JPS5824369A - Inertial dust collecting device - Google Patents

Inertial dust collecting device

Info

Publication number
JPS5824369A
JPS5824369A JP12185981A JP12185981A JPS5824369A JP S5824369 A JPS5824369 A JP S5824369A JP 12185981 A JP12185981 A JP 12185981A JP 12185981 A JP12185981 A JP 12185981A JP S5824369 A JPS5824369 A JP S5824369A
Authority
JP
Japan
Prior art keywords
dust
chambers
gas
storage chamber
inertial
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12185981A
Other languages
Japanese (ja)
Inventor
Kiyoshi Narato
清 楢戸
Toru Inada
徹 稲田
Keizo Otsuka
大塚 馨象
Hideyoshi Tanaka
田中 秀佶
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Plant Construction Co Ltd
Hitachi Plant Technologies Ltd
Original Assignee
Hitachi Plant Construction Co Ltd
Hitachi Plant Technologies Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Plant Construction Co Ltd, Hitachi Plant Technologies Ltd filed Critical Hitachi Plant Construction Co Ltd
Priority to JP12185981A priority Critical patent/JPS5824369A/en
Publication of JPS5824369A publication Critical patent/JPS5824369A/en
Pending legal-status Critical Current

Links

Landscapes

  • Cyclones (AREA)

Abstract

PURPOSE:To prevent the lowering of the dust collection rate, by constituting a gas inlet duct with plural sequences and providing dust separating chambers corresponding to them and arranging multiple small-sized cyclones and providing rough particle separating chambers. CONSTITUTION:One ends of inlet ducts 12 and 13 are connected to the exit of an SO2 reducing tower 6, and the other ends are connected to two rough particle separating chambers 14 respectively. Plural cyclone inlet parts 15 are provided above rough particle separating chambers 14 respectively, and each cyclone inlet part 15 is connected to each of plural cyclones 16. These cyclones form a fine particle separating chamber as a multicyclone as the whole of them. Rough particle shoots 17 are connected below rough particle separating chambers 14, and common exit ducts 18 are connected above cyclones 16, and common fine particle shoots 19 are connected below them.

Description

【発明の詳細な説明】 本発明は石炭などの燃焼あるいは機械的摩耗によって発
生するダストを含む排ガス処理装置に係り、特にガス量
変動を伴なう排ガス処理プラントの脱じんに好適な集じ
ん装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an exhaust gas treatment device containing dust generated by combustion of coal or mechanical abrasion, and in particular to a dust collection device suitable for removing dust from an exhaust gas treatment plant that is accompanied by fluctuations in gas amount. Regarding.

従来から排ガス中のダストの集じん装置として火力発電
所や化学プラントでは電気環じん装置、バグフィルタ及
びサイクロンなどが使用されている。これら集じん装置
は経済性、要求される性能、立地条件等により選択的に
または組合せて使用される。
BACKGROUND ART Conventionally, electrocyclic dust collectors, bag filters, cyclones, and the like have been used in thermal power plants and chemical plants as devices for collecting dust in exhaust gas. These dust collectors are used selectively or in combination depending on economic efficiency, required performance, location conditions, etc.

最近では石炭火力発電の増設計画の傾向からこれら集じ
ん装置の外に脱硝、脱硫装置の見直しも余儀なくされつ
つある。脱硫装置に於いては従来湿式石灰−石膏法が主
流であったが、この方法は排水処理を必要とし、でいた
こと、石炭火力発電では石炭中の8分が重油等に比べ多
量に含有されるため発生するSO2濃度も高く、回収さ
れる石膏の増大を招き、需要と供給のアンバランスなど
が提起されている。この背景から排水処理のいらないし
かも副生物として需要の見込まれる単体の硫黄(以下、
Sと称する。)を回収するS回収方式乾式脱硫装置の実
用化が急がれている。
Recently, due to the trend of expansion plans for coal-fired power generation, it is becoming necessary to review denitrification and desulfurization equipment in addition to these dust collectors. Conventionally, the wet lime-gypsum method has been the mainstream in desulfurization equipment, but this method requires wastewater treatment, and in coal-fired power generation, 8% of the coal is contained in large amounts compared to heavy oil, etc. As a result, the SO2 concentration generated is high, leading to an increase in the amount of gypsum to be recovered, and an imbalance between demand and supply has been raised. Against this background, simple sulfur (hereinafter referred to as
It is called S. ) There is an urgent need to put into practical use a dry desulfurization system using the S recovery method.

