,
In order to supply from the injection valve 7 an amount of fuel commensurate with the output of the intake air flow meter 5 attached to the front part of the intake pipe 2, a fuel injection pulse signal of a predetermined time duration is sent to open the injection valve 7. Occur.

11は排気管3に配設した前記酸素濃度検出器6より出
力する濃度検出信号に応じて前記電子式燃料噴射制御装
置10による燃料噴射量を帰還補正する帰還制御回路で
、この帰還制御回路11の出力が電源電圧vBの半分で
ある基準電圧V8/2の出力を有するとき、この基準電
圧ゝ1に保持して帰還制御系の補正量を零とし基本の予
め設定した要求燃料を噴射するようにしである。
Reference numeral 11 denotes a feedback control circuit for feedback correcting the fuel injection amount by the electronic fuel injection control device 10 in accordance with a concentration detection signal output from the oxygen concentration detector 6 disposed in the exhaust pipe 3; When the output has a reference voltage V8/2 which is half of the power supply voltage vB, this reference voltage is held at 1, the correction amount of the feedback control system is made zero, and the basic preset required fuel is injected. It's Nishide.

従って、帰還制御回路11は出力として基準電圧VB/
2より低い電圧のとき燃料噴射パルスの時間巾を小さく
するようにし、他方基準電圧VB/2より高い電圧のと
き燃料噴射パルスの時間巾を長くするようにして燃料噴
射量を補正するものである。
Therefore, the feedback control circuit 11 outputs the reference voltage VB/
The fuel injection amount is corrected by reducing the time width of the fuel injection pulse when the voltage is lower than 2, and by increasing the time width of the fuel injection pulse when the voltage is higher than the reference voltage VB/2. .

12は触媒で、特に3 way触媒であって排気ガス中
NOx、HC,COの3成分の浄化率の高い空燃比を空
気過剰率λ−1即ち理論空燃比附近にもつものであり、
第1図に示す如く、その浄化率特性は理論空燃比(λ−
1)の時、NOx、HClC0の3成分共に浄化率が高
く、Rich側(λく1)ではHC,COの浄化率が悪
くなっており、一方、Lean側(λ〉1)ではNOx
の浄化率が悪くなっている。
12 is a catalyst, in particular a 3-way catalyst, which has an air-fuel ratio with a high purification rate of the three components NOx, HC, and CO in the exhaust gas at an excess air ratio λ-1, that is, near the stoichiometric air-fuel ratio;
As shown in Figure 1, the purification rate characteristic is the stoichiometric air-fuel ratio (λ-
At the time of 1), the purification rate of both NOx and HClC0 is high, and the purification rate of HC and CO is poor on the Rich side (λ>1), while on the Lean side (λ>1), the purification rate of NOx and HClC0 is high.
The purification rate is getting worse.

次に、本発明の要部となる帰還制御回路11の詳細構成
及びその作動を第3図及至第5図において述べる。
Next, the detailed configuration and operation of the feedback control circuit 11, which is the main part of the present invention, will be described with reference to FIGS. 3 to 5.

第3図において、vBは電源電圧VBの電源ライン、G
NDはアースラインである。
In Fig. 3, vB is the power line of power supply voltage VB, G
ND is the ground line.

6は前述した排気ガス中の酸素濃度を検出する酸素濃度
検出器、101はこの酸素濃度検出器6の検出出力を予
め定めた設定値でもって比較判別し、機関の空燃比がR
ichであるかLeanであるかの信号を出力する比較
回路であり、抵抗301,302゜303.304,3
05、ツェナーダイオード306、及び比較器Q1から
構成しである。
Reference numeral 6 denotes an oxygen concentration detector for detecting the oxygen concentration in the exhaust gas, and reference numeral 101 compares and determines the detection output of this oxygen concentration detector 6 with a predetermined setting value to determine whether the air-fuel ratio of the engine is R.
This is a comparison circuit that outputs a signal indicating whether the signal is ich or lean.
05, a Zener diode 306, and a comparator Q1.