S回収方式乾式脱硫装置の代表フローを第1図に示す。Figure 1 shows a typical flow of the S recovery type dry desulfurization equipment.

ボイラー1からの排ガスは電気環じん装置2によってダ
ストが選択的に除去され、唖、硫装置3に入る。脱硫装
置3はSO2吸着塔4、脱着塔5、SO2還元塔6、ク
ラウス反応器7及びS回収装置8に大別される。SO2
吸着塔4では燃料石炭を乾留−賦活した半成コークスな
どが吸着剤として使用される。SO2吸着後の吸着剤は
脱着塔5に導びいて加熱し、強制的にSO2を吸着剤か
ら放出させ、吸着剤は吸着塔4に再循環して使用する。
Dust is selectively removed from the exhaust gas from the boiler 1 by an electrocyclic dust device 2, and the exhaust gas enters a sulfur device 3. The desulfurization device 3 is roughly divided into an SO2 adsorption tower 4, a desorption tower 5, an SO2 reduction tower 6, a Claus reactor 7, and an S recovery device 8. SO2
In the adsorption tower 4, semi-formed coke obtained by carbonizing and activating fuel coal is used as an adsorbent. The adsorbent after adsorbing SO2 is guided to the desorption tower 5 and heated to forcefully release SO2 from the adsorbent, and the adsorbent is recycled to the adsorption tower 4 for use.

脱着時に発生した高濃度のSO2を含む排ガスはSO2
還元塔6に導びかれ、燃料石炭などを乾留した還元剤に
よってS及びH2Sに転換される。さらに後流側のクラ
ウス反応器7に充填された触媒によってH2SをSに転
換した後、後流側のS回収装置8に於いてSを凝縮し回
収する。このS回収方式乾式脱硫装置で問題となるのは
、前記s02還元塔6内の還元剤が排ガス中の02  
により燃焼するときに灰化したアッシュが後流側に飛散
すること、及び還元剤の燃焼に伴なって新しい還元剤を
補給する際、還元剤が移動することがら機械的に摩耗し
、損耗した還元剤のかけらが後流側に飛散することであ
る。これらの飛散物がそのま\後流側のクラウス反応器
7及びS回収装置8に流入すればクラウス反応器7の触
媒層にダストが堆積し、圧力損失の上昇を招くので運転
上のトラブルを生じること、さらには回収されるS中に
ダストが混入することでSの純度を低下させる欠点があ
る。
The exhaust gas containing high concentration of SO2 generated during desorption is SO2
It is led to the reduction tower 6 and converted into S and H2S by a reducing agent obtained by carbonizing fuel coal or the like. Furthermore, after H2S is converted to S by the catalyst packed in the Claus reactor 7 on the downstream side, the S is condensed and recovered in the S recovery device 8 on the downstream side. The problem with this S recovery type dry desulfurization equipment is that the reducing agent in the s02 reduction tower 6 is
The ash that ash is scattered to the downstream side during combustion, and the reducing agent moves when replenishing new reducing agent as the reducing agent burns, resulting in mechanical wear and tear. This is because fragments of the reducing agent are scattered to the downstream side. If these scattered substances directly flow into the Claus reactor 7 and the S recovery device 8 on the downstream side, dust will accumulate on the catalyst layer of the Claus reactor 7, causing an increase in pressure loss and causing operational troubles. There is a drawback that the purity of S is lowered due to dust being generated and furthermore being mixed into the recovered S.

本発明の目的はこれら従来技術の欠点を解消すると共に
、火力発電所などでの負荷変動に伴なって排ガス量の変
動が余儀なくされることから、排ガス量変動にも充分耐
え得る安定した集じん装置を提供することにある。
The purpose of the present invention is to eliminate these drawbacks of the conventional technology, and also to provide a stable dust collection system that can sufficiently withstand fluctuations in the amount of exhaust gas, since fluctuations in the amount of exhaust gas are unavoidable due to load fluctuations at thermal power plants, etc. The goal is to provide equipment.