特に、この比較器Q1 には抵抗302,303によ
りツェナーダイオード306により決まるツェナー電圧
を抵抗分割した所定レベルの基準電圧Vsを該定値とし
て設定入力しである。
In particular, a reference voltage Vs of a predetermined level obtained by resistance-dividing the Zener voltage determined by the Zener diode 306 by the resistors 302 and 303 is input to the comparator Q1 as the predetermined value.

102は機関の運転状態を検出する機関状態検出器で、
本実施例ではスロットルバルブ4に運動してこのスロッ
トルバルブ4の全閉状態を検出する全閉検出スイッチ4
aが配設してあり、トランジスタT5及び抵抗320.
321でインバータを成している。
102 is an engine state detector that detects the operating state of the engine;
In this embodiment, a fully closed detection switch 4 moves to the throttle valve 4 to detect the fully closed state of the throttle valve 4.
a is arranged, a transistor T5 and a resistor 320 .
321 constitutes an inverter.

なお、この全閉検出スイッチ4aはアイドリング時或は
減速時のスロットルバルブ4の全閉時にオンし、定常時
或は加速時のスロットルバルブ4が開いている時オフす
るものである。
The fully closed detection switch 4a is turned on when the throttle valve 4 is fully closed during idling or deceleration, and turned off when the throttle valve 4 is open during steady state or acceleration.

103は積分回路104の積分定数を決定する積分出力
制御回路で、トランジスタTI 、T2 t T3 。
103 is an integral output control circuit that determines the integral constant of the integral circuit 104, and includes transistors TI and T2 t T3 .

T4、及び抵抗307,308,309,310゜31
1.312,313,314,315,322から構成
され、全閉検出スイッチ10aがオンの時、トランジス
タT3.T4がオンしトランジスタT1.T2がオフす
るようになっており、一方、スイッチ10aがオフの時
トランジスタT1.T2がオンしトランジスタT3.T
4がオフするようになっている。
T4, and resistance 307, 308, 309, 310°31
1.312, 313, 314, 315, 322, and when the fully closed detection switch 10a is on, the transistors T3. T4 is turned on and transistors T1. T2 is turned off, while when switch 10a is turned off, transistors T1. T2 is turned on and transistor T3. T
4 is turned off.

104は積分回路で、積分器Q2、積分用のコンデンサ
319、及び抵抗316,317318から構成され、
この積分器Q2には抵抗316.317により電源電圧
vBを抵抗分割しB て所定レベルの基準電圧−を設定入力しである。
104 is an integration circuit, which is composed of an integrator Q2, an integration capacitor 319, and resistors 316 and 317318.
A reference voltage at a predetermined level is set and input to this integrator Q2 by dividing the power supply voltage vB by resistors 316 and 317.

次に、上記構成によるその作動を述べる。Next, the operation of the above configuration will be described.

まず酸素濃度検出器6の出力(第4図4A及び第5図5
A図示)と抵抗302,303で予め設定された基準電
圧Vsとにより、比較器Q1 は第4図4B及び第5図
5B図示の如(機関空燃比がRichであるかL ea
nであるかの出力信号を出す。
First, the output of the oxygen concentration detector 6 (Fig. 4 4A and Fig. 5 5
A) and a reference voltage Vs preset by resistors 302 and 303, the comparator Q1 operates as shown in FIGS. 4B and 5B (whether the engine air-fuel ratio is Rich or
It outputs an output signal indicating whether it is n.

この場合、比較器Q1 の出力が出力″1″のときR
ich、出力”0“のときL eanである。
In this case, when the output of comparator Q1 is "1", R
ich, and is Lean when the output is "0".

次に、定常時、或は加速時にはスロットルバルブ4は全
閉状態になく開いており全閉検出スイッチ4aはオフ状
態にある。
Next, during steady state or acceleration, the throttle valve 4 is not in a fully closed state but is open, and the fully closed detection switch 4a is in an OFF state.