本発明の主旨は前記SO2還元塔から排出されるダスト
の集じん装置として排ガスが高濃度のS化金物を含有し
腐蝕性に富むことを考慮して、電気環じん装置では放電
不安定、高電圧絶縁碍子のリーク防止に複雑な難問があ
ること、バブフィルターでは300〜400℃程度の温
度領域では耐熱性、耐腐蝕性に材質及びメンテナンス上
で問題があることから採用は困難と考え、慣性分離型の
集じん装置とし、ガス入口ダクトを複数の系列から構成
させ、これに対応した複数個のダストの分離室を設け、
高い集じん率を得るために小型のサイクロンをマルチに
配置すると共に、小型サイクロンゆえ粗粒子の流入によ
る目詰り防止のために前1段に粗粒子分離室を設けてこ
の問題を解決した点にある。また、ガス量の変動に対し
ては複数個のガス導入ダストの使用本数を変えることで
サイクロンの入口ガス流速を集じん率の低下しない領域
に調節できる様に構成した点にある。
The gist of the present invention is to use an electrocyclic dust collector as a dust collector for dust discharged from the SO2 reduction tower, considering that the exhaust gas contains a high concentration of S-metallic metals and is highly corrosive. We thought that it would be difficult to adopt a bubble filter due to the complicated problems of preventing leaks in voltage insulators, and the problems with heat resistance and corrosion resistance in the temperature range of 300 to 400 degrees Celsius, as well as the material and maintenance. It is a separate type dust collector, with gas inlet ducts consisting of multiple series, and corresponding multiple dust separation chambers.
This problem was solved by arranging multiple small cyclones to obtain a high dust collection rate, and also by installing a coarse particle separation chamber in the front stage to prevent clogging due to the inflow of coarse particles due to the small cyclones. be. In addition, in response to fluctuations in gas amount, the cyclone inlet gas flow rate can be adjusted to a range where the dust collection rate does not decrease by changing the number of gas introduction dust particles used.

以下、本発明を図を用いて説明する・第2図は本発明の
一実施例を示す慣性分離型巣じん装置の本体上面一部切
欠き断面図、第3図は本体側面断面図を示す。第2図、
第3図において、2系列に分岐して′設けた入口ダクト
12.13は前掲第1図に示したSO2還元塔6の出口
に一端が連通し、他端は本装置11のケーシング内に箱
状に設けた2個の粗粒子分離室14にそれぞれ接続して
いる。
The present invention will be explained below with reference to the drawings. Fig. 2 is a partially cutaway sectional view of the top of the main body of an inertial separation type dust shaving device showing one embodiment of the present invention, and Fig. 3 is a side sectional view of the main body. . Figure 2,
In FIG. 3, one end of the inlet duct 12.13 that is branched into two lines is connected to the outlet of the SO2 reduction tower 6 shown in FIG. It is connected to two coarse particle separation chambers 14 arranged in a shape.

上記各粗粒子分離室14の上方にはそれぞれ複数個サイ
クロン入口部15が設けられ、これらの各サイクロン入
口部15はそれぞれ本装置11のケーシング内の前記粗
粒子分離室14とは別位置に設けた複数個のサイクロン
16の各個に連通し、これらのサイクロン16は全体と
してマルチサイクロンとしての微粒子分離室を形成して
いる。粗粒子分離室14の下方には粗粒子シュート17
が接続し、またサイクロン16の上方には共通の出ロダ
ク)18が、下方には共通の微粒子シュート19が接続
している。出口ダクト18は前掲第1図のクラウス反応
器7の入口に連通ずる。すなわち、本装置11は第1図
に示した乾式脱硫装置3のSO2還元塔6とクラウス反
応器7との間に設置される。上記の構成において、SO
2還元塔からガス20が粗粒子分離室14に流入すると
サイクロン入口部15が上方に位置するため、分岐ガス
21は上方へ反転する。この際粗粒子ゑ2はガス流から
慣性力で分離捕集され、粗粒子シュート17を介して下
方へ重力落下する。粗粒子22が除去されて微粒子のみ
を含む分岐ガス21は各々のサイクロン16に流入し微
粒子23は遠心力で分離捕集され、微粒子シュー)19
を介して下方に重力で落下する。本実施例では2系列の
粗粒子−分離室14とマルチサイクロンによる微粒子分
離室を設けたが、通常は最大流入ガス量に合せてサイク
ロン16単体に流入するガス量が最も集じんに適するよ
うサイクロンの本数を決定して配置しておけばよい。
A plurality of cyclone inlets 15 are provided above each of the coarse particle separation chambers 14, and each of these cyclone inlets 15 is provided at a different position from the coarse particle separation chamber 14 in the casing of the device 11. These cyclones 16 collectively form a particulate separation chamber as a multi-cyclone. A coarse particle chute 17 is located below the coarse particle separation chamber 14.
are connected to the cyclone 16, and a common outlet duct 18 is connected above the cyclone 16, and a common particulate chute 19 is connected below it. The outlet duct 18 communicates with the inlet of the Claus reactor 7 shown in FIG. 1 above. That is, this apparatus 11 is installed between the SO2 reduction tower 6 and the Claus reactor 7 of the dry desulfurization apparatus 3 shown in FIG. In the above configuration, SO
2 When the gas 20 flows into the coarse particle separation chamber 14 from the reduction tower, the branched gas 21 is reversed upward because the cyclone inlet 15 is located above. At this time, the coarse particles 2 are separated and collected from the gas flow by inertial force, and fall downward by gravity through the coarse particle chute 17. The branched gas 21 containing only fine particles from which the coarse particles 22 have been removed flows into each cyclone 16, where the fine particles 23 are separated and collected by centrifugal force, resulting in a fine particle shoe) 19.
falls downward by gravity. In this embodiment, two series of coarse particle separation chambers 14 and a multi-cyclone fine particle separation chamber are provided, but normally the cyclone is adjusted so that the amount of gas flowing into the cyclone 16 is most suitable for dust collection in accordance with the maximum inflow gas amount. All you have to do is decide on the number and place them.

次に本発明の全体構成を第4図を用いて説明する。SO
2還元塔6からの高濃度のS化合物及びダストを含有す
るガス2oはガス量検出器25を介してダクト12およ
び13から慣性分離型巣じん装置11に流入する。通常
の火力発電所では昼夜間で負荷が変動しボイラー排ガス
も変動することから本発明の慣性分離型巣じん装置11
に流入するガス20もフルロードの場合を100とする
と約1/3まで低下することが考えられる。慣性分離;
1IIJ 集じん装置11へ流入するガス20はフルロ
ードの場合には2系列のダク)12,1.3から1.%
のガス量に分割され流入するが、ガス量がある値以下に
低下するとガス量検出器25に連結されたノ(ルプ操作
器26によってバルブ27あるいは28の一方が閉じガ
ス20は分岐ダク)12.13のいずれか一方から流入
することになる。従ってガス量低下時のサイクロンの入
口ガス流速低下は所定の領域(集じん率低下が現われな
い領域を意味し、小型サイクロンの場合10〜18 m
/sの入口流速変動に対し集じん率は11ソ安定した値
を示す。)以内に制御することができ、ガス量変動に伴
なう集じん性能の低下を防止でき安定した性能を維持で
きる。
Next, the overall configuration of the present invention will be explained using FIG. 4. S.O.
Gas 2o containing a high concentration of S compounds and dust from the 2 reduction column 6 flows into the inertial separation type dust device 11 from the ducts 12 and 13 via the gas amount detector 25. In a normal thermal power plant, the load fluctuates day and night, and the boiler exhaust gas also fluctuates, so the inertial separation type dust dust device 11 of the present invention
It is conceivable that the gas 20 flowing into the tank is also reduced to about 1/3 when the case of full load is set to 100. Inertial separation;
1IIJ Gas 20 flowing into the dust collector 11 flows through two series of ducts) 12, 1.3 to 1. %
However, when the gas amount decreases below a certain value, one of the valves 27 or 28 is closed by the loop operator 26 and the gas 20 is transferred to a branch duct 12 connected to the gas amount detector 25. .13. Therefore, when the gas amount decreases, the gas flow velocity at the inlet of the cyclone decreases within a predetermined area (meaning an area where no decrease in dust collection rate occurs, and in the case of a small cyclone, the rate decreases from 10 to 18 m).
The dust collection rate shows a stable value of 11 degrees against a fluctuation in the inlet flow rate of /s. ), it is possible to prevent deterioration of dust collection performance due to fluctuations in gas amount and maintain stable performance.