従って、トランジスタT1.T2はオン、トランジスタ
T3.T、はオフしておりこの時比較器Q1 より第4
図4B図示の出力が積分出力制御回路103の入力端A
に入力すると、比較器Q1 の出力電流の一部は抵抗3
09を通してトランジスタT1へ流れ、積分器Q2への
電流iは第4図4Cの如く正方向の電流値の方が負方向
の電流値より小さくなり、これは第4図中C点の基準電
圧y旦に対する図中B点の電圧波形と同様のものである
Therefore, transistor T1. T2 is on, transistor T3. T, is off, and at this time, the fourth
The output shown in FIG. 4B is the input terminal A of the integral output control circuit 103.
, a part of the output current of comparator Q1 flows through resistor 3
09 to the transistor T1, and the current i to the integrator Q2 has a positive current value smaller than a negative current value as shown in FIG. 4C, and this is due to the reference voltage y at point C in FIG. This voltage waveform is similar to the voltage waveform at point B in the figure for the same period.

詳細すれば比較器Q、の出力が・・1・、)ワき。To be more specific, the output of comparator Q is...1...).

ランジスタT1 を介して電流が流れてしまうため電
流iはあまり大きくなく、一方、比較器Q、 の出力
が出力″0“のときには積分器Q2側から比較器Q1
の出力側及びトランジスタT1 側の両方に向かって流
れるため負方向の電流iが大きくなるわけである。
Since the current flows through the transistor T1, the current i is not very large.On the other hand, when the output of the comparator Q is "0", the integrator Q2 side flows into the comparator Q1.
Since the current i flows toward both the output side of the transistor T1 and the transistor T1 side, the negative direction current i becomes large.

ここで、積分回路104の積分定数はコンデンサ319
と積分器Q2への電流iにより決定されるものであり、
この電流iの正負両方向の電流値を変化させることによ
り積分定数が変わり、積分器Q2の積分出力の傾斜率が
RichがらL eanの上昇の場合或はLeanから
Richの下降の場合では差違を生じ、積分出力である
帰還補正量の平均を理論空燃比λ−1よりRich側、
又はLean側にずらすことができる。
Here, the integral constant of the integrating circuit 104 is the capacitor 319
is determined by the current i to the integrator Q2,
By changing the current values in both the positive and negative directions of this current i, the integral constant changes, and a difference occurs when the slope rate of the integral output of the integrator Q2 increases from Rich to Lean or decreases from Lean to Rich. , the average of the feedback correction amount, which is the integral output, is set to the Rich side from the stoichiometric air-fuel ratio λ-1,
Alternatively, it can be shifted to the Lean side.

そこで、第4図4Cの入力電流に対する積分器Q2 の
出力は、第4図4D図示のように電流絶対値が大きいと
き積分定数は大きくなって積分出力の傾斜率は太き(な
り、一方、電流絶対値が小さいときには積分定数は小さ
くなって積分出力の傾斜率は小さくなる。
Therefore, the output of the integrator Q2 with respect to the input current in FIG. 4C is as shown in FIG. When the absolute value of the current is small, the integral constant becomes small and the slope rate of the integrated output becomes small.

従って、機関空燃比の帰還制御系に一定時間の遅れがあ
る為、傾斜率の小さいRich−+Lean側への帰還
応答速度が遅いためRich補正量が結果として多(な
り積分出力の平均値即ち帰還補正量の平均を理論空燃比
λ−1よりRich側(λ〈1)にずらすことができる
Therefore, since there is a certain time delay in the engine air-fuel ratio feedback control system, the feedback response speed to the Rich-+Lean side with a small slope rate is slow, resulting in a large Rich correction amount (the average value of the integrated output, that is, the feedback The average correction amount can be shifted from the stoichiometric air-fuel ratio λ-1 to the Rich side (λ<1).

次に、アイドリンク時、或は減速時においてはスロット
ルバルブ4は全閉状態にあり全閉検出スイッチ4aはオ
ン状態となる。
Next, during idling or deceleration, the throttle valve 4 is in a fully closed state and the fully closed detection switch 4a is in an on state.