さ−らに、慣性分離型巣じん装置11は粗粒子分離室と
微粒子分離室で分離したダストを回収するための粗粒子
収容室29および微粒子収容室30を具備している。こ
れら分離室の一部であるシュー)17.19と収容室2
9 、.30間にはバルブ31および32を配置し、収
容室29.30のダスト量が収容能力限度となった場合
、該バルブ31または32を閉じることで収容室を分離
室と遮断することができ、運転中でも収容室を開放して
回収ダストを系外に排出することができ、連続運転に適
した装置構成とされている。次に本実施例の他の特徴は
前記慣性分離型巣じん装置本体外壁に板状ヒータ等の外
部加熱装置33を具備させたこと、さらに外壁またはガ
ス温度、温度検出センサ34を取りつけ壁温度またはガ
ス温度を監視器35で監視しながら加熱量を制御器36
で調節できるようにした点にある。すなわち、前記SO
2還元塔6から排出されるガスが前述したごとく高濃度
のS化合物を含むことで、例えばS化合物の中で単体8
分は濃度にも影響されるが約200℃以下になると凝縮
する温度領域になる。従ってこの温度領域では集じん装
置11で特に、サイクロン内壁で凝縮した8分が付着し
、遠心力によるダストの分離機能に支障を来たし、集じ
ん率の低下につながる。そこで外部加熱装置33により
ガス温度を8分の凝縮温度以上に制御することによって
、これら運転上のトラブルを防止することができる効果
がある。また、前記S化合物を含むガスは腐蝕性に富む
ため、外部加熱i置35で高温(約500℃以上)にす
ると慣性分離束じん装置11の材料が腐蝕する。したが
って壁温度またはガス温度を温度検出センサー34で監
視し、2.00〜500℃の温度領域内で制御すること
で材料の1腐蝕によるトラブルを防止できる。なお上記
において、壁温度とガス温度の検出センサーを同時に設
け、これらの温度検出センサーの出力との兼ね合いで制
御するようにしてもよい。
Furthermore, the inertial separation type dust device 11 includes a coarse particle storage chamber 29 and a fine particle storage chamber 30 for collecting dust separated in the coarse particle separation chamber and the fine particle separation chamber. Shu) 17.19, which is part of these separation chambers, and storage chamber 2
9. Valves 31 and 32 are arranged between the storage chambers 29 and 30, and when the amount of dust in the storage chambers 29 and 30 reaches the storage capacity limit, the storage chambers can be isolated from the separation chamber by closing the valves 31 or 32, Even during operation, the storage chamber can be opened and collected dust can be discharged from the system, making the device suitable for continuous operation. Next, another feature of this embodiment is that an external heating device 33 such as a plate heater is provided on the outer wall of the main body of the inertial separation type dust abatement device, and a temperature detection sensor 34 is attached to the outer wall or gas temperature. A controller 36 controls the amount of heating while monitoring the gas temperature with a monitor 35.
The point is that it can be adjusted with. That is, the SO
2 Since the gas discharged from the reduction tower 6 contains a high concentration of S compounds as described above, for example, among the S compounds, single 8
The temperature is affected by the concentration, but below about 200°C, it is in the temperature range where it condenses. Therefore, in this temperature range, the dust condensed on the inner wall of the cyclone adheres to the dust collector 11, interfering with the dust separation function by centrifugal force, leading to a decrease in the dust collection rate. Therefore, by controlling the gas temperature to a temperature equal to or higher than the condensation temperature for 8 minutes using the external heating device 33, it is possible to prevent these operational troubles. Furthermore, since the gas containing the S compound is highly corrosive, the material of the inertial separation and dust removal device 11 will corrode if the external heating device 35 is used to raise the temperature to a high temperature (approximately 500° C. or higher). Therefore, by monitoring the wall temperature or gas temperature with the temperature detection sensor 34 and controlling it within the temperature range of 2.00 to 500°C, troubles due to corrosion of the material can be prevented. Note that in the above, sensors for detecting wall temperature and gas temperature may be provided at the same time, and control may be performed in consideration of the outputs of these temperature detection sensors.

さらに本発明は実施例の中では慣性分離型巣じん装置と
して2系列のダスト分離室及びガス導入ダストを有する
構成について述べたが、対象となる処理ガス量やその変
動中に応じて2系列に限らす3系列、4系列の分離室、
入口ダクトを有するよう構成されることはいうまでもな
い。また、本発明はモ記S回収方式乾式脱硫装置にのみ
適用可能なものではなく、石炭などの燃焼あるいは機械
的摩耗によって発生するダストを含む排ガスに対しては
、他の分野でも適用可能である。
Furthermore, in the embodiments of the present invention, a structure having two series of dust separation chambers and gas introduction dust is described as an inertial separation type dust agglomeration device. Limited 3 series, 4 series separation chambers,
It goes without saying that it is configured to have an inlet duct. Furthermore, the present invention is not only applicable to the S recovery type dry desulfurization equipment, but also applicable to other fields such as exhaust gas containing dust generated by combustion of coal or mechanical wear. .