従ってトランジスタT1.T2はオフし、トランジスタ
T3 、 T4はオンしており比較器Q1 より第5
図5B図示の出力が積分出力制御回路1030入力端子
Aに入力すると、この比較器Q1の出力が出力゛1“の
とき、電源ラインvBよりトランジスタT4 を介した
電流と比較器Q1 から電流との合成電流が積分器C2
側へ流れ込むため電流iは正方向に大きな値を示し一方
、比較器Q1 の出力が出力“0“のときには電源ライ
ンVBよりトランジスタT4 を介した電流は比較器C
1側に流れ、それと共に積分器C2側からも比較器C1
側へ電流が流れるため電流iは負方向の小さな電流とな
り、従って第5図5c図示の電流信号波形となる。
Therefore, transistor T1. T2 is off, transistors T3 and T4 are on, and the fifth
When the output shown in FIG. 5B is input to the input terminal A of the integral output control circuit 1030, when the output of the comparator Q1 is "1", the current flowing from the power supply line vB through the transistor T4 and the current from the comparator Q1 are The combined current is integrator C2
On the other hand, when the output of the comparator Q1 is "0", the current flowing from the power supply line VB through the transistor T4 flows into the comparator C.
flows from the integrator C2 side to the comparator C1 side.
Since the current flows to the side, the current i becomes a small current in the negative direction, and therefore has the current signal waveform shown in FIG. 5c.

そこで、第5図5cの入力電流に対する積分器Q2の出
力は上述と同様にして第5図5D図示のようになる。
Therefore, the output of the integrator Q2 for the input current shown in FIG. 5C becomes as shown in FIG. 5D in the same manner as described above.

この場合時間に対する帰還補正量の大きいRich−+
Lean側へのLean補正量が結果として多くなり積
分出力の平均値即ち帰還補正量の平均を理論空燃比λ−
1よりLean側(λ〉■)にずらすことができる。
In this case, Rich-+ has a large amount of feedback correction with respect to time.
As a result, the Lean correction amount to the Lean side increases, and the average value of the integral output, that is, the average of the feedback correction amount, is calculated as the stoichiometric air-fuel ratio λ-
It can be shifted from 1 to the Lean side (λ>■).

こうして抵抗307,308,309を適当に選ぶこと
によって空燃比の平均値を希望する値に設定できる。
In this manner, by appropriately selecting the resistors 307, 308, and 309, the average value of the air-fuel ratio can be set to a desired value.

次に、積分出力制御回路103の他の実施例を第6図に
示す。
Next, another embodiment of the integral output control circuit 103 is shown in FIG.

第6図において、103′は積分出力制御回路で、抵抗
401.402,403゜404.405,406,4
07,408,409、トランジスタT6.T7.T8
、ホトカプラ410゜411及びダイオード412,4
13から構成されている。
In Fig. 6, 103' is an integral output control circuit, and resistors 401, 402, 403, 404, 405, 406, 4
07,408,409, transistor T6. T7. T8
, photocoupler 410°411 and diode 412,4
It consists of 13.

そこで、機関の定常時或は加速時スロットルバルブ4は
開いており全閉検出スイッチ4aはオフ状態にある。
Therefore, when the engine is in steady state or accelerating, the throttle valve 4 is open and the fully closed detection switch 4a is in the off state.

従ってトランジスタT6がオン、トランジスタT7.T
8がオフしてホトカプラ411がオンするため、正方向
電流(線中矢印方向の電流)に対して比較器Q1 と
積分器Q2゜の間には抵抗402,403が並列に入り
、合成インピーダンスが小さくなって積分器Q2への電
流iは増加することになり、逆に負方向の電流に対して
はダイオード413が逆方向にあるため合成インピーダ
ンスはほとんど変わらず電流値は変、化しない。
Therefore, transistor T6 is on, transistor T7 . T
8 is turned off and the photocoupler 411 is turned on, resistors 402 and 403 are connected in parallel between the comparator Q1 and the integrator Q2 for positive direction current (current in the direction of the arrow in the line), and the combined impedance is As a result, the current i to the integrator Q2 increases.On the other hand, since the diode 413 is in the opposite direction for a negative current, the combined impedance hardly changes and the current value does not change.

一方、機関のアイドリンク時或は減速時ではスロットル
バルブ4は閉じており全閉検出スイッチ4aはオン状態
にある。
On the other hand, when the engine is idling or decelerating, the throttle valve 4 is closed and the fully closed detection switch 4a is in the on state.

従って、トランジスタT7.T8がオン、トランジスタ
T6 がオフしてホトカプラ410がオンするため、負
方向型l流(図中矢印と逆方向の電流)に対して比較器
Q1 と積分器Q2の間には抵抗40L402が並列
に入り、合成インピーダンスが小さくなって比較器Q1
への電流iは増加することになり、逆に正方向の電流
に対してはダイオード412が逆方向にあるため合成イ
ンピーダンスはほとんど変わらず電流値は変化しない。
Therefore, transistor T7. Since T8 is turned on, transistor T6 is turned off, and photocoupler 410 is turned on, a resistor 40L402 is connected in parallel between comparator Q1 and integrator Q2 for negative direction l flow (current in the opposite direction to the arrow in the figure). , the combined impedance becomes smaller and the comparator Q1
On the other hand, for a positive current, the diode 412 is in the opposite direction, so the combined impedance hardly changes and the current value does not change.

つまり、定常時或は加速時には比較器Q1 出力IT
、 llによる正方向電流は、出力”0“による負方
向電流よりも合成インピーダンスが小さくなるため、一
層増加し、積分器Q2 の出力の傾斜率は比較器Q1
の出力”1゛のとき太き(なり、出力t+ otaのと
き小さくなる。
In other words, during steady state or acceleration, comparator Q1 output IT
, ll increases further because the combined impedance is smaller than the negative current due to the output "0", and the slope rate of the output of the integrator Q2 is the same as that of the comparator Q1.
When the output is 1, it becomes thick (becomes), and when the output is t+ota, it becomes small.

従って、積分出力の平均値即ち帰還補正量の平均を理論
空燃比λ−1よりRich側(λ〈1)にずらすことが
できる。
Therefore, the average value of the integral output, that is, the average of the feedback correction amount can be shifted from the stoichiometric air-fuel ratio λ-1 to the Rich side (λ<1).

また、アイドリンク時或は減速時には負方向電流に対し
て合成インピーダンスが小さくなるため、積分器Q2の
出力の傾斜率は比較器Q1 の出力”l”のとき小さく
、出力゛0“のとき大きくなり、帰還補正量の平均を理
論空燃比λ−1よりLean側(λ〉■)にずらすこと
ができる。
Also, during idling or deceleration, the combined impedance for negative current becomes small, so the slope rate of the output of integrator Q2 is small when the output of comparator Q1 is "l", and large when the output is "0". Therefore, the average feedback correction amount can be shifted from the stoichiometric air-fuel ratio λ-1 to the Lean side (λ>■).

以下説明したように、定常時或は加速時排気ガス中のN
Ox増加時には理論空燃比λ−1よりRich側にして
第1図に示す如く排気浄化のための:3way触媒のN
OX成分に対する浄化率を向上させ、一方、アイドリン
ク時或は減速時のC01HC増加時には理論空燃比λ=
1よりLean側にして:3way触媒のCO,HC成
分に対する浄化率を向上させ、運転領域全体で排気ガス
中3成分の高浄化を得んとするものである。
As explained below, N in exhaust gas during steady state or acceleration
When Ox increases, the stoichiometric air-fuel ratio λ-1 is set to Rich side and the N of the 3-way catalyst for exhaust purification is increased as shown in Figure 1.
It improves the purification rate for OX components, and on the other hand, when CO1HC increases during idling or deceleration, the stoichiometric air-fuel ratio λ =
1 to Lean side: This aims to improve the purification rate of the 3-way catalyst for CO and HC components, and to obtain high purification of the 3 components in the exhaust gas over the entire operating range.

なお、上述の実施例では機関状態検出器102としてス
ロットルバルブ4の全閉状態を検出する全閉検出スイッ
チ4aを用いたが、これに限らず吸気管内圧力を検出す
るバキュームスイッチ、或は機関の吸入空気量を測定す
る吸入空気流量計等を用いて機関の運転状態を検出する
ようにしても良い。
In the above-described embodiment, the fully closed detection switch 4a that detects the fully closed state of the throttle valve 4 is used as the engine state detector 102, but the present invention is not limited to this. The operating state of the engine may be detected using an intake air flow meter or the like that measures the amount of intake air.

また、上述の実施例では比較器Q1 と積分器02間
のインピーダンス値を変えたが、積分器Q2 の入出力
間にあるコンデンサ319のコンデンサ容量を機関の運
転状態に応じて変化させても良い。
Further, in the above embodiment, the impedance value between the comparator Q1 and the integrator 02 was changed, but the capacitance of the capacitor 319 between the input and output of the integrator Q2 may be changed depending on the operating state of the engine. .