以上説明したごとく本発明の慣性分離型巣じん装置は、
(1)ガス量変動にかかわらず安定した高性能の集じん
率が得られる。(2) SO2還元塔出口とクラウス反
応器の間に位置させることでクラウス反応器触媒層のダ
スト堆積による運転上のトラブル例えばダストがクラウ
ス反応器の触媒層に堆積することを防止できる、またS
回収装置での回収Sつ純度門高めることができる。
As explained above, the inertial separation type dust collection device of the present invention has the following features:
(1) A stable and high-performance dust collection rate can be obtained regardless of gas volume fluctuations. (2) By positioning it between the outlet of the SO2 reduction tower and the Claus reactor, operational troubles due to dust accumulation on the Claus reactor catalyst layer can be prevented, such as dust accumulation on the Claus reactor catalyst layer, and S
The purity of the recovery device can be increased by one.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は乾式脱硫装置を含むボイラー排ガス処理装置の
フロー、第2図は本発明の一実施例を示す本体上面一部
切欠き断面図、第3図は同じく本体側面断面図および第
4図は同じく全体構成図である。 3・・・S回収乾式脱硫装置、6・・・SO2還元塔、
7・・・クラウス反応器、11・・・慣性分離型巣じん
装置、12.13・・・入ロタリド、14・・・粗粒子
分離室、16・・・サイクロン、  29・・・粗粒子
収容室、30・・・微粒子分離室、  2’7 、28
、.31 、32・・・ノ(ルブ、;33・・・外部加
熱装置、  34・・・温度検出センサー。 第1図
Fig. 1 is a flowchart of a boiler exhaust gas treatment device including a dry desulfurization device, Fig. 2 is a partially cutaway sectional view of the top of the main body showing an embodiment of the present invention, Fig. 3 is a side sectional view of the main body, and Fig. 4 is a sectional view of the main body. is also an overall configuration diagram. 3... S recovery dry desulfurization device, 6... SO2 reduction tower,
7... Claus reactor, 11... Inertial separation type dust device, 12.13... Rotaryde containing, 14... Coarse particle separation chamber, 16... Cyclone, 29... Coarse particle storage Chamber, 30...Particle separation chamber, 2'7, 28
,.. 31, 32...No(lube); 33...External heating device, 34...Temperature detection sensor. Fig. 1

Claims (1)