以上述べたように本発明では、内燃機関の排気ガス中の
酸素濃度を検出する酸素濃度検出器の検出出力を設定値
と比較する比較手段及びその比較出力を積分する積分手
段と、例えば定常時、加速時、及び減速時の如く機関の
運転状態に応じて、この積分手段の出力の増加方向と減
少方向とでは出力勾配を異ならしめるように、積分手段
の積分定数を変化させる積分出力制御手段とを備えてい
るから、機関の各運転状態に応じた最適な平均空燃比に
設定変更でき、またこの平均空燃比を選ぶことによって
3way触媒による排気ガス(主にHC,C01NOx
)の高浄化率を運転領域全体に渡って可能にできるとい
う優れた効果がある。
As described above, the present invention includes a comparison means for comparing the detection output of an oxygen concentration detector that detects the oxygen concentration in the exhaust gas of an internal combustion engine with a set value, an integration means for integrating the comparison output, and an integration means for integrating the comparison output. , an integral output control means for changing the integral constant of the integrating means so as to make the output slope different in the increasing direction and decreasing direction of the output of the integrating means according to the operating state of the engine such as during acceleration and deceleration. Because it is equipped with
) has the excellent effect of making it possible to achieve a high purification rate over the entire operating range.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は3way触媒のCo、HC,NOxに対する浄
化率特性を示す特性図、第2図は本発明にがかる空燃比
帰還式燃料噴射制御装置の全体構成を示すブロック線図
、第3図は本発明の要部となる帰還制御回路の一実施例
を示す電気結線図、第4図、第5図は本発明の作動説明
に供する各部電圧電流波形1図、第6図は第3図図示帰
還制御回路の他の実施例を示す電気結線図である。 6・・・°・°排気管に設けた酸素濃度検出器、11・
・・・・・帰還制御回路、12・・・・・・触媒特に3
way触媒、102・・・・・・スロットルバルブ4
の全閉検出スイッチ4aよりなる機関状態検出器、10
3,103’・・・・・・積分出力制御回路、Ql ・
・・・・・比較器、Q2 ・・・・・・積分器。
FIG. 1 is a characteristic diagram showing the purification rate characteristics of the 3-way catalyst for Co, HC, and NOx, FIG. 2 is a block diagram showing the overall configuration of the air-fuel ratio feedback type fuel injection control device according to the present invention, and FIG. An electrical wiring diagram showing one embodiment of the feedback control circuit which is the main part of the present invention, FIGS. 4 and 5 are voltage and current waveforms of each part to explain the operation of the present invention. FIG. FIG. 7 is an electrical wiring diagram showing another embodiment of the feedback control circuit. 6...°・°Oxygen concentration detector installed in the exhaust pipe, 11.
... Feedback control circuit, 12 ... Catalyst, especially 3
way catalyst, 102...throttle valve 4
An engine state detector consisting of a fully closed detection switch 4a, 10
3,103'... Integral output control circuit, Ql ・
...Comparator, Q2 ...Integrator.

Claims (1)

【特許請求の範囲】 1 内燃機関の排気ガス中の酸素濃度を酸素濃度検出器
により検出して、その検出出力と予め設定した設定値と
を比較する比較手段を有し、この比較手段からの出力を
積分手段にて積分した増減極性を有する積分出力により
燃料噴射量の増減補正を行ない、前記酸素濃度を一定に
制御する空燃比帰還式燃料噴射制御装置において、機関
の運転状態を検出する機関状態検出器と、この機関状態
検出器の検出信号に応じて前記積分手段の積分出力の増
加方向と減少方向とでは出力勾配を異ならせるよう前記
積分手段の積分定数を変化させる積分出力制御手段とを
備え、前記運転状態に応じて機関の平均空燃比を変更す
ることを特徴とする空燃比帰還式燃料噴射制御装置。 □
[Claims] 1. Comparing means for detecting the oxygen concentration in the exhaust gas of the internal combustion engine using an oxygen concentration detector and comparing the detected output with a preset value, An air-fuel ratio feedback type fuel injection control device that corrects an increase or decrease in fuel injection amount using an integral output having an increase/decrease polarity obtained by integrating the output by an integrating means, and controls the oxygen concentration at a constant level. a state detector; and an integral output control means for changing an integral constant of the integrating means so as to make the output slope different in an increasing direction and a decreasing direction of the integral output of the integrating means in accordance with the detection signal of the engine state detector. An air-fuel ratio feedback type fuel injection control device, comprising: changing an average air-fuel ratio of an engine according to the operating state. □
JP50073969A 1975-06-10 1975-06-17 Air-fuel ratio feedback type fuel injection control device Expired JPS5824609B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP50073969A JPS5824609B2 (en) 1975-06-17 1975-06-17 Air-fuel ratio feedback type fuel injection control device
US05/690,628 US4111162A (en) 1975-06-10 1976-05-27 Method and system for controlling the mixture air-to-fuel ratio

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP50073969A JPS5824609B2 (en) 1975-06-17 1975-06-17 Air-fuel ratio feedback type fuel injection control device

Publications (2)

Publication Number Publication Date
JPS51149423A JPS51149423A (en) 1976-12-22
JPS5824609B2 true JPS5824609B2 (en) 1983-05-23

Family

ID=13533403

Family Applications (1)

Application Number Title Priority Date Filing Date
JP50073969A Expired JPS5824609B2 (en) 1975-06-10 1975-06-17 Air-fuel ratio feedback type fuel injection control device

Country Status (1)

Country Link
JP (1) JPS5824609B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5674836U (en) * 1979-11-13 1981-06-18
JPS59150966U (en) * 1983-03-28 1984-10-09 ダイハツ工業株式会社 Carburetor air-fuel ratio control device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4891425A (en) * 1972-02-10 1973-11-28
JPS4956035A (en) * 1972-06-20 1974-05-30
JPS4965416A (en) * 1972-10-28 1974-06-25
JPS5021137A (en) * 1973-06-28 1975-03-06

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4891425A (en) * 1972-02-10 1973-11-28
JPS4956035A (en) * 1972-06-20 1974-05-30
JPS4965416A (en) * 1972-10-28 1974-06-25
JPS5021137A (en) * 1973-06-28 1975-03-06

Also Published As

Publication number Publication date
JPS51149423A (en) 1976-12-22

Similar Documents

Publication Publication Date Title
US4186691A (en) Delayed response disabling circuit for closed loop controlled internal combustion engines
JPS621099B2 (en)
JPS6045297B2 (en) Internal combustion engine fuel control device
JPS584177B2 (en) Feedback air-fuel ratio control device for electronically controlled injection engines
US4178884A (en) Method and system to control the mixture air-to-fuel ratio
JPS5834654B2 (en) Method and device for controlling and adjusting fuel-air component ratio of working mixture of internal combustion engine
US4111162A (en) Method and system for controlling the mixture air-to-fuel ratio
US4364227A (en) Feedback control apparatus for internal combustion engine
JPS5925111B2 (en) Engine idle speed control device
US4173952A (en) Closed-loop mixture control system for an internal combustion engine with improved response characteristic to idling condition
US5383333A (en) Method for biasing a hego sensor in a feedback control system
US4391256A (en) Air-fuel ratio control apparatus
US4079711A (en) Air-fuel ratio controlling device
US4454846A (en) Method and apparatus for controlling the air-fuel ratio in an internal-combustion engine
JPS5844845B2 (en) kuunenhikikanshikinenriyoufunshiyaseigiyosouchi
US4167396A (en) Air-to-fuel ratio feedback control system with improved transitions between opening and closing of feedback control loop
US5379590A (en) Air/fuel control system with hego current pumping
JPS5824609B2 (en) Air-fuel ratio feedback type fuel injection control device
JPS6349058B2 (en)
US4478192A (en) Air-fuel ratio control system for internal combustion engines
JPS58106150A (en) Ramda control method and apparatus of internal combustion engine
US6209314B1 (en) Air/fuel mixture control in an internal combustion engine
JPS587815B2 (en) kuunenpikikanshikinenriyoufunshiyaseigiyosouchi
JPS6313012B2 (en)
JPS62253936A (en) Electronically controlled fuel injection equipment for internal combustion engine