【特許請求の範囲】 1、石炭などの燃焼あるいは機械的摩耗によって発生す
るダストを集じんする装置に於いて、ガスに同伴される
ダスト中の粗粒子をガスの反転による慣性力で分離捕集
する粗粒子分離室と、該粗粒子分離室の後流側に位置し
遠心力でダスト中の微粒子を分離するマルチサイクロン
から成る微粒子分離室とを有し、該粗粒子分離室と微粒
子分−室とを複数個分割配置して構成され、前記複数の
粗粒子分離室と微粒子分離室とで回収されたダストを収
容する収容室が各々独立しているように構成されたこと
を特徴とする慣性分離型巣じん装置。 2、特許請求の範囲第1項に記載した集じん装置に於い
て、ガスの人口ダクトは前記複数の粗粒子分離室に各々
単独に導入できる様に分岐され、各々の人口ダクトには
バルブを有し、前記集じん装置に流入するガス量に応答
してこれらのパルプの開閉を行なうよう構成されたこと
を特徴とする慣性分離型巣じん装置。 3、特許請求の範囲第1項または第2項に記載の集じん
装置に於いて、前記複数個の粗粒子分離室と粗粒子収容
室間及び複数個の微粒子分離室と微粒子収容室間にバル
ブを設け、これらのパルプ操作によって各々の分離室と
収容室とを隔離し、運転状態でも収容室に回収されたダ
ストを収容室外に排出できる様に構成したことを特徴と
する慣性分離型巣じん装置。 4、特許請求の範囲第1項、第2項または第3項に記載
の集じん装置に於いて、装置外壁及び(または)流入す
るガスの温度を測定する温度検出手段を有すると共に、
該集じん装置外壁を加熱するための外部加熱装置を配置
し、前記温度検出手段からの出力を基に加熱量を制御で
きるようにしたことを特徴とする特許分離型巣じん装置
[Claims] 1. In a device that collects dust generated by combustion of coal or mechanical abrasion, coarse particles in dust that is accompanied by gas are separated and collected by inertial force caused by reversal of the gas. and a fine particle separation chamber consisting of a multi-cyclone that is located downstream of the coarse particle separation chamber and separates fine particles in dust using centrifugal force. The dust storage chamber is configured by dividing and arranging a plurality of chambers, and the storage chambers for accommodating the dust collected in the plurality of coarse particle separation chambers and the plurality of fine particle separation chambers are each independent. Inertial separation type dust device. 2. In the dust collector described in claim 1, the artificial duct for gas is branched so that it can be introduced independently into the plurality of coarse particle separation chambers, and each artificial duct is provided with a valve. 1. An inertial separation type dust collecting device comprising: an inertial separation type dust collecting device configured to open and close these pulps in response to the amount of gas flowing into the dust collecting device. 3. In the dust collection device according to claim 1 or 2, between the plurality of coarse particle separation chambers and the coarse particle storage chamber and between the plurality of fine particle separation chambers and the fine particle storage chamber. An inertial separation type nest characterized by being equipped with a valve and configured to isolate each separation chamber and storage chamber by operating these pulps, and to discharge dust collected in the storage chamber to the outside of the storage chamber even during operation. Dust equipment. 4. The dust collection device according to claim 1, 2 or 3, further comprising a temperature detection means for measuring the temperature of the outer wall of the device and/or the inflowing gas,
A patented separation type dust device, characterized in that an external heating device is arranged to heat the outer wall of the dust collector, and the amount of heating can be controlled based on the output from the temperature detection means.
JP12185981A 1981-08-05 1981-08-05 Inertial dust collecting device Pending JPS5824369A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12185981A JPS5824369A (en) 1981-08-05 1981-08-05 Inertial dust collecting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12185981A JPS5824369A (en) 1981-08-05 1981-08-05 Inertial dust collecting device

Publications (1)

Publication Number Publication Date
JPS5824369A true JPS5824369A (en) 1983-02-14

Family

ID=14821694

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12185981A Pending JPS5824369A (en) 1981-08-05 1981-08-05 Inertial dust collecting device

Country Status (1)

Country Link
JP (1) JPS5824369A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019531178A (en) * 2016-09-09 2019-10-31 ロエシェ ゲーエムベーハー Method for operating a multicyclone for the separation of fine and ultrafine grains and multicyclones

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019531178A (en) * 2016-09-09 2019-10-31 ロエシェ ゲーエムベーハー Method for operating a multicyclone for the separation of fine and ultrafine grains and multicyclones

Similar Documents

Publication Publication Date Title
FI92627B (en) Reactor with circulating bed
US5690709A (en) Separation apparatus to remove particles from a gas stream
KR101827582B1 (en) Process and system for removing impurities from a gas
KR910000672B1 (en) Fluidized bed combustion having integral solids separator
NO168233B (en) PROCEDURE FOR MONITORING POLLUTION EMISSIONS
JPH02280808A (en) Process and apparatus for separating liquid ash
JPH0620940B2 (en) Granule processing equipment
US3917472A (en) Apparatus for purifying a raw gas or suspended solid particles
JPS5840140A (en) Fluidized bed type reactor
US5687656A (en) Denitration apparatus for a caol-fired boiler
EP0246229A1 (en) Method for the clean-up of particulate-containing gases
JPS5824369A (en) Inertial dust collecting device
US4523931A (en) Fabric filter system with improved gas bypass means for removing particulate matter from gases
US4314830A (en) Side stream separator for boiler particulate emission control
KR200178881Y1 (en) Waste gas treatment apparatus
CN106422591B (en) A kind of Bed Filtration dust-extraction unit
JP4071993B2 (en) Particle recovery method and apparatus
FI64858C (en) SLUSSMATARE
CN220589425U (en) Dust remover with built-in cyclone
CN105148672B (en) A kind of combined duster for fuel gas
JPH0324251B2 (en)
KR101924618B1 (en) Dust Collector and Dust System
CN116808760A (en) Dust remover with built-in cyclone
SU952295A1 (en) Apparatus for cleaning gas flow from dust
JPS641187B2 (en)